1
|
Rodrigues MMDS, Júnior AMP, Fukutani ER, Bergamaschi KB, Araújo-Pereira M, Salgado VR, de Queiroz ATL. The impact of ZIKV infection on gene expression in neural cells over time. PLoS One 2024; 19:e0290209. [PMID: 38512822 PMCID: PMC10956780 DOI: 10.1371/journal.pone.0290209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 03/23/2024] Open
Abstract
Zika virus (ZIKV) outbreak caused one of the most significant medical emergencies in the Americas due to associated microcephaly in newborns. To evaluate the impact of ZIKV infection on neuronal cells over time, we retrieved gene expression data from several ZIKV-infected samples obtained at different time point post-infection (pi). Differential gene expression analysis was applied at each time point, with more differentially expressed genes (DEG) identified at 72h pi. There were 5 DEGs (PLA2G2F, TMEM71, PKD1L2, UBD, and TNFAIP3 genes) across all timepoints, which clearly distinguished between infected and healthy samples. The highest expression levels of all five genes were identified at 72h pi. Taken together, our results indicate that ZIKV infection greatly impacts human neural cells at early times of infection, with peak perturbation observed at 72h pi. Our analysis revealed that all five DEGs, in samples of ZIKV-infected human neural stem cells, remained highly upregulated across the timepoints evaluated. Moreover, despite the pronounced inflammatory host response observed throughout infection, the impact of ZIKV is variable over time. Finally, the five DEGs identified herein play prominent roles in infection, and could serve to guide future investigations into virus-host interaction, as well as constitute targets for therapeutic drug development.
Collapse
Affiliation(s)
| | | | - Eduardo Rocha Fukutani
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | - Mariana Araújo-Pereira
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | - Artur Trancoso Lopo de Queiroz
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| |
Collapse
|
2
|
Rocha EF, Vinhaes CL, Araújo-Pereira M, Mota TF, Gupte AN, Kumar NP, Arriaga MB, Sterling TR, Babu S, Gaikwad S, Karyakarte R, Mave V, Kulkarni V, Paradkar M, Viswanathan V, Kornfeld H, Gupta A, Andrade BB, Queiroz ATLD. The sound of silent RNA in tuberculosis and the lncRNA role on infection. iScience 2024; 27:108662. [PMID: 38205253 PMCID: PMC10777062 DOI: 10.1016/j.isci.2023.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, and Diabetes Mellitus is one of the major comorbidities (TB/DM) associated with the disease. A total of 103 differentially expressed ncRNAs have been identified in the TB and TB/DM comparisons. A machine learning algorithm was employed to identify the most informative lncRNAs: ADM-DT, LINC02009, LINC02471, SOX2-OT, and GK-AS1. These lncRNAs presented substantial accuracy in classifying TB from HC (AUCs >0.85) and TB/DM from HC (AUCs >0.90) in the other three countries. Genes with significant correlations with the five lncRNAs enriched common pathways in Brazil and India for both TB and TB/DM. This suggests that lncRNAs play an important role in the regulation of genes related to the TB immune response.
