1
|
de Rijk MG, Boesveldt S, Feskens EJ, de Vries JH. The Effect of Meal Frequency and Glycemic Index During the Night Shift on Alertness, Hunger, and Gastrointestinal Complaints in Female Health Care Workers-A Two-Armed Randomized Crossover Trial. J Nutr 2024:S0022-3166(24)01044-7. [PMID: 39343301 DOI: 10.1016/j.tjnut.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Nutrition strategies for night-shift workers could optimize alertness and minimize hunger and reduce gastrointestinal complaints, enhancing safety and well-being. OBJECTIVES This study aimed to investigate the effects of 1 or 3 small meals, with either low or high glycemic index (GI), compared with no meal, on alertness, hunger, and gastrointestinal complaints during the night shift. METHODS Fifty-one female health care workers, aged 18 to 61 y, participated in a 2-armed randomized crossover design. In 1 study arm, participants received 1 yogurt meal during the night shift, AND in the other, they received 3. Each study arm involved 3 intervention periods during night shifts, with participants consuming yogurt with low GI (1LGI or 3LGI) OR high GI (1HGI or 3HGI) carbohydrates, or no meal (0NGI). Objective alertness was assessed using a validated brief psychomotor vigilance task (PVT-B), subjective alertness with the Samn-Perelli scale, and hunger and gastrointestinal complaints through questionnaires. RESULTS Participants in the 1LGI (β: -4.6; 95% CI: 0.0, 9.3) and 3LGI (β: -3.4; 95% CI: 0.0, 6.8) conditions had fewer lapses during the PVT-B than those in the 3HGI condition. No differences were found between meal conditions for median and reciprocal reaction time or subjective alertness. All 4 conditions reported less hunger (β: from -0.6 to -1.2) compared with no meal. The 3LGI condition resulted in more rumbling intestines than the 3HGI (β: 1.1; 95% CI: 0.4, 1.7) and 0NGI (β: 0.74; 95% CI: 0.11, 1.37) conditions. CONCLUSIONS Our study suggests that consuming 3 small low GI meals during the night shift helps maintain alertness and reduces lapses compared with 3 high GI meals. It also minimizes hunger but may cause mild gastrointestinal complaints. This trial was registered at International Clinical Trial Registry (https://trialsearch.who.int/Trial2.aspx?TrialID%3dNL-OMON25574).
Collapse
Affiliation(s)
- Mariëlle G de Rijk
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Sanne Boesveldt
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Edith Jm Feskens
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands.
| | - Jeanne Hm de Vries
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
2
|
Del Pozo Iribarren R, Mardones L, Villagrán M, Muñoz K, Troncoso L, Mellado M, Muñoz M. Effect of various dietary fructose concentrations on the gallstone formation process in mice. NUTR HOSP 2024; 41:194-201. [PMID: 37705438 DOI: 10.20960/nh.04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Introduction Background: little information is availaible on the effect of fructose on bile lipids. The first stage in the formation of gallstones corresponds to biliary cholesterol crystallization, derived from the vesicular transporters. The aim of this study was to investigate the influence of consuming diets with different fructose concentrations on serum lipids and their implications on gallstones formation. Methods: BALB/c mice divided into a control group as well as groups were treated with different fructose concentrations (10 %, 30 %, 50 % or 70 %) for different periods (1, 2 or 5 months). Blood, liver and bile samples were obtained. In bile samples, cholesterol and phospholipids levels were analyzed, and cholesterol transporters (vesicles and micelles) were separated by gel filtration chromatography. Results: treated animals showed: 1) increases in body weight similar to the control group; 2) a significant increase in plasma triglycerides only at very high fructose concentrations; 3) a significant increase in total serum cholesterol in the treatment for 1 month; 4) no variations in HDL-cholesterol; 5) a significant increase in serum glucose only at very high fructose concentrations in the second month of treatment; 6) no differences in the plasma alanine-aminotransferase activity; 7) a significant increase in liver triglyceride levels only at very high fructose concentrations; 8) no change in biliary lipid concentrations or in micellar and vesicular phospholipids. Conclusion: changes in plasma, liver and bile lipids were only observed at very high fructose concentrations diets. We conclude that fructose apparently does not alter the gallstone formation process in our experimental model.
