1
|
Qu J, Lu X, Tu C, He F, Li S, Gu D, Wang S, Xing Z, Zheng L, Wang X, Wang L. A Chromosome-Level Genome Assembly of Chiton Acanthochiton rubrolineatus (Chitonida, Polyplacophora, Mollusca). Animals (Basel) 2024; 14:3161. [PMID: 39518884 PMCID: PMC11545220 DOI: 10.3390/ani14213161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
(1) Background: Chitons (Mollusca, Polyplacophora) are relatively primitive species in Mollusca that allow the study of biomineralization. Although mitochondrial genomes have been isolated from Polyplacophora, there is no genomic information at the chromosomal level; (2) Methods: Here we report a chromosome-level genome assembly for Acanthochiton rubrolineatus using PacBio (Pacific Biosciences, United States) reads and high-throughput chromosome conformation capture (Hi-C) data; (3) Results: The assembly spans 1.08 Gb with a contig N50 of 3.63 Mb and 99.97% of the genome assigned to eight chromosomes. Among the 32,291 predicted genes, 76.32% had functional predictions. The divergence time of Brachiopoda and Mollusca was ~550.8 Mya (million years ago), and that of A. rubrolineatus and other mollusks was ~548.5 Mya; (4) Conclusions: This study not only offers high-quality reference sequences for the Acanthochiton rubrolineatus genome, but also establishes groundwork for investigating the mechanisms of Polyplacophora biomineralization and its evolutionary history. This research will aid in uncovering the genetic foundations of molluscan adaptations across diverse environments.
Collapse
Affiliation(s)
- Jiangyong Qu
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Xiaofei Lu
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Chenen Tu
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Fuyang He
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Sutao Li
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Dongyue Gu
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Zhikai Xing
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Li Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
| | - Xumin Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| | - Lijun Wang
- College of Life Science, Yantai University, Yantai 264005, China; (J.Q.); (X.L.); (C.T.); (F.H.); (S.L.); (D.G.); (S.W.); (Z.X.)
| |
Collapse
|
2
|
González-Delgado S, Rodríguez-Flores PC, Giribet G. Testing ultraconserved elements (UCEs) for phylogenetic inference across bivalves (Mollusca: Bivalvia). Mol Phylogenet Evol 2024; 198:108129. [PMID: 38878989 DOI: 10.1016/j.ympev.2024.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Bivalves constitute an important resource for fisheries and as cultural objects. Bivalve phylogenetics has had a long tradition using both morphological and molecular characters, and genomic resources are available for a good number of commercially important species. However, relationships among bivalve families have been unstable and major conflicting results exist between mitogenomics and results based on Sanger-based amplicon sequencing or phylotranscriptomics. Here we design and test an ultraconserved elements probe set for the class Bivalvia with the aim to use hundreds of loci without the need to sequence full genomes or transcriptomes, which are expensive and complex to analyze, and to open bivalve phylogenetics to museum specimens. Our probe set successfully captured 1,513 UCEs for a total of 263,800 bp with an average length of 174.59 ± 3.44 per UCE (ranging from 28 to 842 bp). Phylogenetic testing of this UCE probe set across Bivalvia and within the family Donacidae using different data matrices and methods for phylogenetic inference shows promising results at multiple taxonomic levels. In addition, our probe set was able to capture large numbers of UCEs for museum specimens collected before 1900 and from DNAs properly stored, of which many museums and laboratories are well stocked. Overall, this constitutes a novel and useful resource for bivalve phylogenetics.
