1
|
Lin Y, Yang M, Liu Q, Cai Y, Zhang Z, Xu C, Luo M. Apolipoprotein E Gene ε4 Allele is Associated with Atherosclerosis in Multiple Vascular Beds. Int J Gen Med 2024; 17:5039-5048. [PMID: 39512258 PMCID: PMC11542474 DOI: 10.2147/ijgm.s475771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
Background Atherosclerosis is a systemic disease that can involve multiple vascular beds. The risk factors for atherosclerosis in multiple vascular beds remain unclear. Apolipoprotein E (APOE) is involved in inflammation and lipid deposition in the process of atherosclerosis. The objective of this study was to investigate whether APOE polymorphisms are associated with atherosclerosis in multiple vascular beds. Methods A total of 416 patients with atherosclerosis in single vascular bed and 658 patients with atherosclerosis in multiple vascular beds were included. APOE genotypes were detected and the differences of APOE genotypes between the groups were compared. Logistic regression analysis was performed to analyze the relationship between APOE genotypes and atherosclerosis in multiple vascular beds. Results APOE E3/E4 genotype frequency was lower in the patients with atherosclerosis in multiple vascular beds than that of patients with atherosclerosis in single vascular bed (11.4% vs 17.8%, P=0.004). There was no significant difference in age and gender distribution, proportion of history of smoking, alcohol consumption, hypertension, and diabetes mellitus between the two groups (all P>0.05), and among patients with different APOE alleles (all P>0.05). Logistic regression analysis indicated that APOE E3/E4 genotype (E3/E4 vs E3/E3: odds ratio (OR) 0.598, 95% confidence interval (CI): 0.419-0.854, P=0.005), and APOE ε4 allele (ε4 vs ε3: OR 0.630, 95% CI: 0.444-0.895, P=0.010) associated with atherosclerosis in multiple vascular beds. Conclusion APOE ε4 allele is associated with atherosclerosis in multiple vascular beds.
Collapse
Affiliation(s)
- Youni Lin
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Min Yang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Qifeng Liu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Yufu Cai
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Zhouhua Zhang
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Chongfei Xu
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Ming Luo
- Center for Cardiovascular Diseases, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
2
|
Lusiki Z, Blom D, Soko ND, Malema S, Jones E, Rayner B, Blackburn J, Sinxadi P, Dandara MT, Dandara C. Major Genetic Drivers of Statin Treatment Response in African Populations and Pharmacogenetics of Dyslipidemia Through a One Health Lens. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:261-279. [PMID: 37956269 DOI: 10.1089/omi.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A One Health lens is increasingly significant to address the intertwined challenges in planetary health concerned with the health of humans, nonhuman animals, plants, and ecosystems. A One Health approach can benefit the public health systems in Africa that are overburdened by noncommunicable, infectious, and environmental diseases. Notably, the COVID-19 pandemic revealed the previously overlooked two-fold importance of pharmacogenetics (PGx), for individually tailored treatment of noncommunicable diseases and environmental pathogens. For example, dyslipidemia, a common cardiometabolic risk factor, has been identified as an independent COVID-19 severity risk factor. Observational data suggest that patients with COVID-19 infection receiving lipid-lowering therapy may have better outcomes. However, among African patients, the response to these drugs varies from patient to patient, pointing to the possible contribution of genetic variation in important pharmacogenes. The PGx of lipid-lowering therapies may underlie differences in treatment responses observed among dyslipidemia patients as well as patients comorbid with COVID-19 and dyslipidemia. Genetic variations in APOE, ABCB1, CETP, CYP2C9, CYP3A4, CYP3A5, HMGCR, LDLR, NPC1L1, and SLCO1B1 genes affect the pharmacogenomics of statins, and they have individually been linked to differential responses to dyslipidemia and COVID-19 treatment. African populations are underrepresented in PGx research. This leads to poor accounting of additional diverse genetic variants that could be important in understanding interindividual and between-population variations in therapeutic responses to dyslipidemia and COVID-19. This expert review examines and synthesizes the salient and priority PGx variations, as seen through a One Health lens in Africa, to improve and inform personalized medicine in both dyslipidemia and COVID-19.
