1
|
Sarker B, Matiur Rahaman M, Alamin MH, Ariful Islam M, Nurul Haque Mollah M. Boosting edgeR (Robust) by dealing with missing observations and gene-specific outliers in RNA-Seq profiles and its application to explore biomarker genes for diagnosis and therapies of ovarian cancer. Genomics 2024; 116:110834. [PMID: 38527595 DOI: 10.1016/j.ygeno.2024.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The edgeR (Robust) is a popular approach for identifying differentially expressed genes (DEGs) from RNA-Seq profiles. However, it shows weak performance against gene-specific outliers and is unable to handle missing observations. To address these issues, we proposed a pre-processing approach of RNA-Seq count data by combining the iLOO-based outlier detection and random forest-based missing imputation approach for boosting the performance of edgeR (Robust). Both simulation and real RNA-Seq count data analysis results showed that the proposed edgeR (Robust) outperformed than the conventional edgeR (Robust). To investigate the effectiveness of identified DEGs for diagnosis, and therapies of ovarian cancer (OC), we selected top-ranked 12 DEGs (IL6, XCL1, CXCL8, C1QC, C1QB, SNAI2, TYROBP, COL1A2, SNAP25, NTS, CXCL2, and AGT) and suggested hub-DEGs guided top-ranked 10 candidate drug-molecules for the treatment against OC. Hence, our proposed procedure might be an effective computational tool for exploring potential DEGs from RNA-Seq profiles for diagnosis and therapies of any disease.
Collapse
Affiliation(s)
- Bandhan Sarker
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Matiur Rahaman
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China.
| | - Muhammad Habibulla Alamin
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Ariful Islam
- Bioinformatics Laboratory (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Laboratory (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
2
|
Lawarde A, Sharif Rahmani E, Nath A, Lavogina D, Jaal J, Salumets A, Modhukur V. ExplORRNet: An interactive web tool to explore stage-wise miRNA expression profiles and their interactions with mRNA and lncRNA in human breast and gynecological cancers. Noncoding RNA Res 2024; 9:125-140. [PMID: 38035042 PMCID: PMC10686811 DOI: 10.1016/j.ncrna.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023] Open
Abstract
Background MicroRNAs (miRNAs) are key regulators of gene expression that have been implicated in gynecological and breast cancers. Understanding the cancer stage-wise expression patterns of miRNAs and their interactions with other RNA molecules in cancer is crucial to improve cancer diagnosis and treatment planning. Comprehensive web tools that integrate data on the transcriptome, circulating miRNAs, and their validated targets to derive beneficial conclusions in cancer research are lacking. Methods Using the Shiny R package, we developed a web tool called ExplORRNet that integrates transcriptomic profiles from The Cancer Genome Atlas and miRNA expression data derived from various sources, including tissues, cell lines, exosomes, serum, and plasma, available in the Gene Expression Omnibus database. Differential expression analyses between normal and tumor tissue samples as well as different stages of cancer, accompanied by gene enrichment and survival analyses, can be performed using specialized R packages. Additionally, a miRNA-messenger RNA (mRNA)-long non-coding RNA (lncRNA) networks are constructed to identify regulatory modules. Results Our tool identifies cancer stage-wise differentially regulated miRNAs, mRNAs, and lncRNAs in gynecological and breast cancers. Survival analysis identifies miRNAs associated with patient survival, and functional enrichment analysis provides insights into dysregulated miRNA-related biological processes and pathways. The miRNA-mRNA-lncRNA networks highlight interconnected regulatory molecular modules driving cancer progression. Case studies demonstrate the utility of the ExplORRNet for studying gynecological and breast cancers. Conclusion ExplORRNet is an intuitive and user-friendly web tool that provides a deeper understanding of dysregulated miRNAs and their functional implications in gynecological and breast cancers. We hope our ExplORRNet tool has potential utility among the clinical and basic researchers and will be beneficial to the entire cancer genomics community to encourage and facilitate mining the rapidly growing public databases to progress the field of precision oncology. The ExplORRNet is available at https://mirna.cs.ut.ee.
