1
|
Nguinkal JA, Zoclanclounon YAB, Brunner RM, Chen Y, Goldammer T. Haplotype-resolved and near-T2T genome assembly of the African catfish (Clarias gariepinus). Sci Data 2024; 11:1095. [PMID: 39375414 PMCID: PMC11458897 DOI: 10.1038/s41597-024-03906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Airbreathing catfish are stenohaline freshwater fish capable of withstanding various environmental conditions and farming practices, including breathing atmospheric oxygen. This unique ability has enabled them to thrive in semi-terrestrial habitats. However, the genomic mechanisms underlying their adaptation to adverse ecological environments remain largely unexplored, primarily due to the limited availability of high-quality genomic resources. Here, we present a haplotype-resolved and near telomere-to-telomere (T2T) genome assembly of the African catfish (Clarias gariepinus), utilizing Oxford Nanopore, PacBio HiFi, Illumina and Hi-C sequencing technologies. The primary assembly spans 969.62 Mb with only 47 contigs, achieving a contig N50 of 33.71 Mb. Terminal telomeric signals were detected in 22 of 47 contigs, suggesting T2T assembled chromosomes. BUSCO analysis confirmed gene space completeness of 99% against the Actinopterygii dataset, highlighting the high quality of the assembly. Genome annotation identified 25,655 protein-coding genes and estimated 43.94% genome-wide repetitive elements. This data provides valuable genomic resources to advance aquaculture practices and to explore the genomic underpinnings of the ecological resilience of airbreathing catfish and related teleosts.
Collapse
Affiliation(s)
- Julien A Nguinkal
- Research Institute for Farm Animals (FBN), Fish Genetics Unit, Dummerstorf, 18196, Germany.
- Bernhard-Nocht Institute for Tropical Medicine, Department of Infectious Disease Epidemiology, Hamburg, 20359, Germany.
| | | | - Ronald M Brunner
- Research Institute for Farm Animals (FBN), Fish Genetics Unit, Dummerstorf, 18196, Germany
| | - Yutang Chen
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Tom Goldammer
- Research Institute for Farm Animals (FBN), Fish Genetics Unit, Dummerstorf, 18196, Germany.
- University of Rostock, Faculty of Agriculture and Environmental Sciences, Rostock, 18059, Germany.
| |
Collapse
|
2
|
Dedukh D, Lisachov A, Panthum T, Singchat W, Matsuda Y, Imai Y, Janko K, Srikulnath K. Meiotic deviations and endoreplication lead to diploid oocytes in female hybrids between bighead catfish ( Clarias macrocephalus) and North African catfish ( Clarias gariepinus). Front Cell Dev Biol 2024; 12:1465335. [PMID: 39247622 PMCID: PMC11377317 DOI: 10.3389/fcell.2024.1465335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Reproductive isolation and hybrid sterility are mechanisms that maintain the genetic integrity of species and prevent the introgression of heterospecific genes. However, crosses of closely related species can lead to complex evolution, such as the formation of all-female lineages that reproduce clonally. Bighead catfish (Clarias macrocephalus) and North African catfish (C. gariepinus) diverged 40 million years ago. They are cultivated and hybridized in Thailand for human consumption. Male hybrids are sterile due to genome-wide chromosome asynapsis during meiosis. Although female hybrids are sometimes fertile, their chromosome configuration during meiosis has not yet been studied. Methods We analyzed meiosis in the hybrid female catfish at pachytene (synaptonemal complexes) and diplotene (lampbrush chromosomes), using immunostaining to detect chromosome pairing and double-stranded break formation, and FISH with species-specific satellite DNAs to distinguish the parental chromosomes. Results More than 95% of oocytes exhibited chromosome asynapsis in female hybrid catfish; however, they were able to progress to the diplotene stage and form mature eggs. The remaining oocytes underwent premeiotic endoreplication, followed by synapsis and crossing over between sister chromosomes, similar to known clonal lineages in fish and reptiles. Discussion The occurrence of clonal reproduction in female hybrid catfish suggests a unique model for studying gametogenic alterations caused by hybridization and their potential for asexual reproduction. Our results further support the view that clonal reproduction in certain hybrid animals relies on intrinsic mechanisms of sexually reproducing parental species, given their multiple independent origins with the same mechanism.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yoichi Matsuda
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
- Department of Biology and Ecology, Faculty of Natural Sciences, University of Ostrava, Ostrava, Czechia
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok, Thailand
| |
Collapse
|
3
|