Collapse
Affiliation(s)
- Sara González-Delgado
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain; Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Paula C Rodríguez-Flores
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Liao X, Zhu W, Liu C. A high-precision genome size estimator based on the k-mer histogram correction. Front Genet 2024; 15:1451730. [PMID: 39238787 PMCID: PMC11374637 DOI: 10.3389/fgene.2024.1451730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction In the realm of next-generation sequencing datasets, various characteristics can be extracted through k-mer based analysis. Among these characteristics, genome size (GS) is one that can be estimated with relative ease, yet achieving satisfactory accuracy, especially in the context of heterozygosity, remains a challenge. Methods In this study, we introduce a high-precision genome size estimator, GSET (Genome Size Estimation Tool), which is based on k-mer histogram correction. Results We have evaluated GSET on both simulated and real datasets. The experimental results demonstrate that this tool can estimate genome size with greater precision, even surpassing the accuracy of state-of-the-art tools. Notably, GSET also performs satisfactorily on heterozygous datasets, where other tools struggle to produce useable results. Discussion The processing model of GSET diverges from the popular data fitting models used by similar tools. Instead, it is derived from empirical data and incorporates a correction term to mitigate the impact of sequencing errors on genome size estimation. GSET is freely available for use and can be accessed at the following URL: https://github.com/Xingyu-Liao/GSET.
Collapse
Affiliation(s)
- Xiangyu Liao
- Department of Oncology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Wufei Zhu
- Department of Endocrinology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Chaoyun Liu
- College of Information Engineering, Xi'an Mingde Institute of Technology, Xi'an, China
| |
Collapse
|
4
|
Bai Z, Lu Y, Hu H, Yuan Y, Li Y, Liu X, Wang G, Huang D, Wang Z, Mao Y, Wang H, Chen L, Li J. The First High-Quality Genome Assembly of Freshwater Pearl Mussel Sinohyriopsis cumingii: New Insights into Pearl Biomineralization. Int J Mol Sci 2024; 25:3146. [PMID: 38542120 PMCID: PMC10969987 DOI: 10.3390/ijms25063146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 11/11/2024] Open
Abstract
China leads the world in freshwater pearl production, an industry in which the triangle sail mussel (Sinohyriopsis cumingii) plays a pivotal role. In this paper, we report a high-quality chromosome-level genome assembly of S. cumingii with a size of 2.90 Gb-the largest yet reported among bivalves-and 89.92% anchorage onto 19 linkage groups. The assembled genome has 37,696 protein-coding genes and 50.86% repeat elements. A comparative genomic analysis revealed expansions of 752 gene families, mostly associated with biomineralization, and 237 genes under strong positive selection. Notably, the fibrillin gene family exhibited gene family expansion and positive selection simultaneously, and it also exhibited multiple high expressions after mantle implantation by transcriptome analysis. Furthermore, RNA silencing and an in vitro calcium carbonate crystallization assay highlighted the pivotal role played by one fibrillin gene in calcium carbonate deposition and aragonite transformation. This study provides a valuable genomic resource and offers new insights into the mechanism of pearl biomineralization.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Lu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Honghui Hu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yongbin Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yalin Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Dandan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyan Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yingrui Mao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - He Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Collaborative Innovation Center of Aquatic Animal Breeding and Green Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
5
|
Guo Y, Meng L, Wang M, Zhong Z, Li D, Zhang Y, Li H, Zhang H, Seim I, Li Y, Jiang A, Ji Q, Su X, Chen J, Fan G, Li C, Liu S. Hologenome analysis reveals independent evolution to chemosymbiosis by deep-sea bivalves. BMC Biol 2023; 21:51. [PMID: 36882766 PMCID: PMC9993606 DOI: 10.1186/s12915-023-01551-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Bivalves have independently evolved a variety of symbiotic relationships with chemosynthetic bacteria. These relationships range from endo- to extracellular interactions, making them ideal for studies on symbiosis-related evolution. It is still unclear whether there are universal patterns to symbiosis across bivalves. Here, we investigate the hologenome of an extracellular symbiotic thyasirid clam that represents the early stages of symbiosis evolution. RESULTS We present a hologenome of Conchocele bisecta (Bivalvia: Thyasiridae) collected from deep-sea hydrothermal vents with extracellular symbionts, along with related ultrastructural evidence and expression data. Based on ultrastructural and sequencing evidence, only one dominant Thioglobaceae bacteria was densely aggregated in the large bacterial chambers of C. bisecta, and the bacterial genome shows nutritional complementarity and immune interactions with the host. Overall, gene family expansions may contribute to the symbiosis-related phenotypic variations in different bivalves. For instance, convergent expansions of gaseous substrate transport families in the endosymbiotic bivalves are absent in C. bisecta. Compared to endosymbiotic relatives, the thyasirid genome exhibits large-scale expansion in phagocytosis, which may facilitate symbiont digestion and account for extracellular symbiotic phenotypes. We also reveal that distinct immune system evolution, including expansion in lipopolysaccharide scavenging and contraction of IAP (inhibitor of apoptosis protein), may contribute to the different manners of bacterial virulence resistance in C. bisecta. CONCLUSIONS Thus, bivalves employ different pathways to adapt to the long-term co-existence with their bacterial symbionts, further highlighting the contribution of stochastic evolution to the independent gain of a symbiotic lifestyle in the lineage.