Collapse
Affiliation(s)
- Ankita Lawarde
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | | | - Adhiraj Nath
- Bioengineering Research Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam, India
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Estonia
- Institute of Chemistry, University of Tartu, Estonia
| | - Jana Jaal
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Estonia
- Haematology and Oncology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Wu C, Yang J, Lin X, Wu J, Yang C, Chen S. LncRNA PRKCA-AS1 promotes LUAD progression and function as a ceRNA to regulate S100A16 by sponging miR-508-5p. J Cancer 2024; 15:1718-1730. [PMID: 38370382 PMCID: PMC10869986 DOI: 10.7150/jca.91184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/20/2024] Open
Abstract
Objective: This study aimed to elucidate the underlying mechanism of LncRNA PRKCA-AS1 in lung adenocarcinoma (LUAD). Methods: The expression of LncRNA PRKCA-AS1, miR-508-5p and S100A16, in LUAD tissues or cell lines (NCI-H520 and H1299) was analyzed with qRT-PCR. The clinical diagnostic value of LncRNA PRKCAAS1, miR-508-5p and S100A16 in LUAD were analyzed by receptor operating characteristic (ROC) curve. Then we knockdown or overexpression of PRKCAAS1 in NCI-H520 and H1299 cells, and the cell function test was applied to detect the activity and metastasis level of cells in different transfection groups. Then Pearson correlation analysis was used for the correlation between miR-508-5p and PRKCA-AS1. The dual-luciferase reporter experiment and CHIRP analysis was conducted to verify the target binding relationship of PRKCA-AS1, miR-508-5p or S100A16. FISH assay analyzed the colocalization of PRKCA-AS1 and miR-508-5p in NCI-H520 and H1299 cells. Rescue experiment and tumorigenesis experiment in nude mice further explore the regulatory mechanisms of LncRNA PRKCA-AS1, miR-508-5p and S100A16 on LUAD progression in vitro and in vivo. Results: From the results, PRKCA-AS1 and S100A16 were up-regulated in LUAD tissues, while miR-508-5p was downregulated compared with the adjacent tissues. And gain-of-function revealed that PRKCA-AS1 knock-down apparently suppressed the cell proliferation and metastasis, whereas miR-508-5p inhibitors or S100A16 overexpression showed a opposite effect. In addition, there is evidence that PRKCA-AS1, miR-508-5p and S100A16 have a targeted regulatory relationship. Moreover, rescue experiment and tumorigenesis experiment in nude mice further confirmed that LncRNA PRKCA-AS1 regulates S100A16 through sponging miR-508-5p to regulate LUAD progression in vitro and in vivo. Conclusion: These results demonstrated that LncRNA PRKCA-AS1 might regulate LUAD by acting as a ceRNA via sponging miR-508-5p and regulating S100A16 expression, indicating that manipulation of PRKCA-AS1 might be a potential therapeutic strategy in LUAD.
Collapse
Affiliation(s)
- Chaohui Wu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Jiansheng Yang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Xianbin Lin
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Jingyang Wu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Chuangcai Yang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
4
|
Yu M, He X, Liu T, Li J. lncRNA GPRC5D-AS1 as a ceRNA inhibits skeletal muscle aging by regulating miR-520d-5p. Aging (Albany NY) 2023; 15:13980-13997. [PMID: 38100482 PMCID: PMC10756129 DOI: 10.18632/aging.205279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023]
Abstract
Sarcopenia induced by muscle aging is associated with negative outcomes in a variety of diseases. Long non-coding RNAs are a class of RNAs longer than 200 nucleotides with lower protein coding potential. An increasing number of studies have shown that lncRNAs play a vital role in skeletal muscle development. According to our previous research, lncRNA GPRC5D-AS1 is selected in the present study as the target gene to further study its effect on skeletal muscle aging in a dexamethasone-induced human muscle atrophy cell model. As a result, GPRC5D-AS1 functions as a ceRNA of miR-520d-5p to repress cell apoptosis and regulate the expression of muscle regulatory factors, including MyoD, MyoG, Mef2c and Myf5, thus accelerating myoblast proliferation and differentiation, facilitating development of skeletal muscle. In conclusion, lncRNA GPRC5D-AS1 could be a novel therapeutic target for treating sarcopenia.
Collapse
Affiliation(s)
- Miao Yu
- Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiuting He
- Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun 130021, China
| | - Ting Liu
- Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Li
- Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Shil R, Ghosh R, Banerjee AK, Mal C. LncRNA, miRNA and transcriptional co-regulatory network of breast and ovarian cancer reveals hub molecules. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Feng S, Xia T, Ge Y, Zhang K, Ji X, Luo S, Shen Y. Computed Tomography Imaging-Based Radiogenomics Analysis Reveals Hypoxia Patterns and Immunological Characteristics in Ovarian Cancer. Front Immunol 2022; 13:868067. [PMID: 35418998 PMCID: PMC8995567 DOI: 10.3389/fimmu.2022.868067] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose The hypoxic microenvironment is involved in the tumorigenesis of ovarian cancer (OC). Therefore, we aim to develop a non-invasive radiogenomics approach to identify a hypoxia pattern with potential application in patient prognostication. Methods Specific hypoxia-related genes (sHRGs) were identified based on RNA-seq of OC cell lines cultured with different oxygen conditions. Meanwhile, multiple hypoxia-related subtypes were identified by unsupervised consensus analysis and LASSO-Cox regression analysis. Subsequently, diversified bioinformatics algorithms were used to explore the immune microenvironment, prognosis, biological pathway alteration, and drug sensitivity among different subtypes. Finally, optimal radiogenomics biomarkers for predicting the risk status of patients were developed by machine learning algorithms. Results One hundred forty sHRGs and three types of hypoxia-related subtypes were identified. Among them, hypoxia-cluster-B, gene-cluster-B, and high-risk subtypes had poor survival outcomes. The subtypes were closely related to each other, and hypoxia-cluster-B and gene-cluster-B had higher hypoxia risk scores. Notably, the low-risk subtype had an active immune microenvironment and may benefit from immunotherapy. Finally, a four-feature radiogenomics model was constructed to reveal hypoxia risk status, and the model achieved area under the curve (AUC) values of 0.900 and 0.703 for the training and testing cohorts, respectively. Conclusion As a non-invasive approach, computed tomography-based radiogenomics biomarkers may enable the pretreatment prediction of the hypoxia pattern, prognosis, therapeutic effect, and immune microenvironment in patients with OC.