Garcia BF, Mastrochirico-Filho VA, Gallardo-Hidalgo J, Campos-Montes GR, Medrano-Mendoza T, Rivero-Martínez PV, Caballero-Zamora A, Hashimoto DT, Yáñez JM. A high-density linkage map and sex-determination loci in Pacific white shrimp (Litopenaeus vannamei). BMC Genomics 2024; 25:565. [PMID: 38840101 PMCID: PMC11155064 DOI: 10.1186/s12864-024-10431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Expansion of genomic resources for the Pacific white shrimp (Litopenaeus vannamei), such as the construction of dense genetic linkage maps, is crucial for the application of genomic tools in order to improve economically relevant traits. Sexual dimorphism exists in Pacific white shrimp, and the mapping of the sex-determination region in this species may help in future reproductive applications. We have constructed male, female, and sex-averaged high-density genetic maps using a 50 K single-nucleotide polymorphism (SNP) array, followed by a genome-wide association study (GWAS) to identify genomic regions associated with sex in white shrimp. RESULTS The genetic map yielded 15,256 SNPs assigned to 44 linkage groups (LG). The lengths of the male, female, and sex-averaged maps were 5,741.36, 5,461.20 and 5,525.26 cM, respectively. LG18 was found to be the largest for both sexes, whereas LG44 was the shortest for males and LG31 for females. A sex-determining region was found in LG31 with 21 statistically significant SNPs. The most important SNP was previously identified as a sex-linked marker and was able to identify 99% of the males and 88% of the females. Although other significant markers had a lower ability to determine sex, putative genes were intercepted or close to them. The oplophorus-luciferin 2-monooxygenase, serine/arginine repetitive matrix protein and spermine oxidase genes were identified as candidates with possible participation in important processes of sexual differentiation in shrimp. CONCLUSIONS Our results provide novel genomic resources for shrimp, including a high-density linkage map and new insights into the sex-determining region in L. vannamei, which may be usefulfor future genetics and reproduction applications.
Collapse
Affiliation(s)
- Baltasar F Garcia
- São Paulo State University (Unesp), Aquaculture Center of UNESP, Jaboticabal, SP, 14884-900, Brazil
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820000, Chile
| | - Vito A Mastrochirico-Filho
- São Paulo State University (Unesp), Aquaculture Center of UNESP, Jaboticabal, SP, 14884-900, Brazil
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820000, Chile
| | | | - Gabriel R Campos-Montes
- Departamento de El Hombre y su Ambiente, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, CDMX, C.P. 04960, México
| | - Thania Medrano-Mendoza
- Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, CDMX, C.P. 04960, México
| | - Psique Victoria Rivero-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, CDMX, C.P. 04960, México
| | - Alejandra Caballero-Zamora
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calzada del Hueso 1100, Coyoacán, CDMX, C.P. 04960, México
| | - Diogo T Hashimoto
- São Paulo State University (Unesp), Aquaculture Center of UNESP, Jaboticabal, SP, 14884-900, Brazil
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, 8820000, Chile.
| |
Collapse
|
4
|
Xu XW, Sun P, Gao C, Zheng W, Chen S. Assembly of the poorly differentiated Verasper variegatus W chromosome by different sequencing technologies. Sci Data 2023; 10:893. [PMID: 38092799 PMCID: PMC10719390 DOI: 10.1038/s41597-023-02790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
The assembly of W and Y chromosomes poses significant challenges in vertebrate genome sequencing and assembly. Here, we successfully assembled the W chromosome of Verasper variegatus with a length of 20.48 Mb by combining population and PacBio HiFi sequencing data. It was identified as a young sex chromosome and showed signs of expansion in repetitive sequences. The major component of the expansion was Ty3/Gypsy. The ancestral Osteichthyes karyotype consists of 24 protochromosomes. The sex chromosomes in four Pleuronectiformes species derived from a pair of homologous protochromosomes resulting from a whole-genome duplication event in teleost fish, yet with different sex-determination systems. V. variegatus and Cynoglossus semilaevis adhere to the ZZ/ZW system, while Hippoglossus stenolepis and H. hippoglossus follow the XX/XY system. Interestingly, V. variegatus and H. hippoglossus derived from one protochromosome, while C. semilaevis and H. stenolepis derived from another protochromosome. Our study provides valuable insights into the evolution of sex chromosomes in flatfish and sheds light on the important role of whole-genome duplication in shaping the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Xi-Wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Pengchuan Sun
- Key Laboratory for Bio-resources and Eco-environment & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chengbin Gao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
