1
|
Cerón SM, Pérez DA, Montaño JH, Acosta MA. First report of PURA syndrome in a Colombian patient with de novo missense variant c.692T>C (p.Phe231Ser). BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2024; 44:441-450. [PMID: 39531550 DOI: 10.7705/biomedica.7286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/13/2024] [Indexed: 11/16/2024]
Abstract
We present the first documented case of PURA syndrome in Colombia. This rare neurological disease results from mutations in the PURA gene located on chromosome 5, leading to haploinsufficiency of the PUR-α protein. This protein is essential for early brain development and neuronal function. The patient, a seven-years-old boy, started showing dystonic hand movements at 14 days of age; at six, he had neurodevelopmental delay, generalized hypotonia, frequent episodes of apnea, and swallowing difficulties. Although other conditions were initially considered, such as Duchenne muscular dystrophy and neuronal ceroid lipofuscinosis, a whole exome sequencing revealed the pathogenic variant c.692T>C (p.Phe231Ser) in the exon 1 of the PURA gene, not previously reported in other patients. With this finding, we adopted a comprehensive management approach addressing the patient’s characteristics and alterations. Since the PURA syndrome is not on the list of orphan/rare diseases recognized by the Colombian Ministerio de Salud y Protección Social, we hope our report will contribute to its official recognition. The case shows the importance of considering rare diagnoses in patients with uncommon neurological symptoms, underlining the usefulness of genomic sequencing in diagnosis and the need for collaboration to optimize healthcare for patients with PURA syndrome and similar diseases.
Collapse
Affiliation(s)
| | | | | | - María Amparo Acosta
- Departamento de Pediatría, Facultad de Ciencias de la Salud, Universidad del Cauca, Popayán, Colombia; Hospital Universitario San José, Popayán, Cauca, Colombia
| |
Collapse
|
2
|
Broniarek I, Niewiadomska D, Sobczak K. Contribution of DNA/RNA Structures Formed by Expanded CGG/CCG Repeats Within the FMR1 Locus in the Pathogenesis of Fragile X-Associated Disorders. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1874. [PMID: 39523485 DOI: 10.1002/wrna.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Repeat expansion disorders (REDs) encompass over 50 inherited neurological disorders and are characterized by the expansion of short tandem nucleotide repeats beyond a specific repeat length. Particularly intriguing among these are multiple fragile X-associated disorders (FXds), which arise from an expansion of CGG repeats in the 5' untranslated region of the FMR1 gene. Despite arising from repeat expansions in the same gene, the clinical manifestations of FXds vary widely, encompassing developmental delays, parkinsonism, dementia, and an increased risk of infertility. FXds also exhibit molecular mechanisms observed in other REDs, that is, gene- and protein-loss-of-function and RNA- and protein-gain-of-function. The heterogeneity of phenotypes and pathomechanisms in FXds results from the different lengths of the CGG tract. As the number of repeats increases, the structures formed by RNA and DNA fragments containing CGG repeats change significantly, contributing to the diversity of FXd phenotypes and mechanisms. In this review, we discuss the role of RNA and DNA structures formed by expanded CGG repeats in driving FXd pathogenesis and how the genetic instability of CGG repeats is mediated by the complex interplay between transcription, DNA replication, and repair. We also discuss therapeutic strategies, including small molecules, antisense oligonucleotides, and CRISPR-Cas systems, that target toxic RNA and DNA involved in the development of FXds.
Collapse
Affiliation(s)
- Izabela Broniarek
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Wu CC, Meyer DN, Haimbaugh A, Baker TR. Implications of Lead (Pb)-Induced Transcriptomic and Phenotypic Alterations in the Aged Zebrafish ( Danio rerio). TOXICS 2024; 12:745. [PMID: 39453165 PMCID: PMC11511149 DOI: 10.3390/toxics12100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Lead (Pb) is a well-known neurotoxin with established adverse effects on the neurological functions of children and younger adults, including motor, learning, and memory abilities. However, its potential impact on older adults has received less attention. Using the zebrafish model, our study aims to characterize the dose-response relationship between environmentally relevant Pb exposure levels and their effects on changes in behavior and transcriptomics during the geriatric periods. We exposed two-year-old zebrafish to waterborne lead acetate (1, 10, 100, 1000, or 10,000 µg/L) or a vehicle (DMSO) for 5 days. While lower concentrations (1-100 µg/L) reflect environmentally relevant Pb levels, higher concentrations (1000-10,000 µg/L) were included to assess acute toxicity under extreme exposure scenarios. We conducted adult behavior assessment to evaluate the locomotor activity following exposure. The same individual fish were subsequently sacrificed for brain dissection after a day of recovery in the aquatic system. RNA extraction and sequencing were then performed to evaluate the Pb-induced transcriptomic changes. Higher (1000-10,000 ug/L) Pb levels induced hyperactive locomotor patterns in aged zebrafish, while lower (10-100 ug/L) Pb levels resulted in the lowest locomotor activity compared to the control group. Exposure to 100 µg/L led to the highest number of differentially expressed genes (DEGs), while 10,000 µg/L induced larger fold changes in both directions. The neurological pathways impacted by Pb exposure include functions related to neurotransmission, such as cytoskeletal regulation and synaptogenesis, and oxidative stress response, such as mitochondrial dysfunction and downregulation of heat shock protein genes. These findings emphasize a U-shape dose-response relationship with Pb concentrations in locomotor activity and transcriptomic changes in the aging brain.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001, Daxue Rd, East District, Hsinchu City 300093, Taiwan;
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
| | - Danielle N. Meyer
