1
|
Nakagawa T, Horiuchi K, Kagami K, Kondo S, Isaji M, Matsuhashi Y, Kitamura K, Adachi T, Chiba K. The alteration of LBX1 expression is associated with changes in parameters related to energy metabolism in mice. PLoS One 2024; 19:e0308445. [PMID: 39110747 PMCID: PMC11305531 DOI: 10.1371/journal.pone.0308445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The LBX1 gene is located near a single nucleotide polymorphism that is highly associated with susceptibility to adolescent idiopathic scoliosis and is considered one of the strongest candidate genes involved in the pathogenesis of this condition. We have previously found that loss of LBX1 from skeletal muscle results not only in spinal deformity but also in lean body mass, suggesting a potential role for LBX1 in energy metabolism. The purpose of the present study was to test this hypothesis by analyzing the phenotype of mice lacking LBX1 in skeletal muscle with a focus on energy metabolism. We found that loss of LBX1 rendered mice more resistant to high-fat diet-induced obesity, despite comparable food intake between mutant and control mice. Notably, the mutant mice exhibited improved glucose tolerance, increased maximal aerobic capacity, and higher core body temperature compared to control mice. In addition, we found that overexpression of LBX1 decreased glucose uptake in cultured cells. Taken together, our data show that LBX1 functions as a negative regulator of energy metabolism and that loss of LBX1 from skeletal muscle increases systemic energy expenditure resulting in lean body mass. The present study thus suggests a potential association between LBX1 dysfunction and lean body mass in patients with adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Takahiro Nakagawa
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuki Kagami
- Division of Cardiovascular Medicine, Department of Internal Medicine I, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shinya Kondo
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masashi Isaji
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Matsuhashi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuya Kitamura
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takeshi Adachi
- Division of Cardiovascular Medicine, Department of Internal Medicine I, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
2
|
Terhune E, Heyn P, Piper C, Wethey C, Monley A, Cuevas M, Hadley Miller N. Association between genetic polymorphisms and risk of adolescent idiopathic scoliosis in case-control studies: a systematic review. J Med Genet 2024; 61:196-206. [PMID: 37696603 DOI: 10.1136/jmg-2022-108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/09/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Adolescent idiopathic scoliosis (AIS) is a structural lateral spinal curvature of ≥10° with rotation. Approximately 2%-3% of children across populations are affected with AIS, and this condition is responsible for ~$3 billion in costs within the USA. Although AIS is believed to have a strong genetic contribution, clinical translation of identified genetic variants has stalled. METHODS The databases MEDLINE (via PubMed), Embase, Google Scholar and Ovid MEDLINE were searched and limited to articles in English. Title and abstract, full-text and data extraction screening was conducted through Covidence, followed by data transfer to a custom REDCap database. Studies containing variant-level data using genome-wide methodology as well as validation studies of genome-wide methods were considered. Quality assessment was conducted using Q-Genie. RESULTS 33 studies were included, including 9 genome-wide association studies, 4 whole exome sequencing and 20 validation studies. Combined, these studies included data from >35,000 cases and >67,000 controls, not including validation cohorts. Additionally, results from six meta-analyses containing novel cohorts were also reported. All included study cohorts were from populations of primarily East Asian or Caucasian descent. Quality assessment found that overall study quality was high and control group selection was moderate. The highest number of reported associations were in single nucleotide polymorphisms (SNPs) in or near LBX1, LBX1-AS1, GPR126/ADGRG6 or BNC2. CONCLUSION AIS risk may be influenced by specific SNPs, particularly those in/near LBX1 and GPR126. Translatability of study findings is unknown due to an underrepresentation of most ethnic groups as well as few identified genome-wide studies. Further studies may benefit from increased cohort diversity and thorough evaluation of control cohort groups.