Collapse
Affiliation(s)
- Zizo Lusiki
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Dirk Blom
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nyarai D Soko
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Smangele Malema
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Erika Jones
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michelle T Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| |
Collapse
|
3
|
Qin S, Zhang Y, Yu F, Ni Y, Zhong J. A Novel Heterozygous NF1 Variant in a Neurofibromatosis-Noonan Syndrome Patient with Growth Hormone Deficiency: A Case Report. J Clin Res Pediatr Endocrinol 2023; 15:438-443. [PMID: 35633639 PMCID: PMC10683535 DOI: 10.4274/jcrpe.galenos.2022.2021-12-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/16/2022] [Indexed: 12/01/2022] Open
Abstract
Neurofibromatosis-Noonan syndrome (NFNS), a rare autosomal-dominant hereditary disease, is characterized by clinical manifestations of both neurofibromatosis type 1 (NF1) and NS. We present a case of NFNS with short stature caused by a heterozygous nonsense variant of the NF1 gene. A 12-year-old boy was admitted because of short stature, numerous café-au-lait spots, low-set and posteriorly rotated ears, sparse eyebrows, broad forehead, and inverted triangular face. Cranial and spinal magnetic resonance imaging showed abnormal nodular lesions. Molecular analysis revealed a novel heterozygous c.6189 C > G (p.(Tyr2063*)) variant in the NF1 gene. The patient was not prescribed recombinant growth hormone (GH) therapy because exogenous GH may have enlarged the abnormal skeletal lesions. During follow-up, Lisch nodules were found in the ophthalmologic examination. NFNS, a variant form of NF1, is caused by heterozygous mutations in the NF1 gene. The mechanism of GH deficiency caused by NF1 is still unclear. Whether NFNS patients should be treated with exogenous GH remains controversial.
Collapse
Affiliation(s)
- Si Qin
- The Third Affiliated Hospital of Chongqing Medical University, Department of Endocrinology, Chongqing, China
| | - Yindi Zhang
- The Third Affiliated Hospital of Chongqing Medical University, Department of Endocrinology, Chongqing, China
| | - Fadong Yu
- The Third Affiliated Hospital of Chongqing Medical University, Department of Endocrinology, Chongqing, China
| | - Yinxing Ni
- The Third Affiliated Hospital of Chongqing Medical University, Department of Endocrinology, Chongqing, China
| | - Jian Zhong
- The Third Affiliated Hospital of Chongqing Medical University, Department of Endocrinology, Chongqing, China
| |
Collapse
|
4
|
Liu Q, Wu H, Yu Z, Huang Q, Zhong Z. APOE gene ɛ4 allele (388C-526C) effects on serum lipids and risk of coronary artery disease in southern Chinese Hakka population. J Clin Lab Anal 2021; 35:e23925. [PMID: 34313350 PMCID: PMC8418481 DOI: 10.1002/jcla.23925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To analyze the relationship of Apolipoprotein E (APOE) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene polymorphisms with coronary artery disease (CAD). METHODS 1,129 CAD patients and 1,014 non-CAD controls were included in the study, and relevant information and medical records were collected. The single-nucleotide polymorphisms (SNPs) were analyzed, including rs429358, rs7412 in APOE gene and rs2306283, rs4149056 in SLCO1B1 gene. RESULTS The CAD patients' average age was 66.3 ± 10.7 years, while 65.5 ± 12.0 years in controls. The frequencies of APOE allele ɛ3, ɛ4, and ɛ2 were 83.01%, 10.08%, and 6.91% respectively. There were statistically significant differences in genotype ɛ3/ɛ4 (χ2 = 8.077, p = 0.005) in CAD patients compared with the controls. The SLCO1B1 genotype *1b/*1b and haplotype *1b showed the highest frequency in the study sample. Moreover, ε4 carriers had significantly lower HDL-C, Apo-A1 levels than ε3 carriers among CAD patients, while ε2 carriers showed lower LDL-C, Apo-B level, and higher Apo-A1/Apo-B level than ε3 and ε4 carriers. In controls, ε2 carriers showed lower LDL-C and Apo-B level, higher Apo-A1, and Apo-A1/Apo-B level than ε4 carriers. Logistic regression analysis showed that high LDL-C and Apo-B level, low HDL-C level, smoking, and the ε4 allele were risks for the presence of CAD. CONCLUSIONS APOE ε4 allele may be associated with susceptibility to CAD in southern Chinese Hakka population. It indicated that the APOE SNPs rs429358 and rs7412 are associated with CAD, but not SNPs rs2306283 and rs4149056 of SLCO1B1 gene.