Collapse
Affiliation(s)
- Yang Guo
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingfeng Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Denghui Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Hanbo Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yuli Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Aijun Jiang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Qianyue Ji
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Xiaoshan Su
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- College of Marine Science, University of Chinese Academy of Sciences, Qingdao, 266400, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- Qingdao Key Laboratory of Marine Genomics, BGI-qingdao, Qingdao, China.
| |
Collapse
|
6
|
Wang J, Xu Q, Chen M, Chen Y, Wang C, Chen N. Chromosome-level genome assembly of the Pacific geoduck Panopea generosa reveals major inter- and intrachromosomal rearrangements and substantial expansion of the copine gene family. Gigascience 2022; 12:giad105. [PMID: 38116826 PMCID: PMC10729735 DOI: 10.1093/gigascience/giad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/19/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
The Pacific geoduck Panopea generosa (class Bivalvia, order Adapedonta, family Hiatellidae, genus Panopea) is the largest known burrowing bivalve with considerable commercial value. Pacific geoduck and other geoduck clams play important roles in maintaining ecosystem health for their filter feeding habit and coupling pelagic and benthic processes. Here, we report a high-quality chromosome-level genome assembly of P. generosa to characterize its phylogeny and molecular mechanisms of its life strategies. The assembled P. generosa genome consists of 19 chromosomes with a size of 1.47 Gb, a contig N50 length of 1.6 Mb, and a scaffold N50 length of 73.8 Mb. The BUSCO test of the genome assembly showed 93.0% completeness. Constructed chromosome synteny revealed many occurrences of inter- and intrachromosomal rearrangements between P. generosa and Sinonovacula constricta. Of the 35,034 predicted protein-coding genes, 30,700 (87.6%) could be functionally annotated in public databases, indicating the high quality of genome annotation. Comparison of gene copy numbers of gene families among P. generosa and 11 selected species identified 507 rapidly expanded P. generosa gene families that are functionally enriched in immune and gonad development and may be involved in its complex survival strategies. In particular, genes carrying the copine domains underwent additional duplications in P. generosa, which might be important for neuronal development and immune response. The availability of a fully annotated chromosome-level genome provides a valuable dataset for genetic breeding of P. generosa.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yang Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 , Canada
| |
Collapse
|
7
|
Jiang D, Liu Q, Sun J, Liu S, Fan G, Wang L, Zhang Y, Seim I, An S, Liu X, Li Q, Zheng X. The gold-ringed octopus (Amphioctopus fangsiao) genome and cerebral single-nucleus transcriptomes provide insights into the evolution of karyotype and neural novelties. BMC Biol 2022; 20:289. [PMID: 36575497 PMCID: PMC9795677 DOI: 10.1186/s12915-022-01500-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Coleoid cephalopods have distinctive neural and morphological characteristics compared to other invertebrates. Early studies reported massive genomic rearrangements occurred before the split of octopus and squid lineages (Proc Natl Acad Sci U S A 116:3030-5, 2019), which might be related to the neural innovations of their brain, yet the details remain elusive. Here we combine genomic and single-nucleus transcriptome analyses to investigate the octopod chromosome evolution and cerebral characteristics. RESULTS We present a chromosome-level genome assembly of a gold-ringed octopus, Amphioctopus