Collapse
Affiliation(s)
- Songwei Feng
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tianyi Xia
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Ge
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ke Zhang
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuan Ji
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shanhui Luo
- Department of Gynaecology, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Wang X, Chen H, Liu J, Gai L, Yan X, Guo Z, Liu F. Emerging Advances of Non-coding RNAs and Competitive Endogenous RNA Regulatory Networks in Asthma. Bioengineered 2021; 12:7820-7836. [PMID: 34635022 PMCID: PMC8806435 DOI: 10.1080/21655979.2021.1981796] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway remodeling and bronchial hyperresponsiveness. A variety of effector cells and cytokines jointly stimulate the occurrence of inflammatory response in asthma. Although the pathogenesis of asthma is not entirely clear, the possible roles of non-coding RNAs (ncRNAs) have been recently demonstrated. NcRNAs are non-protein-coding RNA molecules, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which are involved in the regulation of a variety of biological processes. Mounting studies have shown that ncRNAs play pivotal roles in the occurrence and progression of asthma via competing endogenous RNA (ceRNA) regulatory networks. However, the specific mechanism and clinical application of ncRNAs and ceRNA regulatory networks in asthma have not been fully elucidated, which are worthy of further investigation. This paper comprehensively summarized the current progress on the roles of miRNAs, lncRNAs, circRNAs, and ceRNA regulatory networks in asthma, which can provide a better understanding for the disease pathogenesis and is helpful for identifying novel biomarkers for asthma.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Hui Chen
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Jingjing Liu
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Linlin Gai
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Xinyi Yan
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, WeifangChina
| | - Fengxia Liu
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| |
Collapse
|
8
|
Chen B, Yi J, Xu Y, Zheng P, Tang R, Liu B. Construction of a circRNA-miRNA-mRNA network revealed the potential mechanism of Buyang Huanwu Decoction in the treatment of cerebral ischemia. Biomed Pharmacother 2021; 145:112445. [PMID: 34844103 DOI: 10.1016/j.biopha.2021.112445] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIM Buyang Huanwu Decoction (BHD) is a traditional Chinese herbal medicine that is effective for treating cerebral ischemia (CI). However, the molecular mechanisms of BHD in CI have not been fully elucidated. In this study, we integrated the circular RNA (circRNA)-microRNA (miRNA)-messenger RNA (mRNA) network of middle cerebral artery occlusion (MACO) rats treated with BHD. METHODS SD rats were randomly divided into a control group, model group, model+BHD group (2.5, 5, 10 g/kg) and model+butylphthalide (NBP) group (54 mg/kg). The neurological functions of the rats were evaluated by a modified neurological severity scoring (mNSS) system. Pathological lesions were assessed by Nissl staining, and the effects of BHD on neurovascular unit (NVU) associated protein microtubule-associated protein 2 (MAP2), glial fibrillary acidic protein (GFAP) and von Willebrand factor (VWF) were assessed by immunohistochemistry. CeRNA and miRNA microarrays were used to establish the circRNA, miRNA, and mRNA profiles. Finally, a circRNA-miRNA-mRNA ternary transcription network was constructed. RESULTS BHD improved the neurobehavioral test scores (P < 0.01) and the histopathological changes in ischemic brain tissue in MCAO rats. The expression of MAP2 and VWF decreased and the expression of GFAP increased in the ischemic side brain tissue of MCAO rats (P < 0.01), and treatment with BHD reversed the above changes (P < 0.01 or 0.05). We identified seven, three, and 86 significantly dysregulated circRNAs, miRNAs, and mRNAs, respectively, that were associated with the neuroprotective effects of BHD. Furthermore, bioinformatics analysis showed that these targets may exert therapeutic effects through multiple pathways, such as the VEGF and Hippo signaling pathways. Finally, we constructed a circRNA-miRNA-mRNA network. CONCLUSIONS In brief, our study provides novel insights into ceRNA-mediated gene regulation in the progression of NVU after CI and the mechanism of action for BHD.
Collapse
Affiliation(s)
- Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yaqian Xu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Piao Zheng
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rongmei Tang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Baiyan Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
9
|
Yin L, Wang Y. Long non-coding RNA NEAT1 facilitates the growth, migration, and invasion of ovarian cancer cells via the let-7 g/MEST/ATGL axis. Cancer Cell Int 2021; 21:437. [PMID: 34416900 PMCID: PMC8379830 DOI: 10.1186/s12935-021-02018-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background/Aim Growing evidence indicates a significant role of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in ovarian cancer, a frequently occurring malignant tumor in women; however, the possible effects of an interplay of NEAT1 with microRNA (miRNA or miR) let-7 g in ovarian cancer are not known. The current study aimed to investigate the role of the NEAT1/let-7 g axis in the growth, migration, and invasion of ovarian cancer cells and explore underlying mechanisms. Methods NEAT1 expression levels were examined in clinical tissue samples and cell lines. The relationships between NEAT1, let-7 g, and MEST were then analyzed. Gain- or loss-of-function approaches were used to manipulate NEAT1 and let-7 g. The effects of NEAT1 on cell proliferation, migration, invasion, and apoptosis were evaluated. Mouse xenograft models of ovarian cancer cells were established to verify the function of NEAT1 in vivo. Results NEAT1 expression was elevated while let-7 g was decreased in ovarian cancer clinical tissue samples and cell lines. A negative correlation existed between NEAT1 and let-7 g, whereby NEAT1 competitively bound to let-7 g and consequently down-regulate let-7 g expression. By this mechanism, the growth, migration, and invasion of ovarian cancer cells were stimulated. In addition, let-7 g targeted mesoderm specific transcript (MEST) and inhibited its expression, leading to promotion of adipose triglyceride lipase (ATGL) expression and inhibition of ovarian cancer cell growth, migration, and invasion. However, the effect of let-7 g was abolished by overexpression of MEST. Furthermore, silencing of NEAT1 decreased the xenograft tumor growth by decreasing MEST while up-regulating let-7 g and ATGL. Conclusions Cumulatively, the findings demonstrated that NEAT1 could promote malignant phenotypes of ovarian cancer cells by regulating the let-7 g/MEST/ATGL signaling axis. Therefore, NEAT1 can be regarded as an important molecular target and biomarker for ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02018-3.