Collapse
Affiliation(s)
- Elizabeth Terhune
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Patricia Heyn
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christi Piper
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cambria Wethey
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna Monley
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa Cuevas
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nancy Hadley Miller
- Department of Orthopedics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Jiang X, Liu F, Zhang M, Hu W, Zhao Y, Xia B, Xu K. Advances in genetic factors of adolescent idiopathic scoliosis: a bibliometric analysis. Front Pediatr 2024; 11:1301137. [PMID: 38322243 PMCID: PMC10845672 DOI: 10.3389/fped.2023.1301137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/11/2023] [Indexed: 02/08/2024] Open
Abstract
Objective This study offers a bibliometric analysis of the current situation, hotspots, and cutting-edge domains of genetic factors of adolescent idiopathic scoliosis (AIS). Methods All publications related to genetic factors of AIS from January 1, 1992, to February 28, 2023, were searched from the Web of Science. CiteSpace software was employed for bibliometric analysis, collecting information about countries, institutions, authors, journals, and keywords of each article. Results A cumulative number of 308 articles have been ascertained. Since 2006, publications relating to genetic factors of AIS have significantly increased. China leads in both productivity and influence in this area, with the Chinese Academy of Medical Sciences being the most productive institution. The most prolific scholars in this field are Y. Qiu and Z. Z. Zhu. The publications that contributed the most were from Spine and European Spine Journal. The most prominent keywords in the genetic factors of AIS were "fibrillin gene", "menarche", "calmodulin", "estrogen receptor gene", "linkage analysis", "disc degeneration", "bone mineral density", "melatonin signaling dysfunction", "collagen gene", "mesenchymal stem cell", "LBX1", "promoter polymorphism", "Bone formation", "cerebrospinal fluid flow" and "extracellular matrix". Conclusion This analysis provides the frontiers and trends of genetic factors in AIS, including relevant research, partners, institutions and countries.
Collapse
Affiliation(s)
| | - Fuyun Liu
- Department of Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | | | | | | | | | | |
Collapse
|
4
|
You X, Wu D, Chen A, Zhou X, Fan H, Jiang Y. Asymmetric expression of PIEZO2 in paraspinal muscles of adolescent idiopathic scoliosis. J Back Musculoskelet Rehabil 2024; 37:137-146. [PMID: 37840481 DOI: 10.3233/bmr-220440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Muscle imbalance has long been recognized as one of the possible pathogeneses for adolescent idiopathic scoliosis (AIS). PIEZO2, the susceptibility gene of AIS, has been identified to play an important role in neuromuscular activities. OBJECTIVE This study aims to compare the mRNA expression of PIEZO2 between concave and convex paraspinal muscles of AIS patients and to identify the relationship between the ratio of PIEZO2 expression and curve magnitude. METHODS Twenty female AIS patients (right thoracic curve) who underwent spinal correction surgery were divided into moderate (n= 12) and severe (⩾ 70 degrees) curve groups (n= 8). The morphology of the paraspinal muscles was assessed with spinal MRI. Multifidus specimens were collected during surgical operations from the concave and convex sides of the apical region, and mRNA expression of the PIEZO2 gene was compared between sides. The localization of PIEZO2 protein expression was confirmed with the markers PAX7 and PAX3, and the percentage of PIEZO2+ cells was also investigated. RESULTS In the moderate curve group, fatty infiltration in the deep paraspinal muscle was significantly higher on the concave side than on the convex side. There were no differences in deep muscle area, superficial muscle area, or fatty infiltration of superficial paraspinal muscle. The mRNA expression of PIEZO2 was significantly increased on the concave side, and the asymmetric expression predominantly occurred in moderate curves rather than severe ones. PIEZO2 was expressed on satellite cells instead of fibers of the muscle spindle. The percent of PIEZO2+PAX7+ cells in myofibers was significantly higher on the concave side in the moderate curve group, but not in the severe curve group. CONCLUSIONS Asymmetric morphological changes occur in the deep paraspinal muscles of AIS. The PIEZO2 is asymmetrically expressed in the multifidus muscle and is preferentially expressed in satellite cells.