fangsiao, and a single-nucleus transcriptome of its supra-esophageal brain. Chromosome-level synteny analyses estimate that the chromosomes of the ancestral octopods experienced multiple chromosome fission/fusion and loss/gain events by comparing with the nautilus genome as outgroup, and that a conserved genome organization was detected during the evolutionary process from the last common octopod ancestor to their descendants. Besides, protocadherin, GPCR, and C2H2 ZNF genes are thought to be highly related to the neural innovations in cephalopods (Nature 524:220-4, 2015), and the chromosome analyses pinpointed several collinear modes of these genes on the octopod chromosomes, such as the collinearity between PCDH and C2H2 ZNF, as well as between GPCR and C2H2 ZNF. Phylogenetic analyses show that the expansion of the octopod protocadherin genes is driven by a tandem-duplication mechanism on one single chromosome, including two separate expansions at 65 million years ago (Ma) and 8-14 Ma, respectively. Furthermore, we identify eight cell types (i.e., cholinergic and glutamatergic neurons) in the supra-esophageal brain of A. fangsiao, and the single-cell expression analyses reveal the co-expression of protocadherin and GPCR in specific neural cells, which may contribute to the neural development and signal transductions in the octopod brain. CONCLUSIONS The octopod genome analyses reveal the dynamic evolutionary history of octopod chromosomes and neural-related gene families. The single-nucleus transcriptomes of the supra-esophageal brain indicate their cellular heterogeneities and functional interactions with other tissues (i.e., gill), which provides a foundation for further octopod cerebral studies.
Collapse
Affiliation(s)
- Dianhang Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Qun Liu
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
| | - Guangyi Fan
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lihua Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Yaolei Zhang
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia
| | - Shucai An
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Liu
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China.
| |
Collapse
|
8
|
Papa Y, Wellenreuther M, Morrison MA, Ritchie PA. Genome assembly and isoform analysis of a highly heterozygous New Zealand fisheries species, the tarakihi (Nemadactylus macropterus). G3 (BETHESDA, MD.) 2022; 13:6883520. [PMID: 36477875 PMCID: PMC9911067 DOI: 10.1093/g3journal/jkac315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Although being some of the most valuable and heavily exploited wild organisms, few fisheries species have been studied at the whole-genome level. This is especially the case in New Zealand, where genomics resources are urgently needed to assist fisheries management. Here, we generated 55 Gb of short Illumina reads (92× coverage) and 73 Gb of long Nanopore reads (122×) to produce the first genome assembly of the marine teleost tarakihi [Nemadactylus macropterus (Forster, 1801)], a highly valuable fisheries species in New Zealand. An additional 300 Mb of Iso-Seq reads were obtained to assist in gene annotation. The final genome assembly was 568 Mb long with an N50 of 3.37 Mb. The genome completeness was high, with 97.8% of complete Actinopterygii Benchmarking Universal Single-Copy Orthologs. Heterozygosity values estimated through k-mer counting (1.00%) and bi-allelic SNPs (0.64%) were high compared with the same values reported for other fishes. Iso-Seq analysis recovered 91,313 unique transcripts from 15,515 genes (mean ratio of 5.89 transcripts per gene), and the most common alternative splicing event was intron retention. This highly contiguous genome assembly and the isoform-resolved transcriptome will provide a useful resource to assist the study of population genomics and comparative eco-evolutionary studies in teleosts and related organisms.