Collapse
Affiliation(s)
- Lili Yin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, P.R. China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning Province, 110004, P.R. China.
| |
Collapse
|
10
|
Feng J, Bian Q, He X, Zhang H, He J. A LncRNA-miRNA-mRNA ceRNA regulatory network based tuberculosis prediction model. Microb Pathog 2021; 158:105069. [PMID: 34175436 DOI: 10.1016/j.micpath.2021.105069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
The high incidence of tuberculosis (TB) has brought serious social burdens and it is urgent to explore the mechanism of TB development. This study was conducted to analyze the role of lncRNA-miRNA-mRNA regulatory network and its contained nodes involved in TB to identify crucial biomarkers for early diagnosis of TB. Long-noncoding RNAs (lncRNAs), messenger RNA (mRNAs) and microRNAs (miRNAs) expression profiles of TB patients and healthy individuals were downloaded from the GSE34608 dataset. Weighted gene co-expression network analysis (WGCNA) was performed to identified the key modules related to TB and the highly related mRNA-lncRNA pair in the module. Based on highly related mRNAs and lncRNAs in greenyellow module, lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network was constructed. The DE-mRNAs in the network were functionally enriched with Gene ontology (GO) and Gene set enrichment analysis (GSEA). Least absolute shrinkage and selection operator (LASSO) algorithm and receiver operating characteristic curve (ROC) were used to construct and evaluate the prediction model of TB. We identified 3267 DE-mRNAs, 484 DE-lncRNAs and 69 DE-miRNAs between the TB and healthy subjects, from which 8 DE-mRNAs, 14 DE-lncRNAs and 3 DE-miRNAs were used to construct the ceRNA network. The genes contained in the ceRNA network were mainly enriched in neutrophil mediated immune response, including neutrophil activation, degradation and signal transduction. ROC analysis revealed that has-miR-140-5p, has-miR-142-3p and the LASSO cox prediction model based on HMGA1 and CAPN1 have potential value for forecasting TB (AUC > 0.7). Hence, our study provides a new perspective from the lncRNA-miRNA-mRNA ceRNA regulatory network for TB diagnosis and treatment.
Collapse
Affiliation(s)
- Jinfang Feng
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Qin Bian
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China.
| | - Xianwei He
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Han Zhang
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| | - Jiujiang He
- Clinical Laboratory Department, Guangyuan Central Hospital, Guangyuan, 628000, China
| |
Collapse
|
11
|
Identifying a Serum Exosomal-Associated lncRNA/circRNA-miRNA-mRNA Network in Coronary Heart Disease. Cardiol Res Pract 2021; 2021:6682183. [PMID: 34258055 PMCID: PMC8249161 DOI: 10.1155/2021/6682183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/23/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Accumulating evidence supports the importance of noncoding RNAs and exosomes in coronary heart disease (CHD). However, exosomal-associated competing endogenous RNA- (ceRNA-) mediated regulatory mechanisms in CHD are largely unexplored. The present study aimed to explore exosomal-associated ceRNA networks in CHD. Methods Data from 6 CHD patients and 32 normal controls were downloaded from the ExoRBase database. CHD and normal controls were compared by screening differentially expressed mRNAs (DEMs), lncRNAs (DELs), and circRNAs (DECs) in serum exosomes. MicroRNAs (miRNAs) targeting DEMs were predicted using the Targetscan and miRanda databases, and miRNAs targeted by DELs and DECs were predicted using the miRcode and starBase databases, respectively. The biological functions and related signaling pathways of DEMs were analyzed using the David and KOBAS databases. Subsequently, a protein-protein interaction (PPI) network was established to screen out on which hub genes enrichment analyses should be performed, and a ceRNA network (lncRNA/circRNA-miRNA-mRNA) was constructed to elucidate ceRNA axes in CHD. Results A total of 312 DEMs, 43 DELs, and 85 DECs were identified between CHD patients and normal controls. Functional enrichment analysis showed that DEMs were significantly enriched in “chromatin silencing at rDNA,” “telomere organization,” and “negative regulation of gene expression, epigenetic.” PPI network analysis showed that 25 hub DEMs were closely related to CHD, of which ubiquitin C (UBC) was the most important. Hub genes were mainly enriched in “cellular protein metabolic process” functions. The exosomal-associated ceRNA regulatory network incorporated 48 DEMs, 73 predicted miRNAs, 10 DELs, and 15 DECs. The LncRNA/circRNA-miRNA-mRNA interaction axes (RPL7AP11/hsa-miR-17-5p/UBC and RPL7AP11/hsa-miR-20b-5p/UBC) were obtained from the network. Conclusions Our findings provide a novel perspective on the potential role of exosomal-associated ceRNA network regulation of the pathogenesis of CHD.