5
|
Tian CX, Lin XH, Zhou DY, Chen Y, Shen YJ, Ye MH, Duan CY, Zhang YL, Yang BL, Deng SP, Zhu CH, Li GL. A chromosome-level genome assembly of Hong Kong catfish (Clarias fuscus) uncovers a sex-determining region. BMC Genomics 2023; 24:291. [PMID: 37254055 PMCID: PMC10230808 DOI: 10.1186/s12864-023-09394-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Hong Kong catfish (Clarias fuscus) is an ecologically and economically important species that is widely distributed in freshwater regions of southern China. Hong Kong catfish has significant sexual growth dimorphism. The genome assembly of the Hong Kong catfish would facilitate study of the sex determination and evolution mechanism of the species. RESULTS The first high-quality chromosome-level genome of the Hong Kong catfish was constructed. The total genome was 933.4 Mb, with 416 contigs and a contig N50 length of 8.52 Mb. Using high-throughput chromosome conformation capture (Hi-C) data, the genome assembly was divided into 28 chromosomes with a scaffold N50 length of 36.68 Mb. A total of 23,345 protein-coding genes were predicted in the genome, and 94.28% of the genes were functionally annotated in public databases. Phylogenetic analysis indicated that C. fuscus and Clarias magur diverged approximately 63.7 million years ago. The comparative genome results showed that a total of 60 unique, 353 expanded and 851 contracted gene families were identified in Hong Kong catfish. A sex-linked quantitative trait locus identified in a previous study was located in a sex-determining region of 30.26 Mb (0.02 to 30.28 Mb) on chromosome 13 (Chr13), the predicted Y chromosome. This QTL region contained 785 genes, of which 18 were identified as sex-related genes. CONCLUSIONS This study is the first to report the chromosome-level genome assembly of Hong Kong catfish. The study provides an excellent genetic resource that will facilitate future studies of sex determination mechanisms and evolution in fish.
Collapse
Affiliation(s)
- Chang-Xu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088 China
| | - Xing-Hua Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
| | - Da-Yan Zhou
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning, 530001 China
| | - Yu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
| | - Yi-Jun Shen
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
| | - Ming-Hui Ye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
| | - Cun-Yu Duan
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
| | - Yu-Lei Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
| | - Bin-Lan Yang
- Guangxi Introduction and Breeding Center of Aquaculture, Nanning, 530001 China
| | - Si-Ping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088 China
| | - Chun-Hua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088 China
| | - Guang-Li Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088 China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088 China
| |
Collapse
|
6
|
Balogh RE, Csorbai B, Guti C, Keszte S, Urbányi B, Orbán L, Kovács B. Validation of a male-specific DNA marker confirms XX/XY-type sex determination in several Hungarian strains of African catfish (Clarias gariepinus). Theriogenology 2023; 205:106-113. [PMID: 37116410 DOI: 10.1016/j.theriogenology.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
African catfish (Clarias gariepinus) is a promising food fish species with significant potential and growing mass of production in freshwater aquaculture. Male African catfish possess improved production characteristics over females, therefore the use of monosex populations could be advantageous for aquaculture production. However, our knowledge about the sex determination mechanism of this species is still limited and controversial. A previously isolated male-specific DNA marker (CgaY1) was validated using offspring groups from targeted crosses (n = 630) and it was found to predict the sex of 608 individuals correctly (96.43% accuracy). Using the proportion of recombinants, we estimated the average genetic distance between the potential sex determination locus and the sex-specific marker to be 3.57 cM. As an earlier study suggested that both XX/XY and ZZ/ZW systems coexist in this species, we tested the applicability of their putative 'moderately sex-linked loci' and found that no sex-specific amplification could be detected for any of them. In addition, temperature-induced masculinization suggested by others was also tested, but no such effect was detected in our stocks when the published parameters were used for heat treatment. Altogether, our results support an exclusive XX/XY sex determination system in our African catfish stock and indicate a good potential for the future use of this male-specific DNA marker in research and commercial production.