Collapse
Affiliation(s)
| | - Lorena Mardones
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Marcelo Villagrán
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Katia Muñoz
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Luciano Troncoso
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Maximiliano Mellado
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| | - Mirna Muñoz
- Department of Basic Science. Facultad de Medicina. Universidad Católica de la Santísima Concepción
| |
Collapse
|
3
|
Elseweidy MM, Elesawy AE, Sobh MS, Elnagar GM. Ellagic acid ameliorates high fructose-induced hyperuricemia and non-alcoholic fatty liver in Wistar rats: Focusing on the role of C1q/tumor necrosis factor-related protein-3 and ATP citrate lyase. Life Sci 2022; 305:120751. [PMID: 35780841 DOI: 10.1016/j.lfs.2022.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
AIMS High-fructose intake (HF) represents an inducible risk factor for non-alcoholic fatty liver disease (NAFLD). Present study aimed to illustrate the effect of HF diet (HFD) on the induction of NAFLD, hyperuricemia and role of ellagic acid as modulator. MAIN METHODS Twenty-four adult male albino rats were randomly divided into four groups (6/each). The first group received normal chow diet only while the others received 60 % HFD for 4 weeks and subdivided later into 3 groups. The first and second groups received allopurinol and ellagic acid, respectively while the third group received HFD only for extra 4 weeks. KEY FINDINGS Rats fed on HFD for 8 weeks displayed body weight gain, insulin resistance (IR), hyperglycemia, dyslipidemia, hyperuricemia with increased oxidative stress and hepatic lipogenic enzymes such as ATP citrate lyase (ACL), aldolase B, and fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SERBP-1c). C1q /tumor necrosis factor-related protein -3 (CTRP3), and phosphorylated AMP-activated protein kinase (p-AMPK) however showed significant decreases. Ellagic acid or allopurinol administration significantly decreased serum lipids, uric acid, glucose, insulin levels and hepatic contents of enzymes. Malondialdehyde (MDA), FAS, aldolase B, SERBP-1c, and xanthine oxidase (XO) hepatic contents showed significant decreases along with glutathione (GSH) increase as compared to fructose group where ellagic acid was more remarkable compared to allopurinol. SIGNIFICANCE Our findings indicated that ellagic acid had alleviated HFD-induced hyperuricemia, its associated NAFLD pattern as mediated through activation of CTRP3 and inhibition of ACL activities in a pattern more remarkable than allopurinol.
Collapse
Affiliation(s)
| | - Ahmed E Elesawy
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo)BUC), Egypt
| | - Mohammed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Gehad M Elnagar
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Purines have several important physiological functions as part of nucleic acids and as intracellular and extracellular signaling molecules. Purine metabolites, particularly uric acid, have been implicated in congenital and complex diseases. However, their role in complex diseases is not clear and they have both beneficial and detrimental effects on disease pathogenesis. In addition, the relationship between purines and complex diseases is affected by genetic and nutritional factors. This review presents latest findings about the relationship between purines and complex diseases and the effect of genes and nutrients on this relationship. RECENT FINDINGS Evidence from recent studies show strong role of purines in complex diseases. Although they are causal in only few diseases, our knowledge about their role in other diseases is still evolving. Of all the purines, uric acid is the most studied. Uric acid acts as an antioxidant as well as a prooxidant under different conditions, thus, its role in disease also varies. Other purines, adenosine and inosine have been less studied, but they have neuroprotective properties which are valuable in neurodegenerative diseases. SUMMARY Purines are molecules with great potential in disease pathogenesis as either metabolic markers or therapeutic targets. More studies need to be conducted to understand their relevance for complex diseases.