Collapse
|
12
|
Radu MR, Prădatu A, Duică F, Micu R, Creţoiu SM, Suciu N, Creţoiu D, Varlas VN, Rădoi VE. Ovarian Cancer: Biomarkers and Targeted Therapy. Biomedicines 2021; 9:693. [PMID: 34207450 PMCID: PMC8235073 DOI: 10.3390/biomedicines9060693] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is one of the most common causes of death in women as survival is highly dependent on the stage of the disease. Ovarian cancer is typically diagnosed in the late stage due to the fact that in the early phases is mostly asymptomatic. Genomic instability is one of the hallmarks of ovarian cancer. While ovarian cancer is stratified into different clinical subtypes, there still exists extensive genetic and progressive diversity within each subtype. Early detection of the disorder is one of the most important steps that facilitate a favorable prognosis and a good response to medical therapy for the patients. In targeted therapies, individual patients are treated by agents targeting the changes in tumor cells that help them grow, divide and spread. Currently, in gynecological malignancies, potential therapeutic targets include tumor-intrinsic signaling pathways, angiogenesis, homologous-recombination deficiency, hormone receptors, and immunologic factors. Ovarian cancer is usually diagnosed in the final stages, partially due to the absence of an effective screening strategy, although, over the times, numerous biomarkers have been studied and used to assess the status, progression, and efficacy of the drug therapy in this type of disorder.
Collapse
Affiliation(s)
- Mihaela Raluca Radu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Alina Prădatu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Florentina Duică
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
| | - Romeo Micu
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sanda Maria Creţoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Nicolae Suciu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
| | - Dragoş Creţoiu
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania; (M.R.R.); (A.P.); (F.D.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 01171 Bucharest, Romania
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania
| | - Viorica Elena Rădoi
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, 020395 Bucharest, Romania;
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
13
|
Deciphering the Long Non-Coding RNAs and MicroRNAs Coregulation Networks in Ovarian Cancer Development: An Overview. Cells 2021; 10:cells10061407. [PMID: 34204094 PMCID: PMC8227049 DOI: 10.3390/cells10061407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 01/17/2023] Open
Abstract
Non-coding RNAs are emergent elements from the genome, which do not encode for proteins but have relevant cellular functions impacting almost all the physiological processes occurring in eukaryotic cells. In particular, microRNAs and long non-coding RNAs (lncRNAs) are a new class of small RNAs transcribed from the genome, which modulate the expression of specific genes at transcriptional and posttranscriptional levels, thus adding a new regulatory layer in the flux of genetic information. In cancer cells, the miRNAs and lncRNAs interactions with its target genes and functional pathways are deregulated as a consequence of epigenetic and genetic alterations occurring during tumorigenesis. In this review, we summarize the actual knowledge on the interplay of lncRNAs with its cognate miRNAs and mRNAs pairs, which interact in coregulatory networks with a particular emphasis on the mechanisms underlying its oncogenic behavior in ovarian cancer. Specifically, we reviewed here the evidences unraveling the relevant roles of lncRNAs/miRNAs pairs in altered regulation of cell migration, angiogenesis, therapy resistance, and Warburg effect. Finally, we also discussed its potential clinical implications in ovarian cancer and related endocrine disease therapies.
Collapse
|
14
|
Spetale FE, Murillo J, Villanova GV, Bulacio P, Tapia E. FGGA-lnc: automatic gene ontology annotation of lncRNA sequences based on secondary structures. Interface Focus 2021; 11:20200064. [PMID: 34123354 PMCID: PMC8193470 DOI: 10.1098/rsfs.2020.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
The study of long non-coding RNAs (lncRNAs), greater than 200 nucleotides, is central to understanding the development and progression of many complex diseases. Unlike proteins, the functionality of lncRNAs is only subtly encoded in their primary sequence. Current in-silico lncRNA annotation methods mostly rely on annotations inferred from interaction networks. But extensive experimental studies are required to build these networks. In this work, we present a graph-based machine learning method called FGGA-lnc for the automatic gene ontology (GO) annotation of lncRNAs across the three GO subdomains. We build upon FGGA (factor graph GO annotation), a computational method originally developed to annotate protein sequences from non-model organisms. In the FGGA-lnc version, a coding-based approach is introduced to fuse primary sequence and secondary structure information of lncRNA molecules. As a result, lncRNA sequences become sequences of a higher-order alphabet allowing supervised learning methods to assess individual GO-term annotations. Raw GO annotations obtained in this way are unaware of the GO structure and therefore likely to be inconsistent with it. The message-passing algorithm embodied by factor graph models overcomes this problem. Evaluations of the FGGA-lnc method on lncRNA data, from model and non-model organisms, showed promising results suggesting it as a candidate to satisfy the huge demand for functional annotations arising from high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Flavio E. Spetale
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Javier Murillo
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Gabriela V. Villanova
- Laboratorio Mixto de Biotecnología Acuática (FCByF-UNR), Av. Eduardo Carrasco S/N, S2000EZP Rosario, Argentina
| | - Pilar Bulacio
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| | - Elizabeth Tapia