Collapse
Affiliation(s)
- Qinghua Liu
- Center for Pathological Diagnostics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhikang Yu
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Qingyan Huang
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhixiong Zhong
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
5
|
Greiner R, Nyrienda M, Rodgers L, Asiki G, Banda L, Shields B, Hattersley A, Crampin A, Newton R, Jones A. Associations between low HDL, sex and cardiovascular risk markers are substantially different in sub-Saharan Africa and the UK: analysis of four population studies. BMJ Glob Health 2021; 6:e005222. [PMID: 34016577 PMCID: PMC8141440 DOI: 10.1136/bmjgh-2021-005222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/11/2021] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Low high-density lipoprotein (HDL) is widely used as a marker of cardiovascular disease risk, although this relationship is not causal and is likely mediated through associations with other risk factors. Low HDL is extremely common in sub-Saharan African populations, and this has often been interpreted to indicate that these populations will have increased cardiovascular risk. We aimed to determine whether the association between HDL and other cardiovascular risk factors differed between populations in sub-Saharan Africa and the UK. METHODS We compared data from adults living in Uganda and Malawi (n=26 216) and in the UK (n=8747). We examined unadjusted and adjusted levels of HDL and applied the WHO recommended cut-offs for prevalence estimates. We used spline and linear regression to assess the relationship between HDL and other cardiovascular risk factors. RESULTS HDL was substantially lower in the African than in the European studies (geometric mean 0.9-1.2 mmol/L vs 1.3-1.8 mmol/L), with African prevalence of low HDL as high as 77%. Total cholesterol was also substantially lower (geometric mean 3.3-3.9 mmol/L vs 4.6-5.4 mmol/L). In comparison with European studies the relationship between HDL and adiposity (body mass index, waist to hip ratio) was greatly attenuated in African studies and the relationship with non-HDL cholesterol reversed: in African studies low HDL was associated with lower non-HDL cholesterol. The association between sex and HDL was also different; using the WHO sex-specific definitions, low HDL was substantially more common among women (69%-77%) than men (41%-59%) in Uganda/Malawi. CONCLUSION The relationship between HDL and sex, adiposity and non-HDL cholesterol in sub-Saharan Africa is different from European populations. In sub-Saharan Africans low HDL is a marker of low overall cholesterol and sex differences are markedly attenuated. Therefore low HDL in isolation is unlikely to indicate raised cardiovascular risk and the WHO sex-based cut-offs are inappropriate.
Collapse
Affiliation(s)
- Rosamund Greiner
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Lauren Rodgers
- Institute of Health Research, University of Exeter Medical School, Exeter, UK
| | - Gershim Asiki
- African Population and Health Research Center, Nairobi, Kenya
| | - Louis Banda
- Malawi Epidemiology and Intervention Research Unit, Lilongwe, Malawi
| | - Beverly Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Amelia Crampin
- Malawi Epidemiology and Intervention Research Unit, Lilongwe, Malawi
| | - Robert Newton
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Angus Jones
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|