Collapse
Affiliation(s)
- Réka Enikő Balogh
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Csorbai
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Csaba Guti
- The Hungarian National Fishing Association, Budapest, Hungary
| | - Szilvia Keszte
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Béla Urbányi
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - László Orbán
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary.
| | - Balázs Kovács
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
7
|
Arick MA, Grover CE, Hsu CY, Magbanua Z, Pechanova O, Miller ER, Thrash A, Youngblood RC, Ezzell L, Alam MS, Benzie JAH, Hamilton MG, Karsi A, Lawrence ML, Peterson DG. A high-quality chromosome-level genome assembly of rohu carp, Labeo rohita, and its utilization in SNP-based exploration of gene flow and sex determination. G3 (BETHESDA, MD.) 2023; 13:6987299. [PMID: 36639248 PMCID: PMC9997561 DOI: 10.1093/g3journal/jkad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Labeo rohita (rohu) is a carp important to aquaculture in South Asia, with a production volume close to Atlantic salmon. While genetic improvements to rohu are ongoing, the genomic methods commonly used in other aquaculture improvement programs have historically been precluded in rohu, partially due to the lack of a high-quality reference genome. Here we present a high-quality de novo genome produced using a combination of next-generation sequencing technologies, resulting in a 946 Mb genome consisting of 25 chromosomes and 2,844 unplaced scaffolds. Notably, while approximately half the size of the existing genome sequence, our genome represents 97.9% of the genome size newly estimated here using flow cytometry. Sequencing from 120 individuals was used in conjunction with this genome to predict the population structure, diversity, and divergence in three major rivers (Jamuna, Padma, and Halda), in addition to infer a likely sex determination mechism in rohu. These results demonstrate the utility of the new rohu genome in modernizing some aspects of rohu genetic improvement programs.
Collapse
Affiliation(s)
- Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Zenaida Magbanua
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Olga Pechanova
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Adam Thrash
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lauren Ezzell
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Md Samsul Alam
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - John A H Benzie
- WorldFish, Jalan Batu Maung, 11960 Bayan Lepas, Penang, Malaysia
| | | | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark L Lawrence
- Global Center for Aquatic Health and Food Security, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
8
|
Mitochondriomics of Clarias Fishes (Siluriformes: Clariidae) with a New Assembly of Clarias camerunensis: Insights into the Genetic Characterization and Diversification. Life (Basel) 2023; 13:life13020482. [PMID: 36836839 PMCID: PMC9960581 DOI: 10.3390/life13020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The mitogenome of an endemic catfish Clarias camerunensis was determined from the Cameroon water. This circular mitogenome was 16,511 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a single AT-rich control region. The heavy strand accommodates 28 genes, whereas the light strand is constituted by ND6 and eight transfer RNA (tRNA) genes. The C. camerunensis mitochondrial genome is AT biased (56.89%), as showcased in other Clarias species. The comparative analyses revealed that most of the Clarias species have 6 overlapping and 11 intergenic spacer regions. Most of the PCGs were initiated and terminated with the ATG start codon and TAA stop codon, respectively. The tRNAs of C. camerunensis folded into the distinctive cloverleaf secondary structure, except trnS1. The placement of the conserved domains in the control region was similar in all the Clarias species with highly variable nucleotides in CSB-I. Both maximum likelihood and Bayesian-based matrilineal phylogenies distinctly separated all Clarias species into five clades on the basis of their known distributions (South China, Sundaland, Indochina, India, and Africa). The TimeTree analysis revealed that the two major clades (Indo-Africa and Asia) of Clarias species might have diverged during the Paleogene (≈28.66 MYA). Our findings revealed the separation of Indian species (C. dussumieri) and African species (C. camerunensis and Clarias gariepinus) took place during the Paleogene, as well as the South Chinese species (Clarias fuscus) and Sundaland species (Clarias batrachus) splits from the Indochinese species (Clarias macrocephalus) during the Neogene through independent colonization. This pattern of biotic relationships highlights the influence of topography and geological events in determining the evolutionary history of Clarias species. The enrichment of mitogenomic data and multiple nuclear loci from their native range or type locality will confirm the true diversification of Clarias species in African and Asian countries.