- CIFASIS-Conicet-UNR, 27 de Febrero 210 bis, S2000EZP Rosario, Santa Fe, Argentina
- Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Riobamba 245 bis, S2000EZP Rosario, Argentina
| |
Collapse
|
15
|
Zeng Z, Yao J, Zhong J, Fan S, Xue Y, Chen X, Luo Y, Xue S. The Role of the lncRNA-LRCF in Propofol-Induced Oligodendrocyte Damage in Neonatal Mouse. Neurochem Res 2021; 46:778-791. [PMID: 33411226 DOI: 10.1007/s11064-020-03205-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
In this study, LRCF, a long noncoding RNA (lncRNA) related to cognitive function, which was first discovered and named by our group, was shown to be involved in the propofol-induced proliferation and apoptosis of oligodendrocytes (OLGs). Our systematic study showed that LRCF expression differs in OLGs of mice of different ages. We found that neonatal mice with a high level of LRCF typically showed greater propofol-induced injury of OLGs. Mechanistic research has shown that LRCF can block the HIF-1α/miR138-5p/Caspase-3 pathway by binding to miR138-5p to form a microRNA (miRNA) sponge and result in cell damage through HIF-1α/Caspase-3 pathway in propofol induced OLGs. This may be the intrinsic reason why neonatal animals with high levels of LRCF tend to develop learning disability and neuro-degeneration more frequently than adults' after exposure to general anesthesia. When LRCF is highly expressed, HIF-1α directly regulates the transcription of the Caspase-3 gene by binding to the transcription factor binding site (TFBS) in its promoter, which induces OLGs apoptosis. LRCF is crucial for the mutual activation of the HIF-1α/miR138-5p/Caspase-3 OLGs survival pathway and the HIF-1α/Caspase-3 OLGs damage pathway. This study is the first to report that up-regulation of HIF-1α in OLGs treated with Propofol can promote apoptosis through HIF-1α/caspase-3 pathway and resist apoptosis through HIF-1α/miR-138-5p/caspase-3 pathway. The effect of HIF-1α on Caspase-3 expression depends on LRCF expression, which provides important theoretical support for gene therapy targeting LRCF. The further significance of this study is points to an involvement of the genetic background with high LRCF expression may serve as an important marker for identifying patients with a high risk of OLGs injury by Propofol. Thus, caution should be taken when administrating propofol in these patients, especially pediatric patients with high level of LRCF.
Collapse
Affiliation(s)
- Zhen Zeng
- Shanghai 6th Peoples Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China.
- Shanghai 8th Peoples Hospital, Shanghai, China.
| | - Jun Yao
- Shanghai 6th Peoples Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | | | - Shuaiwei Fan
- Shanghai 6th Peoples Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Ying Xue
- Shanghai 6th Peoples Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xiaoxiao Chen
- Shanghai 6th Peoples Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yujun Luo
- Shanghai 6th Peoples Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Shan Xue
- Shanghai 6th Peoples Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
16
|
Zheng N, Zhang S, Wu W, Zhang N, Wang J. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma. Pharmacol Res 2021; 166:105507. [PMID: 33610718 DOI: 10.1016/j.phrs.2021.105507] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is a typical hyper-vascular solid tumor; aberrantly rich in tumor vascular network contributes to its malignancy. Conventional anti-angiogenic therapies seem promising but transitory and incomplete efficacy on HCC. Vasculogenic mimicry (VM) is one of functional microcirculation patterns independent of endothelial vessels which describes the plasticity of highly aggressive tumor cells to form vasculogenic-like networks providing sufficient blood supply for tumor growth and metastasis. As a pivotal alternative mechanism for tumor vascularization when tumor cells undergo lack of oxygen and nutrients, VM has an association with the malignant phenotype and poor clinical outcome for HCC, and may challenge the classic anti-angiogenic treatment of HCC. Current studies have contributed numerous findings illustrating the underlying molecular mechanisms and signaling pathways supporting VM in HCC. In this review, we summarize the correlation between epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and VM, the role of hypoxia and extracellular matrix remodeling in VM, the involvement of adjacent non-cancerous cells, cytokines and growth factors in VM, as well as the regulatory influence of non-coding RNAs on VM in HCC. Moreover, we discuss the clinical significance of VM in practice and the potential therapeutic strategies targeting VM for HCC. A better understanding of the mechanism underlying VM formation in HCC may optimize anti-angiogenic treatment modalities for HCC.
Collapse
Affiliation(s)
- Ning Zheng
- Department of Pharmacology, The School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Shaoqin Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Wenda Wu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Nan Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jichuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
17
|
Li N, Liu J, Deng X. Identification of a novel circRNA, hsa_circ_0065898, that regulates tumor growth in cervical squamous cell carcinoma. Transl Cancer Res 2021; 10:47-56. [PMID: 35116238 PMCID: PMC8797878 DOI: 10.21037/tcr-20-2808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022]
Abstract