Collapse
Affiliation(s)
- Yvan Papa
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Maren Wellenreuther
- Seafood Production Group, The New Zealand Institute for Plant and Food Research Limited, Nelson 7010, New Zealand,School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Mark A Morrison
- National Institute of Water and Atmospheric Research, Auckland 1010, New Zealand
| | - Peter A Ritchie
- Corresponding author: Te Toki A Rata, Gate 7, Kelburn Parade, Wellington 6012, New Zealand.
| |
Collapse
|
9
|
Kim J, Kim HS, Choi JP, Kim MS, Woo S, Kim Y, Jo Y, Yum S, Bhak J. Chromosome-Level Genome Assembly of the Butter Clam Saxidomus purpuratus. Genome Biol Evol 2022; 14:6650251. [PMID: 35881514 PMCID: PMC9337622 DOI: 10.1093/gbe/evac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/12/2022] Open
Abstract
Herein, we provide the first whole-genome sequence of the purple butter clam (Saxidomus purpuratus), an economically important bivalve shellfish. Specifically, we sequenced and de novo assembled the genome of Sa. purpuratus based on PromethION long reads and Hi-C data. The 978-Mb genome of Sa. purpuratus comprises 19 chromosomes with 36,591 predicted protein-coding genes. The N50 length of Sa. purpuratus genome is 52 Mb, showing the highest continuous assembly among bivalve genomes. The Benchmarking by Universal Single-Copy Orthologs assessment indicated that 95.07% of complete metazoan universal single-copy orthologs (n = 954) were present in the assembly. Approximately 51% of Sa. purpuratus genome comprises repetitive sequences. Based on the high-quality Sa. purpuratus genome, we resolved half of the immune-associated genes, namely, scavenger receptor (SR) proteins, which are collinear to those in the closely related Cyclina sinensis genome. This finding suggested a high degree of conservation among immune-associated genes. Twenty-two (19%) SR proteins are tandemly duplicated in Sa. purpuratus genome, suggesting putative convergence evolution. Overall, Sa. purpuratus genome provides a new resource for the discovery of economically important traits and immune-response genes.
Collapse
Affiliation(s)
- Jungeun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28190, Republic of Korea
| | - Hui-Su Kim
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae-Pil Choi
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28190, Republic of Korea
| | - Min Sun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28190, Republic of Korea
| | - Seonock Woo
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan 49 111, Republic of Korea
| | - Yeonghye Kim
- Fisheries Resources Management Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Yejin Jo
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Division, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea.,KIOST School, University of Science and Technology, Geoje 53201, Republic of Korea
| | - Jong Bhak
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28190, Republic of Korea.,Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, School of Life Sciences, UNIST, Ulsan 44919, Republic of Korea.,Clinomics, Inc., Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
Farhat S, Bonnivard E, Pales Espinosa E, Tanguy A, Boutet I, Guiglielmoni N, Flot JF, Allam B. Comparative analysis of the Mercenaria mercenaria genome provides insights into the diversity of transposable elements and immune molecules in bivalve mollusks. BMC Genomics 2022; 23:192. [PMID: 35260071 PMCID: PMC8905726 DOI: 10.1186/s12864-021-08262-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The hard clam Mercenaria mercenaria is a major marine resource along the Atlantic coasts of North America and has been introduced to other continents for resource restoration or aquaculture activities. Significant mortality events have been reported in the species throughout its native range as a result of diseases (microbial infections, leukemia) and acute environmental stress. In this context, the characterization of the hard clam genome can provide highly needed resources to enable basic (e.g., oncogenesis and cancer transmission, adaptation biology) and applied (clam stock enhancement, genomic selection) sciences. RESULTS Using a combination of long and short-read sequencing technologies, a 1.86 Gb chromosome-level assembly of the clam genome was generated. The assembly was scaffolded into 19 chromosomes, with an N50 of 83 Mb. Genome annotation yielded 34,728 predicted protein-coding genes, markedly more than the few other members of the Venerida sequenced so far, with coding regions representing only 2% of the assembly. Indeed, more than half of the genome is composed of repeated elements, including transposable elements. Major chromosome rearrangements were detected between this assembly and another recent assembly derived from a genetically segregated clam stock. Comparative analysis of the clam genome allowed the identification of a marked diversification in immune-related proteins, particularly extensive tandem duplications and expansions in tumor necrosis factors (TNFs) and C1q domain-containing proteins, some of which were previously shown to play a role in clam interactions with infectious microbes. The study also generated a comparative repertoire highlighting the diversity and, in some instances, the specificity of LTR-retrotransposons elements, particularly Steamer elements in bivalves. CONCLUSIONS The diversity of immune molecules in M. mercenaria may allow this species to cope with varying and complex microbial and environmental landscapes. The repertoire of transposable elements identified in this study, particularly Steamer elements, should be a prime target for the investigation of cancer cell development and transmission among bivalve mollusks.