Collapse
|
9
|
Panthum T, Jaisamut K, Singchat W, Ahmad SF, Kongkaew L, Wongloet W, Dokkaew S, Kraichak E, Muangmai N, Duengkae P, Srikulnath K. Something Fishy about Siamese Fighting Fish ( Betta splendens) Sex: Polygenic Sex Determination or a Newly Emerged Sex-Determining Region? Cells 2022; 11:1764. [PMID: 35681459 PMCID: PMC9179492 DOI: 10.3390/cells11111764] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Fishes provide a unique and intriguing model system for studying the genomic origin and evolutionary mechanisms underlying sex determination and high sex-chromosome turnover. In this study, the mode of sex determination was investigated in Siamese fighting fish, a species of commercial importance. Genome-wide SNP analyses were performed on 75 individuals (40 males and 35 females) across commercial populations to determine candidate sex-specific/sex-linked loci. In total, 73 male-specific loci were identified and mapped to a 5.6 kb region on chromosome 9, suggesting a putative male-determining region (pMDR) containing localized dmrt1 and znrf3 functional sex developmental genes. Repeat annotations of the pMDR revealed an abundance of transposable elements, particularly Ty3/Gypsy and novel repeats. Remarkably, two out of the 73 male-specific loci were located on chromosomes 7 and 19, implying the existence of polygenic sex determination. Besides male-specific loci, five female-specific loci on chromosome 9 were also observed in certain populations, indicating the possibility of a female-determining region and the polygenic nature of sex determination. An alternative explanation is that male-specific loci derived from other chromosomes or female-specific loci in Siamese fighting fish recently emerged as new sex-determining loci during domestication and repeated hybridization.
Collapse
Affiliation(s)
- Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Kitipong Jaisamut
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Lalida Kongkaew
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Wongsathit Wongloet
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Sahabhop Dokkaew
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand;
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Department of Botany, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.J.); (W.S.); (S.F.A.); (L.K.); (W.W.); (E.K.); (N.M.); (P.D.)
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- The International Undergraduate Program in Bioscience and Technology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
10
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
11
|
Nguyen DHM, Ponjarat J, Laopichienpong N, Panthum T, Singchat W, Ahmad SF, Kraichak E, Muangmai N, Duengkae P, Peyachoknagul S, Na-Nakorn U, Srikulnath K. Genome-Wide SNP Analysis of Hybrid Clariid Fish Reflects the Existence of Polygenic Sex-Determination in the Lineage. Front Genet 2022; 13:789573. [PMID: 35186027 PMCID: PMC8851383 DOI: 10.3389/fgene.2022.789573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
The African catfish (Clarias gariepinus) may exhibit the co-existence of XX/XY and ZZ/ZW sex-determination systems (SDSs). However, the SDS of African catfish might be influenced by a polygenic sex-determination (PSD) system, comprising multiple independently segregating sex “switch” loci to determine sex within a species. Here, we aimed to detect the existence of PSD using hybrid. The hybrid produced by crossing male African catfish with female bighead catfish (C. macrocephalus, XX/XY) is a good animal model to study SDSs. Determining the SDS of hybrid catfish can help in understanding the interactions between these two complex SDS systems. Using the genotyping-by-sequencing “DART-seq” approach, we detected seven moderately male-linked loci and seventeen female-linked loci across all the examined hybrid specimens. Most of these loci were not sex-linked in the parental species, suggesting that the hybrid exhibits a combination of different alleles. Annotation of the identified sex-linked loci revealed the presence of one female-linked locus homologous with the B4GALNT1 gene, which is involved in the spermatogenesis pathway and hatchability. However, this locus was not sex-linked in the parental species, and the African catfish might also exhibit PSD.
Collapse
Affiliation(s)
- Dung Ho My Nguyen
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Jatupong Ponjarat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Nararat Laopichienpong
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | | | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Center (AGB Research Center), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
- Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
- *Correspondence: Kornsorn Srikulnath,
| |
Collapse
|
12
|
The Snakeskin Gourami (Trichopodus pectoralis) Tends to Exhibit XX/XY Sex Determination. FISHES 2021. [DOI: 10.3390/fishes6040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The snakeskin gourami (Trichopodus pectoralis) has a high meat yield and is one of the top five aquaculture freshwater fishes in Thailand. The species is not externally sexually dimorphic, and its sex determination system is unknown. Understanding the sex determination system of this species will contribute to its full-scale commercialization. In this study, a cytogenetic analysis did not reveal any between-sex differences in chromosomal patterns. However, we used genotyping-by-sequencing to identify 4 male-linked loci and 1 female-linked locus, indicating that the snakeskin gourami tends to exhibit an XX/XY sex determination system. However, we did not find any male-specific loci after filtering the loci for a ratio of 100:0 ratio of males:females. This suggests that the putative Y chromosome is young and that the sex determination region is cryptic. This approach provides solid information that can help identify the sex determination mechanism and potential sex determination regions in the snakeskin gourami, allowing further investigation of genetic improvements in the species.
Collapse
|