Background Circular RNAs (circRNAs) were reported to play an important role in regulating tumor pathogenesis. The molecular mechanism of circRNAs in cervical squamous cell carcinoma (CSCC) remains poorly understood. We aimed to identify the circRNAs differentially expressed, and to investigate the role of a novel circRNA, hsa_circ_0065898, in regulating proliferation, migration, and invasion in CSCC. Methods The online Kaplan-Meier Plotter was used to analyze the relationship between miRNA expression and overall survival. Bioinformatics tools, such as R, Cytoscape, and Perl, were used to analyze the Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein-protein interaction (PPI) network, and regulatory network. The expression level of hsa_circ_0065898 in CSCC cell lines was evaluated using quantitative polymerase chain reaction in vitro. The cell counting kit-8 (CCK-8) and transwell assays were used to assess cell proliferation, migration, and invasion. Results circRNA expression data (GSE102686) was downloaded from the Gene Expression Omnibus database, and this included data from 5 CSCC patients and 5 normal tissues. 13 differentially expressed circRNAs were identified, which included 9 upregulated circRNAs and 4 downregulated circRNAs. GO enrichment analysis showed that the target genes of miRNAs associated with hsa_circ_0065898 were enriched in ubiquitin-protein transferase activity, ubiquitin-like protein transferase activity, core promoter sequence-specific DNA binding, mRNA 3’-UTR AU-rich region binding, core promoter binding, and so on. KEGG showed that the Hippo and p53 signaling pathways played significant role in the pathway network. Hsa_circ_0065898 was significantly overexpressed in the CSCC cell lines. Hsa_circ_0065898 facilitated cell proliferation, migration, and invasion in CSCC. Conclusions This study identified differentially expressed circRNAs and constructed the regulatory network of hsa_circ_0065898 targeting microRNAs and mRNAs. We demonstrated that hsa_circ_0065898 promoted CSCC cell proliferation, migration, and invasion. Hence, hsa_circ_0065898 might be useful as a biomarker for CSCC diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ni Li
- Department of Reproductive Medical Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Reproductive Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Jie Liu
- Department of Reproductive Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaohui Deng
- Department of Reproductive Medical Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
18
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
19
|
Li L, Lv G, Wang B, Ma H. Long Noncoding RNA LINC00525 Promotes the Aggressive Phenotype of Chordoma Through Acting as a microRNA-505-3p Sponge and Consequently Raising HMGB1 Expression. Onco Targets Ther 2020; 13:9015-9027. [PMID: 32982292 PMCID: PMC7490091 DOI: 10.2147/ott.s268678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Purposes Long intergenic non-protein coding RNA 525 (LINC00525), a long noncoding RNA, has been implicated in the carcinogenesis and progression of many human cancer types. However, the detailed roles of LINC00525 in chordoma and the underlying mechanisms are not fully understood. Here, we aimed to determine whether LINC00525 could modulate the oncogenicity of chordoma cells and to elucidate in detail the molecular events underlying these tumor-promoting activities. Methods Reverse-transcription quantitative polymerase chain reactions were performed to assess LINC00525 expression in chordoma. The effects of LINC00525 silencing on chordoma cell proliferation, apoptosis, migration, and invasiveness in vitro and tumor growth in vivo were respectively tested using CCK-8 assay, flow cytometry, migration and invasion assays, and xenograft experiments. Results High LINC00525 expression levels were detected in chordoma tissues. The proliferative, migratory, and invasive abilities of chordoma cells in vitro and their tumor growth in vivo were suppressed by the LINC00525 knockdown, whereas apoptosis was induced by it. Mechanistically, LINC00525 acted as a molecular sponge of microRNA-505-3p (miR-505-3p) and upregulated the expression of high mobility group box 1 (HMGB1), which is directly targeted by miR-505-3p. Rescue assays indicated that increasing the output of miR-505-3p-HMGB1 axis attenuated the effects of LINC00525 depletion on chordoma cells. Conclusion LINC00525, a pro-oncogenic long noncoding RNA, promotes chordoma progression by regulating the miR-505-3p-HMGB1 axis. The LINC00525-miR-505-3p-HMGB1 pathway may be a novel therapeutic target in chordoma.
Collapse
Affiliation(s)
- Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Hong Ma
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
20
|
Guo R, Qin Y. LEMD1-AS1 Suppresses Ovarian Cancer Progression Through Regulating miR-183-5p/TP53 Axis. Onco Targets Ther 2020; 13:7387-7398. [PMID: 32801762 PMCID: PMC7395824 DOI: 10.2147/ott.s250850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background/Aims Long noncoding RNAs (lncRNAs) play a critical role in tumorigenesis and progression of ovarian cancer (OC). This study focused on the function and potential mechanism toward LEMD1-AS1 (LEMD1 antisense RNA 1) in the progression of ovarian cancer. Materials and Methods The expression of LEMD1-AS1 in OC tissues was evaluated in TCGA and Gene Expression Omnibus datasets (GSE119056) and confirmed in OC cell lines via qRT-PCR (quantitative real-time polymerase chain reaction). Then, the location of LEMD1-AS1 in the cytoplasmic and nuclear RNAs extracted from OV cells was detected by qRT-PCR. Cell Counting Kit-8 (CCK-8), colony formation, wound-healing and transwell assays were applied to examine cell viability, proliferation, migration and invasion, respectively. Further, the effect of LEMD1-AS1 on OC tumor growth was determined via subcutaneous xenotransplanted tumor model. The potential target for LEMD1-AS1 was validated via dual-luciferase activity assay, RNA pull-down and RNA immunoprecipitation. Results The expression of LEMD1-AS1 was decreased in OC tissues and cell lines. Forced overexpression of LEMD1-AS1 inhibited the proliferation, migration and invasion of ovarian cancer cells and transplanted tumor growth in nude mice. We found that LEMD1-AS1 was mainly located in the cytoplasm of OC cells and contained complementary sites of miR-183-5p. Mechanistically, our results showed that LEMD1-AS1 could directly interact with miR-183-5p and tumor protein p53 (TP53). The anti-tumor role of LEMD1-AS1 on OC progression depended on miR-183-5p-mediated TP53 expression. Conclusion LEMD1-AS1 suppresses OC progression through sponging miR-183-5p and regulation of TP53, suggesting a novel biomarker and target for OC.