Collapse
Affiliation(s)
- Xuanhe You
- Orthopedic Research Institute, Department of Orthopedic Surgery, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Diwei Wu
- Orthopedic Research Institute, Department of Orthopedic Surgery, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Anjing Chen
- Orthopedic Research Institute, Department of Orthopedic Surgery, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinran Zhou
- West China Biobanks, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Haiquan Fan
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| | - Yang Jiang
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| |
Collapse
|
5
|
Marie-Hardy L, Courtin T, Pascal-Moussellard H, Zakine S, Brice A. The Whole-Exome Sequencing of a Cohort of 19 Families with Adolescent Idiopathic Scoliosis (AIS): Candidate Pathways. Genes (Basel) 2023; 14:2094. [PMID: 38003035 PMCID: PMC10671325 DOI: 10.3390/genes14112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
A significant genetic involvement has been known for decades to exist in adolescent idiopathic scoliosis (AIS), a spine deformity affecting 1-3% of the world population. However, though biomechanical and endocrinological theories have emerged, no clear pathophysiological explanation has been found. Data from the whole-exome sequencing performed on 113 individuals in 19 multi-generational families with AIS have been filtered and analyzed via interaction pathways and functional category analysis (Varaft, Bingo and Panther). The subsequent list of 2566 variants has been compared to the variants already described in the literature, with an 18% match rate. The familial analysis in two families reveals mutations in the BICD2 gene, supporting the involvement of the muscular system in AIS etiology. The cellular component analysis revealed significant enrichment in myosin-related and neuronal activity-related categories. All together, these results reinforce the suspected role of the neuronal and muscular systems, highlighting the calmodulin pathway and suggesting a role of DNA-binding activities in AIS physiopathology.
Collapse
Affiliation(s)
- Laura Marie-Hardy
- Brain Institute of Paris, 43-87 bd de l’Hôpital, 75013 Paris, France
| | - Thomas Courtin
- Brain Institute of Paris, 43-87 bd de l’Hôpital, 75013 Paris, France
| | | | - Serge Zakine
- Clinique Maussins Nollet, Ramsay Génerale de Santé, 67 Rue de Romainville, 75019 Paris, France;
| | - Alexis Brice
- Brain Institute of Paris, 43-87 bd de l’Hôpital, 75013 Paris, France
| |
Collapse
|
6
|
Matsuhashi Y, Horiuchi K, Nakagawa T, Takahashi Y, Imabayashi H, Hosogane N, Watanabe K, Matsumoto M, Chiba K. Abrogation of LBX1 in skeletal muscle results in hypoplastic limbs and progressive kyphosis in mice. J Orthop Res 2023; 41:884-890. [PMID: 35856296 DOI: 10.1002/jor.25417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023]
Abstract
LBX1 is a gene located near a single-nucleotide polymorphism, rs11190870, which is highly associated with susceptibility to adolescent idiopathic scoliosis. However, the potential involvement of LBX1 in the etiology of this spinal deformity has not been elucidated. In this study, we aimed to determine whether the lack of LBX1 in skeletal muscle results in spinal deformities in mice. We generated mutant mice in which the Lbx1 allele was conditionally excised under the control of a human muscle actin promoter. Mice lacking LBX1 from the skeletal muscle were fertile and available. The mutant mice had hypoplastic forelimbs and weighed less than control animals, but otherwise, there were no overt anomalies. The mice did not exhibit a scoliosis-like spinal deformity; however, they developed moderate kyphosis as they grew old. These observations indicated that LBX1 is involved in limb development and potentially in the maintenance of spinal curvature/alignment in mice.