Collapse
Affiliation(s)
- Kendra L Nelson
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | | |
Collapse
|
5
|
Ahn IS, Yoon J, Diamante G, Cohn P, Jang C, Yang X. Disparate Metabolomic Responses to Fructose Consumption between Different Mouse Strains and the Role of Gut Microbiota. Metabolites 2021; 11:metabo11060342. [PMID: 34073358 PMCID: PMC8228112 DOI: 10.3390/metabo11060342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
High fructose consumption has been linked to metabolic syndrome, yet the fructose-induced phenotypes, gene expression, and gut microbiota alterations are distinct between mouse strains. In this study, we aim to investigate how fructose consumption shapes the metabolomic profiles of mice with different genetic background and microbiome. We used fructose-sensitive DBA/2J (DBA) and fructose-resistant C57BL/6J (B6) mice given 8% fructose or regular water for 12 weeks. Plasma and fecal metabolites were profiled using a liquid chromatography-tandem mass spectrometry based global metabolomic approach. We found that the baseline metabolomic profiles were different between DBA and B6 mice, particularly plasma metabolites involved in lipid metabolism and fecal metabolites related to dipeptide/amino acid metabolism. In response to fructose, DBA mice showed a distinct decrease of plasma branched chain fatty acids with concordantly increased branched chain amino acids, which were correlated with adiposity; B6 mice had significantly increased plasma cholesterol and total bile acids, accompanied by decreased fecal levels of farnesoid X receptor antagonist tauro-β-muricholate, which were correlated with fructose-responsive bacteria Dehalobacterium, Magibacteriaceae, and/or Akkermansia. Our results demonstrate that baseline metabolomic profiles differ and respond differentially to fructose between mice with different genetic background and gut microbiota, which may play a role in individualized risks to fructose-induced metabolic syndrome.
Collapse
Affiliation(s)
- In-Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
| | - Justin Yoon
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
| | - Peter Cohn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA;
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; (I.-S.A.); (J.Y.); (G.D.); (P.C.)
- Brain Research Institute, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-206-1812
| |
Collapse
|
6
|
Rubin LH, Gustafson DR, Warrior L, Sheira L, Fitzgerald KC, Dastgheyb R, Weber KM, Tien PC, French A, Spence AB, Sharma A, Williams DW, White CJ, Seaberg EC, Frongillo EA, Weiser SD. Dietary intake is associated with neuropsychological impairment in women with HIV. Am J Clin Nutr 2021; 114:378-389. [PMID: 33829235 PMCID: PMC8246600 DOI: 10.1093/ajcn/nqab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diet is a modifiable risk factor that may influence cognition in people with HIV. OBJECTIVES We examined the association between dietary intake and cognition in women with HIV (WWH) and HIV-seronegative women. METHODS An 18-item dietary National Cancer Institute screener was completed by 729 WWH and 346 HIV-seronegative Women's Interagency HIV Study participants. Daily intake frequencies of processed meats, sweet beverages, fish, whole milk, and vegetables were calculated. Participants completed biennial neuropsychological (NP) testing. NP domains included attention/working memory, executive function, processing speed, memory, learning, fluency, and motor function. NP impairment was defined as demographically adjusted T-scores (mean = 50; SD = 10) ≤40 at ≥1 visit after completing the dietary screener. Multivariable logistic regression, stratified by HIV serostatus, examined associations between intake frequency tertile (referent = lowest intake) and NP performance. RESULTS Dietary intake frequencies of individual food line items were similar between WWH and HIV-seronegative women, except for sweet beverages, for which HIV-seronegative women reported higher intake frequencies than WWH (P values < 0.05). In WWH, multivariable-adjusted models indicated higher odds of NP impairment with higher intake frequencies of processed meat [P = 0.006; ORupper tertile = 1.91 (95% CI: 1.23-2.95; P = 0.003); ORmiddle tertile = 1.66 (95% CI: 1.14-2.42; P = 0.01)], sweet beverages [P = 0.02; ORupper tertile = 1.75 (95% CI: 1.17-2.64; P = 0.007)], fish [P = 0.01; ORupper tertile = 1.70 (95% CI: 1.10-2.64; P = 0.02)], and whole milk [P = 0.029; ORupper tertile = 1.66 (95% CI: 1.14-2.42; P = 0.008)]. Lower odds of NP impairment [P = 0.005; ORupper tertile = 0.65 (95% CI: 0.45-0.95; P = 0.02); ORmiddle tertile = 0.42 (95% CI: 0.24-0.73; P = 0.002)] were associated with higher vegetable intakes. In HIV-seronegative women, multivariable-adjusted models did not show associations between food line items/diet quality score and NP outcomes. CONCLUSIONS Intakes of processed meat, sweet beverages, whole milk, fish, and vegetables may be associated with NP functions among WWH. Associations among WWH are not directly comparable to those among HIV-seronegative women, because models were conducted on each group separately given controls for HIV-specific covariates in WWH. Further studies are needed using more rigorous dietary assessment methods and lengthier longitudinal follow-ups.