Collapse
Affiliation(s)
- Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Emmanuelle Pales Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Nadège Guiglielmoni
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, Avenue F.D. Roosevelt 50, B-1050, Brussels, Belgium
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, Avenue F.D. Roosevelt 50, B-1050, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels - (IB)2, B-1050, Brussels, Belgium
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| |
Collapse
|
11
|
Gerdol M, La Vecchia C, Strazzullo M, De Luca P, Gorbi S, Regoli F, Pallavicini A, D’Aniello E. Evolutionary History of DNA Methylation Related Genes in Bivalvia: New Insights From Mytilus galloprovincialis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an essential epigenetic mechanism influencing gene expression in all organisms. In metazoans, the pattern of DNA methylation changes during embryogenesis and adult life. Consequently, differentiated cells develop a stable and unique DNA methylation pattern that finely regulates mRNA transcription during development and determines tissue-specific gene expression. Currently, DNA methylation remains poorly investigated in mollusks and completely unexplored in Mytilus galloprovincialis. To shed light on this process in this ecologically and economically important bivalve, we screened its genome, detecting sequences homologous to DNA methyltransferases (DNMTs), methyl-CpG-binding domain (MBD) proteins and Ten-eleven translocation methylcytosine dioxygenase (TET) previously described in other organisms. We characterized the gene architecture and protein domains of the mussel sequences and studied their phylogenetic relationships with the ortholog sequences from other bivalve species. We then comparatively investigated their expression levels across different adult tissues in mussel and other bivalves, using previously published transcriptome datasets. This study provides the first insights on DNA methylation regulators in M. galloprovincialis, which may provide fundamental information to better understand the complex role played by this mechanism in regulating genome activity in bivalves.
Collapse
|
12
|
Potts RWA, Gutierrez AP, Penaloza CS, Regan T, Bean TP, Houston RD. Potential of genomic technologies to improve disease resistance in molluscan aquaculture. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200168. [PMID: 33813884 PMCID: PMC8059958 DOI: 10.1098/rstb.2020.0168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Molluscan aquaculture is a major contributor to global seafood production, but is hampered by infectious disease outbreaks that can cause serious economic losses. Selective breeding has been widely used to improve disease resistance in major agricultural and aquaculture species, and has clear potential in molluscs, albeit its commercial application remains at a formative stage. Advances in genomic technologies, especially the development of cost-efficient genomic selection, have the potential to accelerate genetic improvement. However, tailored approaches are required owing to the distinctive reproductive and life cycle characteristics of molluscan species. Transgenesis and genome editing, in particular CRISPR/Cas systems, have been successfully trialled in molluscs and may further understanding and improvement of genetic resistance to disease through targeted changes to the host genome. Whole-organism genome editing is achievable on a much greater scale compared to other farmed species, making genome-wide CRISPR screening approaches plausible. This review discusses the current state and future potential of selective breeding, genomic tools and genome editing approaches to understand and improve host resistance to infectious disease in molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Robert W. A. Potts
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Dorset DT4 8UB, UK
| | - Alejandro P. Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Carolina S. Penaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Tim P. Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
13
|
Varney RM, Speiser DI, McDougall C, Degnan BM, Kocot KM. The Iron-Responsive Genome of the Chiton Acanthopleura granulata. Genome Biol Evol 2021; 13:evaa263. [PMID: 33320175 PMCID: PMC7850002 DOI: 10.1093/gbe/evaa263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Molluscs biomineralize structures that vary in composition, form, and function, prompting questions about the genetic mechanisms responsible for their production and the evolution of these mechanisms. Chitons (Mollusca, Polyplacophora) are a promising system for studies of biomineralization because they build a range of calcified structures including shell plates and spine- or scale-like sclerites. Chitons also harden the calcified teeth of their rasp-like radula with a coat of iron (as magnetite). Here we present the genome of the West Indian fuzzy chiton Acanthopleura granulata, the first from any aculiferan mollusc. The A. granulata genome contains homologs of many genes associated with biomineralization in conchiferan molluscs. We expected chitons to lack genes previously identified from pathways conchiferans use to make biominerals like calcite and nacre because chitons do not use these materials in their shells. Surprisingly, the A. granulata genome has homologs of many of these genes, suggesting that the ancestral mollusc may have had a more diverse biomineralization toolkit than expected. The A. granulata genome has features that may be specialized for iron biomineralization, including a higher proportion of genes regulated directly by iron than other molluscs. A. granulata also produces two isoforms of soma-like ferritin: one is regulated by iron and similar in sequence to the soma-like ferritins of other molluscs, and the other is constitutively translated and is not found in other molluscs. The A. granulata genome is a resource for future studies of molluscan evolution and biomineralization.