Collapse
Affiliation(s)
- Eduardo Fukutani Rocha
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Caian Leal Vinhaes
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
| | - Mariana Araújo-Pereira
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, Brazil
| | - Tiago Feitosa Mota
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | | | - Maria Belen Arriaga
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Timothy R. Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Subash Babu
- National Institutes of Health- NIRT - International Center for Excellence in Research, Chennai, India
| | - Sanjay Gaikwad
- Department of Pulmonary Medicine, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Rajesh Karyakarte
- Department of Microbiology, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Vidya Mave
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
| | - Vandana Kulkarni
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
| | - Mandar Paradkar
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
| | | | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA USA
- UMass Chan Medical School, Worcester, MA USA
| | - Amita Gupta
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Bruno Bezerril Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, Brazil
| | - Artur Trancoso Lopo de Queiroz
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - RePORT Brazil
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Boston University School of Public Health, Boston, MA USA
- National Institutes of Health- NIRT - International Center for Excellence in Research, Chennai, India
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pulmonary Medicine, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
- Department of Microbiology, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
- Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, Brazil
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA USA
- UMass Chan Medical School, Worcester, MA USA
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - RePORT India Consortia
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Boston University School of Public Health, Boston, MA USA
- National Institutes of Health- NIRT - International Center for Excellence in Research, Chennai, India
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pulmonary Medicine, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
- Department of Microbiology, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
- Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, Brazil
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA USA
- UMass Chan Medical School, Worcester, MA USA
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
3
|
Prashanth G, Vastrad B, Vastrad C, Kotrashetti S. Potential Molecular Mechanisms and Remdesivir Treatment for Acute Respiratory Syndrome Corona Virus 2 Infection/COVID 19 Through RNA Sequencing and Bioinformatics Analysis. Bioinform Biol Insights 2022; 15:11779322211067365. [PMID: 34992355 PMCID: PMC8725226 DOI: 10.1177/11779322211067365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections
(COVID 19) is a progressive viral infection that has been investigated
extensively. However, genetic features and molecular pathogenesis underlying
remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used
bioinformatics to investigate the candidate genes associated in the
molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected
patients. Methods: Expression profiling by high-throughput sequencing dataset (GSE149273) was
downloaded from the Gene Expression Omnibus, and the differentially
expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples
and nontreated SARS-CoV-2 infection samples with an adjusted
P value of <.05 and a |log fold change| > 1.3
were first identified by limma in R software package. Next, pathway and gene
ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub
genes were identified by the NetworkAnalyzer plugin and the other
bioinformatics approaches including protein-protein interaction network
analysis, module analysis, target gene—miRNA regulatory network, and target
gene—TF regulatory network. Finally, a receiver-operating characteristic
analysis was performed for diagnostic values associated with hub genes. Results: A total of 909 DEGs were identified, including 453 upregulated genes and 457
downregulated genes. As for the pathway and GO enrichment analysis, the
upregulated genes were mainly linked with influenza A and defense response,
whereas downregulated genes were mainly linked with drug
metabolism—cytochrome P450 and reproductive process. In addition, 10 hub
genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and
APBB1) were identified. Receiver-operating characteristic analysis showed
that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2,
DUSP9, FMO5, and PDE1A) had good diagnostic values. Conclusion: This study provided insights into the molecular mechanism of
remdesivir-treated SARS-CoV-2 infection that might be useful in further
investigations.
Collapse
Affiliation(s)
- G Prashanth
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | | | | |
Collapse
|
4
|
Cucco MS, de Moraes LEP, de Oliveira Andrade F, Khouri R, Galvão-Castro B, Araujo THA, de Almeida Rego FF, Gois LL, Barreto FK, Santos LA. Molecular characterization of HTLV-1 genomic region hbz from patients with different clinical conditions. J Med Virol 2021; 93:6418-6423. [PMID: 33835501 DOI: 10.1002/jmv.27005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 01/19/2023]
Abstract
The human T-cell lymphotropic virus type-1 (HTLV-1) is associated with severe pathologies, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), adult T-cell leukemia-lymphoma (ATLL), and infective dermatitis associated with the HTLV-1 (IDH). Interestingly, HTLV-1 infection does not necessarily imply the development of pathological processes and it is unknown why some patients remain asymptomatic carriers (AC). Despite some mutations in the HTLV-1 genome appear to influence the outcome of HTLV-1, there are few studies that characterize molecularly the hbz region. This study aimed to perform the molecular characterization of hbz gene isolated from patients with different clinical outcomes. A total of 15 sequences were generated and analyzed with 571 sequences previously published. The analises showed that the R119Q mutation seems to be related to HTLV-1 clinical conditions since the frequency of this HBZ mutation is significantly different in comparison between AC with HAM/TSP and ATLL. The R119Q mutation is possibly a protective factor as the frequency is higher in AC sequences.