Collapse
Affiliation(s)
| | | | | | - Lila Sheira
- Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen M Weber
- Division of Neurology, Cook County Health, Chicago, IL, USA,Cook County Health, Hektoen Institute of Medicine, Chicago, IL, USA
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA,Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Audrey French
- Division of Neurology, Cook County Health, Chicago, IL, USA,Cook County Health, Hektoen Institute of Medicine, Chicago, IL, USA
| | - Amanda B Spence
- Department of Medicine, Division of Infectious Disease and Travel Medicine, Georgetown University, Washington, DC, USA
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cory J White
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric C Seaberg
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Edward A Frongillo
- Department of Health Promotion, Education, and Behavior, University of South Carolina, Columbia, SC, USA
| | - Sheri D Weiser
- Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Knowledge attitudes and behaviors of adult individuals about high fructose corn syrup consumption; cross sectional survey study. Clin Nutr ESPEN 2020; 40:179-186. [PMID: 33183534 DOI: 10.1016/j.clnesp.2020.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The purpose of this study is; to examine the knowledge and attitudes of individuals about ready-to food consumption and food products containing high fructose corn syrup (HFCS). STUDY DESIGN Research in the city center in the eastern Mediterranean region of Turkey was held with 18 individuals over the age of two shoppers at the supermarket. METHODS The study is a descriptive cross-sectional questionnaire-based study. The research was conducted between 15.09.2018 and 30.03.2019. Data were collected from 254 individuals using face-to-face interview technique. The questionnaire form consisted of questions created by the researcher to determine socio-demographic variables as well as information about ready-made food intake and foods containing high fructose corn syrup. RESULTS The suitability of the questionnaire for factor analysis was evaluated with the "Kaiser-Meyer-Olkin coefficient" and "Bartlett Sphericity Test". As a result of the exploratory factor analysis, the 21-item survey form explains 52% of the total variance. The questionnaire items consist of four factors. Cronbach's Alpha reliability of the questionnaire is 0.860 on the whole. In the sub-factors; The first factor was 0.859, the second factor was 0.764, the third factor was 0.652, and the fourth factor was 0.616. The findings obtained in the study were analyzed using the Independent Sample t Test, One Way Anova test, Mann Whitney U test and Tukey test. SPSS 21, USA was used to analyze the study. It was determined that the average age of the participants was 31.3 ± 11.7, the rate of paying attention to ingredients and nutritional values while purchasing ready-made foods was low, and 1/4 of them did not pay attention to high fructose corn syrup in their content. There was a significant correlation between the age and employment status of the participants and their knowledge and attitudes about the foods containing corn syrup (p < 0.05). CONCLUSION It was concluded that individuals should be educated about health risks while purchasing ready-made food products and should be more informed about foods containing HFCS. It is recommended that the questionnaire used in the study be tested in different sample groups in order to increase its validity and reliability evidence.