Collapse
Affiliation(s)
- Ruowen Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yide Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
21
|
Yin G, Tian P, BuHe A, Yan W, Li T, Sun Z. LncRNA LINC00689 Promotes the Progression of Gastric Cancer Through Upregulation of ADAM9 by Sponging miR-526b-3p. Cancer Manag Res 2020; 12:4227-4239. [PMID: 32581594 PMCID: PMC7280092 DOI: 10.2147/cmar.s231042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Increasing studies have demonstrated that noncoding RNAs, including miRNAs and lncRNAs, have vital roles in mediating cancer progression. However, the expression features and biological functions of LINC00689 in gastric cancer (GC) remain largely unknown. This study was designed to investigate the functions of LINC00689, miR-526b-3p and ADAM9 as well as their interactions in GC. Methods Real time PCR(RT-PCR) was used to detect the expression of LINC0068, miR-526b-3p and ADAM9 in both GC tissues or cell lines. Gain- and loss- of functions of assays were conducted to verify the role of LINC0068, miR-526b-3p and ADAM9 in GC development. Cell proliferation were determined by CCK8 assay and transwell assay and scratch wound-healing assay were used to test cell invasion and migration. Further, the relationships between LINC00689 and miR-526b-3p, miR-526b-3p and ADAM9 were predicted by bioinformatics analysis and then proved by Luciferase reporter assay and RNA Immunoprecipitation(RIP) assay. Results We found that LINC00689 was upregulated in GC tissues and positively correlated with advanced tumor stage and tumor size, while miR-526b-3p was downregulated. Furthermore, gain- and loss-of-function experiments revealed that LINC00689 promoted the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of GC cells, while miR-526b-3p had the opposite effects. The underlying mechanisms indicated that LINC00689 functioned as a competing endogenous RNA (ceRNA) by sponging miR-526b-3p in GC cells. Further investigations confirmed that ADAM9 was a direct target of miR-526b-3p and positively modulated the progression of GC. Conclusion Our study suggests that LINC00689 functions as a novel oncogenic lncRNA in the development of GC by promoting ADAM9 expression through suppression of miR-526b-3p.
Collapse
Affiliation(s)
- Gang Yin
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - PeiRong Tian
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - Amin BuHe
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - Wei Yan
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - TianXiong Li
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - ZhiPeng Sun
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| |
Collapse
|
22
|
Liu F, Dong H, Mei Z, Huang T. Investigation of miRNA and mRNA Co-expression Network in Ependymoma. Front Bioeng Biotechnol 2020; 8:177. [PMID: 32266223 PMCID: PMC7096354 DOI: 10.3389/fbioe.2020.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Ependymoma (EPN) is a rare primary tumor of the central nervous system (CNS) that affects both children and adults. Despite the definition and classification of distinct molecular subgroups, there remains a group of EPNs with a balanced genome, which makes it difficult to predict a prognosis of patients with EPN. The role of miRNA-mRNA network on EPN is still poorly understood. We assessed the involvement of miRNA-mRNA pairs in EPN by applying a weighted co-expression network analysis (WGCNA) approach. Using whole genome expression profile analysis followed by functional enrichment, we detected hub genes involved in active proliferation and DNA replication of nerve cells. Key genes including CYP11B1, KRT33B, RUNX1T1, SIK1, MAP3K4, MLANA, and SFRP5 identified in co-expression networks were regulated by miR-15a and miR-24-1. These seven miRNA-mRNA pairs were considered to influence not only pathways in cancer and tumor suppression process, but also MAPK, NF-kappaB, and WNT signaling pathways which were associated with tumorigenesis and development. This study provides a novel insight into potential diagnostic biomarkers of EPN and may have value in choosing therapeutic targets with clinical utility.
Collapse
Affiliation(s)
- Feili Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hang Dong
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi Mei
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
23
|
Hernández de la Cruz ON, López-González JS, García-Vázquez R, Salinas-Vera YM, Muñiz-Lino MA, Aguilar-Cazares D, López-Camarillo C, Carlos-Reyes Á. Regulation Networks Driving Vasculogenic Mimicry in Solid Tumors. Front Oncol 2020; 9:1419. [PMID: 31993365 PMCID: PMC6970938 DOI: 10.3389/fonc.2019.01419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Vasculogenic mimicry (VM) is a mechanism whereby cancer cells form microvascular structures similar to three-dimensional channels to provide nutrients and oxygen to tumors. Unlike angiogenesis, VM is characterized by the development of new patterned three-dimensional vascular-like structures independent of endothelial cells. This phenomenon has been observed in many types of highly aggressive solid tumors. The presence of VM has also been associated with increased resistance to chemotherapy, low survival, and poor prognosis. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNAs that regulate gene expression at the post-transcriptional level through different pathways. In recent years, these tiny RNAs have been shown to be expressed aberrantly in different human malignancies, thus contributing to the hallmarks of cancer. In this context, miRNAs and lncRNAs can be excellent biomarkers for diagnosis, prognosis, and the prediction of response to therapy. In this review, we discuss the role that the tumor microenvironment and the epithelial-mesenchymal transition have in VM. We include an overview of the mechanisms of VM with examples of diverse types of tumors. Finally, we describe the regulation networks of lncRNAs-miRNAs and their clinical impact with the VM. Knowing the key genes that regulate and promote the development of VM in tumors with invasive, aggressive, and therapy-resistant phenotypes will facilitate the discovery of novel biomarker therapeutics against cancer as well as tools in the diagnosis and prognosis of patients.
Collapse
Affiliation(s)
| | - José Sullivan López-González
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico, Mexico
| | - Raúl García-Vázquez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Yarely M Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Marcos A Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico, Mexico
| |
Collapse
|