Collapse
Affiliation(s)
- Yusuke Matsuhashi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takahiro Nakagawa
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yohei Takahashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideaki Imabayashi
- Department of Orthopedic Surgery, Saiseikai Central Hospital, Tokyo, Japan
| | - Naobumi Hosogane
- Department of Orthopedic Surgery, Kyorin University, Mitaka, Tokyo, Japan
| | - Kota Watanabe
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
7
|
Janusz P, Tokłowicz M, Andrusiewicz M, Kotwicka M, Kotwicki T. Association of LBX1 Gene Methylation Level with Disease Severity in Patients with Idiopathic Scoliosis: Study on Deep Paravertebral Muscles. Genes (Basel) 2022; 13:genes13091556. [PMID: 36140724 PMCID: PMC9498322 DOI: 10.3390/genes13091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic scoliosis (IS) is a multifactorial disease with a genetic background. The association of Ladybird Homeobox 1 (LBX1) polymorphisms with IS has been proven in multiple studies. However, the epigenetic mechanisms have not been evaluated. This study aimed to evaluate the LBX1 methylation level in deep paravertebral muscles in order to analyze its association with IS occurrence and/or IS severity. Fifty-seven IS patients and twenty non-IS patients were examined for the paravertebral muscles’ methylation level of the LBX1 promoter region. There was no significant difference in methylation level within paravertebral muscles between patients vs. controls, except for one CpG site. The comparison of the paravertebral muscles’ LBX1 promoter region methylation level between patients with a major curve angle of ≤70° vs. >70° revealed significantly higher methylation levels in 17 of 23 analyzed CpG sequences at the convex side of the curvature in patients with a major curve angle of >70° for the reverse strand promoter region. The association between LBX1 promoter methylation and IS severity was demonstrated. In patients with severe IS, the deep paravertebral muscles show an asymmetric LBX1 promoter region methylation level, higher at the convex scoliosis side, which reveals the role of locally acting factors in IS progression.
Collapse
Affiliation(s)
- Piotr Janusz
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, 28 Czerwca 1956 r. Street 135/147, 61-545 Poznań, Poland
| | - Małgorzata Tokłowicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8547167
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland
| | - Tomasz Kotwicki
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, 28 Czerwca 1956 r. Street 135/147, 61-545 Poznań, Poland
| |
Collapse
|
8
|
De Salvatore S, Ruzzini L, Longo UG, Marino M, Greco A, Piergentili I, Costici PF, Denaro V. Exploring the association between specific genes and the onset of idiopathic scoliosis: a systematic review. BMC Med Genomics 2022; 15:115. [PMID: 35590413 PMCID: PMC9118580 DOI: 10.1186/s12920-022-01272-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Idiopathic Scoliosis (IS) is the most common spinal deformity in adolescents, accounting for 80% of all spinal deformities. However, the etiology remains uncertain in most cases, being identified as Adolescent Idiopathic Scoliosis (AIS). IS treatments range from observation and sport to bracing or surgery. Several risk factors including sex and familiarity, have been linked with IS. Although there are still many uncertainties regarding the cause of this pathology, several studies report a greater incidence of the defect in families in which at least one other first degree relative is affected. This study systematically reviews the available literature to identify the most significant genes or variants related to the development and onset of IS. Methods The research question was formulated using a PIOS approach on the following databases: Medline, Embase, Cinahl, Scopus, Web of Science and Google Scholar. The search was performed from July to August 2021, and articles from the inception of the database to August 2021 were searched. Results 24 of the 919 initially identified studies were included in the present review. The 24 included studies observed a total of 16,316 cases and 81,567 controls. All the considered studies stated either the affected gene and/or specific SNPs. CHD7, SH2B1, ESR, CALM1, LBX1, MATN1, CHL1, FBN1 and FBN2 genes were associated with IS development. Conclusions Although association can be found in some candidate genes the field of research regarding genetic association with the onset of IS still requires more information.
Collapse
Affiliation(s)
- Sergio De Salvatore
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Laura Ruzzini
- Department of Orthopedics, Children's Hospital Bambino Gesù, 00165, Palidoro, Rome, Italy
| | - Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy. .,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
| | - Martina Marino
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Alessandra Greco
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Ilaria Piergentili
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Pier Francesco Costici
- Department of Orthopedics, Children's Hospital Bambino Gesù, 00165, Palidoro, Rome, Italy
| | - Vincenzo Denaro
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.,Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|