Collapse
Affiliation(s)
- Rebecca M Varney
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Carmel McDougall
- Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kevin M Kocot
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama
- Alabama Museum of Natural History, Tuscaloosa, Alabama
| |
Collapse
|
14
|
Kenny NJ, McCarthy SA, Dudchenko O, James K, Betteridge E, Corton C, Dolucan J, Mead D, Oliver K, Omer AD, Pelan S, Ryan Y, Sims Y, Skelton J, Smith M, Torrance J, Weisz D, Wipat A, Aiden EL, Howe K, Williams ST. The gene-rich genome of the scallop Pecten maximus. Gigascience 2020; 9:giaa037. [PMID: 32352532 PMCID: PMC7191990 DOI: 10.1093/gigascience/giaa037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The king scallop, Pecten maximus, is distributed in shallow waters along the Atlantic coast of Europe. It forms the basis of a valuable commercial fishery and plays a key role in coastal ecosystems and food webs. Like other filter feeding bivalves it can accumulate potent phytotoxins, to which it has evolved some immunity. The molecular origins of this immunity are of interest to evolutionary biologists, pharmaceutical companies, and fisheries management. FINDINGS Here we report the genome assembly of this species, conducted as part of the Wellcome Sanger 25 Genomes Project. This genome was assembled from PacBio reads and scaffolded with 10X Chromium and Hi-C data. Its 3,983 scaffolds have an N50 of 44.8 Mb (longest scaffold 60.1 Mb), with 92% of the assembly sequence contained in 19 scaffolds, corresponding to the 19 chromosomes found in this species. The total assembly spans 918.3 Mb and is the best-scaffolded marine bivalve genome published to date, exhibiting 95.5% recovery of the metazoan BUSCO set. Gene annotation resulted in 67,741 gene models. Analysis of gene content revealed large numbers of gene duplicates, as previously seen in bivalves, with little gene loss, in comparison with the sequenced genomes of other marine bivalve species. CONCLUSIONS The genome assembly of P. maximus and its annotated gene set provide a high-quality platform for studies on such disparate topics as shell biomineralization, pigmentation, vision, and resistance to algal toxins. As a result of our findings we highlight the sodium channel gene Nav1, known to confer resistance to saxitoxin and tetrodotoxin, as a candidate for further studies investigating immunity to domoic acid.
Collapse
Affiliation(s)
- Nathan J Kenny
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | - Shane A McCarthy
- University of Cambridge, Department of Genetics,Cambridge CB2 3EH, UK
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
| | - Katherine James
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | | | - Craig Corton
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jale Dolucan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Dan Mead
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Karen Oliver
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Pelan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Yan Ryan
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute of Infection and Global Health, Liverpool University, iC2, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | | | | | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Erez L Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Kerstin Howe
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Suzanne T Williams
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
15
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|