Collapse
|
8
|
Zhu Y, Wancewicz B, Schaid M, Tiambeng TN, Wenger K, Jin Y, Heyman H, Thompson CJ, Barsch A, Cox ED, Davis DB, Brasier AR, Kimple ME, Ge Y. Ultrahigh-Resolution Mass Spectrometry-Based Platform for Plasma Metabolomics Applied to Type 2 Diabetes Research. J Proteome Res 2020; 20:463-473. [PMID: 33054244 DOI: 10.1021/acs.jproteome.0c00510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolomics-the endpoint of the omics cascade-is increasingly recognized as a preferred method for understanding the ultimate responses of biological systems to stress. Flow injection electrospray (FIE) mass spectrometry (MS) has advantages for untargeted metabolic fingerprinting due to its simplicity and capability for high-throughput screening but requires a high-resolution mass spectrometer to resolve metabolite features. In this study, we developed and validated a high-throughput and highly reproducible metabolomics platform integrating FIE with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS for analysis of both polar and nonpolar metabolite features from plasma samples. FIE-FTICR MS enables high-throughput detection of hundreds of metabolite features in a single mass spectrum without a front-end separation step. Using plasma samples from genetically identical obese mice with or without type 2 diabetes (T2D), we validated the intra and intersample reproducibility of our method and its robustness for simultaneously detecting alterations in both polar and nonpolar metabolite features. Only 5 min is needed to acquire an ultra-high resolution mass spectrum in either a positive or negative ionization mode. Approximately 1000 metabolic features were reproducibly detected and annotated in each mouse plasma group. For significantly altered and highly abundant metabolite features, targeted tandem MS (MS/MS) analyses can be applied to confirm their identity. With this integrated platform, we successfully detected over 300 statistically significant metabolic features in T2D mouse plasma as compared to controls and identified new T2D biomarker candidates. This FIE-FTICR MS-based method is of high throughput and highly reproducible with great promise for metabolomics studies toward a better understanding and diagnosis of human diseases.
Collapse
Affiliation(s)
- Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Benjamin Wancewicz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michael Schaid
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kent Wenger
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Heino Heyman
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | | | | | - Elizabeth D Cox
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53792, United States
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michelle E Kimple
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Zhang C, Li L, Zhang Y, Zeng C. Recent advances in fructose intake and risk of hyperuricemia. Biomed Pharmacother 2020; 131:110795. [PMID: 33152951 DOI: 10.1016/j.biopha.2020.110795] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022] Open
Abstract
With the widespread popularity of hyperuricemia, it has become a severe threat to human public health. Accumulating evidence suggests that dietary fructose has a close relationship with hyperuricemia, but the role of fructose intake in hyperuricemia remains unclear. Hyperuricemia is characterized by excessive production and deposition of urate crystals. Metabolism of fructose leads to the increased serum concentration of urate. In this review, we depict an update of fructose consumption worldwide and the epidemiology of hyperuricemia and summarize the progress in studying the relationship between fructose intake and the risk of hyperuricemia. This review highlights the metabolic process of fructose in the liver, small intestine, and kidney. Furthermore, we discuss molecular insights on fructose metabolism to reveal the underlying mechanism of fructose metabolism. Additionally, we elaborate on the effect of fructose metabolism on hyperuricemia to deeply understand the pathogenesis of hyperuricemia caused by fructose intake. Fructose consumption has a close correlation with an enhanced risk of developing hyperuricemia. More prospective studies are inevitable to understand the role of fructose intake in the development of hyperuricemia.
Collapse
Affiliation(s)
- Congwang Zhang
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, 518110, PR China
| | - Lijun Li
- Department of Quality Control, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, 518110, PR China
| | - Yipeng Zhang
- Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, 518110, PR China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, Guangdong, 518110, PR China.
| |
Collapse
|