Collapse
Affiliation(s)
| | - Laise Eduarda Paixão de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brasil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | | | - Ricardo Khouri
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brasil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | | | | | | | - Luana Leandro Gois
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brasil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brasil.,Universidade Católica do Salvador, Salvador, Bahia, Brasil
| | | | - Luciane Amorim Santos
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brasil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brasil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brasil.,Universidade Católica do Salvador, Salvador, Bahia, Brasil
| |
Collapse
|
5
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Chabay P, Lens D, Hassan R, Rodríguez Pinilla SM, Valvert Gamboa F, Rivera I, Huamán Garaicoa F, Ranuncolo SM, Barrionuevo C, Morales Sánchez A, Scholl V, De Matteo E, Preciado MV, Fuentes-Pananá EM. Lymphotropic Viruses EBV, KSHV and HTLV in Latin America: Epidemiology and Associated Malignancies. A Literature-Based Study by the RIAL-CYTED. Cancers (Basel) 2020; 12:E2166. [PMID: 32759793 PMCID: PMC7464376 DOI: 10.3390/cancers12082166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV), Kaposi sarcoma herpesvirus (KSHV) and human T-lymphotropic virus (HTLV-1) are lymphomagenic viruses with region-specific induced morbidity. The RIAL-CYTED aims to increase the knowledge of lymphoma in Latin America (LA), and, as such, we systematically analyzed the literature to better understand our risk for virus-induced lymphoma. We observed that high endemicity regions for certain lymphomas, e.g., Mexico and Peru, have a high incidence of EBV-positive lymphomas of T/NK cell origin. Peru also carries the highest frequency of EBV-positive classical Hodgkin lymphoma (HL) and EBV-positive diffuse large B cell lymphoma, not otherwise specified (NOS), than any other LA country. Adult T cell lymphoma is endemic to the North of Brazil and Chile. While only few cases of KSHV-positive lymphomas were found, in spite of the close correlation of Kaposi sarcoma and the prevalence of pathogenic types of KSHV. Both EBV-associated HL and Burkitt lymphoma mainly affect young children, unlike in developed countries, in which adolescents and young adults are the most affected, correlating with an early EBV seroconversion for LA population despite of lack of infectious mononucleosis symptoms. High endemicity of KSHV and HTLV infection was observed among Amerindian populations, with differences between Amazonian and Andean populations.
Collapse
Affiliation(s)
- Paola Chabay
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Daniela Lens
- Flow Cytometry and Molecular Biology Laboratory, Departamento Básico de Medicina, Hospital de Clínicas/Facultad de Medicina, Universidad de la República, CP 11600 Montevideo, Uruguay;
| | - Rocio Hassan
- Oncovirology Laboratory, Bone Marrow Transplantation Center, National Cancer Institute “José Alencar Gomes da Silva” (INCA), Ministry of Health, 20230-130 Rio de Janeiro, Brazil;
| | | | - Fabiola Valvert Gamboa
- Department of Medical Oncology, Cancer Institute and National League against Cancer, 01011 Guatemala City, Guatemala;
| | - Iris Rivera
- Department of Hematology, Salvadoran Institute of Social Security, Medical Surgical and Oncological Hospital (ISSS), 1101 San Salvador, El Salvador;
| | - Fuad Huamán Garaicoa
- Department of Pathology, National Cancer Institute—Society to Fight Cancer (ION-SOLCA), Santiago de Guayaquil Catholic University, Guayaquil 090615, Ecuador;
| | - Stella Maris Ranuncolo
- Cell Biology Department, Institute of Oncology “Angel H. Roffo” School of Medicine, University of Buenos Aires, C1417DTB Buenos Aires, Argentina;
| | - Carlos Barrionuevo
- Department of Pathology, National Institute of Neoplastic Diseases, National University of San Marcos, 15038 Lima, Peru;
| | - Abigail Morales Sánchez
- Research Unit in Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico;
| | - Vanesa Scholl
- Department of Integrated Genomic Medicine, Conciencia-Oncohematologic Institute of Patagonia, 8300 Neuquén, Argentina;
| | - Elena De Matteo
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Ma. Victoria Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP), CONICET-GCBA, Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children’s Hospital, C1425EFD Buenos Aires, Argentina; (P.C.); (E.D.M.); (M.V.P.)
| | - Ezequiel M. Fuentes-Pananá
- Research Unit in Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, 06720 Mexico City, Mexico;
| |
Collapse
|