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Alex Haimbaugh
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Tracie R. Baker
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
- UF Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Ramdas S, Beeson D, Dong YY. Congenital myasthenic syndromes: increasingly complex. Curr Opin Neurol 2024; 37:493-501. [PMID: 39051439 PMCID: PMC11377046 DOI: 10.1097/wco.0000000000001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW Congenital myasthenia syndromes (CMS) are treatable, inherited disorders affecting neuromuscular transmission. We highlight that the involvement of an increasing number of proteins is making the understanding of the disease mechanisms and potential treatments progressively more complex. RECENT FINDINGS Although early studies identified mutations of proteins directly involved in synaptic transmission at the neuromuscular junction, recently, next-generation sequencing has facilitated the identification of many novel mutations in genes that encode proteins that have a far wider expression profile, some even ubiquitously expressed, but whose defective function leads to impaired neuromuscular transmission. Unsurprisingly, mutations in these genes often causes a wider phenotypic disease spectrum where defective neuromuscular transmission forms only one component. This has implications for the management of CMS patients. SUMMARY Given the widening nonneuromuscular junction phenotypes in the newly identified forms of CMS, new therapies need to include disease-modifying approaches that address not only neuromuscular weakness but also the multisystem involvement. Whilst the current treatments for CMS are highly effective for many subtypes there remains, in a proportion of CMS patients, an unmet need for more efficacious therapies.
Collapse
Affiliation(s)
- Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford
- Department of Paediatric Neurology, John Radcliffe Hospital
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS
| | - Yin Yao Dong
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS
| |
Collapse
|
5
|
Hayden AN, Brandel KL, Pietryk EW, Merlau PR, Vijayakumar P, Leptich EJ, Gaytan ES, Williams MI, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening reveals a conserved residue in Y-Box RNA-binding protein required for associative learning and memory in C. elegans. PLoS Genet 2024; 20:e1011443. [PMID: 39423228 PMCID: PMC11524487 DOI: 10.1371/journal.pgen.1011443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/30/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to promote memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N. Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katie L. Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Edward W. Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul R. Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Priyadharshini Vijayakumar
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Emily J. Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Elizabeth S. Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Meredith I. Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie W. Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Rice University, Houston, Texas, United States of America
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Rachel N. Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
6
|
Colombo RB, Maxit C, Martinelli D, Anderson M, Masone D, Mayorga L. PURA and GLUT1: Sweet partners for brain health. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167261. [PMID: 38777099 DOI: 10.1016/j.bbadis.2024.167261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
PURA, also known as Pur-alpha, is an evolutionarily conserved DNA/RNA-binding protein crucial for various cellular processes, including DNA replication, transcriptional regulation, and translational control. Comprising three PUR domains, it engages with nucleic acids and has a role in protein-protein interactions. The manifestation of PURA syndrome, arising from mutations in the PURA gene, presents neurologically with developmental delay, hypotonia, and seizures. In our prior work from 2018, we highlighted the unique case of a PURA patient displaying hypoglycorrhachia, suggesting a potential association with GLUT1 dysfunction in this syndrome. In this current study, we expand the patient cohort with PURA mutations exhibiting hypoglycorrhachia and aim to unravel the molecular basis of this phenomenon. We established an in vitro model in HeLa cells to modulate PURA expression and investigated GLUT1 function and expression. Our findings indicate that PURA levels directly impact glucose uptake through the functioning of GLUT1, without influencing significantly GLUT1 expression. Moreover, our study reveals evidence for a possible physical interaction between PURA and GLUT1, demonstrated by colocalization and co-immunoprecipitation of both proteins. Computational analyses, employing molecular dynamics, further corroborates these findings, demonstrating that PURA:GLUT1 interactions are plausible, and that the stability of the complex is altered when PURA is truncated and/or mutated. In conclusion, our results suggest that PURA plays a pivotal role in driving the function of GLUT1 for glucose uptake, potentially forming a regulatory complex. Additional investigations are warranted to elucidate the precise mechanisms governing this complex and its significance in ensuring proper GLUT1 function.
Collapse
Affiliation(s)
- Rocío B Colombo
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad De Química, Bioquímica y Farmacia, Universidad Nacional De San Luis, San Luis, Argentina
| | - Clarisa Maxit
- Servicio de Neurología infantil, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mel Anderson
- PURA Foundation Australia, Plenty Victoria, Australia
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Lía Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Neurología Infantojuvenil (Neuroinfan), Mendoza, Argentina.
| |
Collapse
|
7
|
Xiao B, Dai W, Zhan Y, Qiu W, Zhang H, Liu D, Xu N, Yu Y. Genome-wide epigenetic signatures facilitated the variant classification of the PURA gene and uncovered the pathomechanism of PURA-related neurodevelopmental disorders. Genet Med 2024; 26:101167. [PMID: 38770750 DOI: 10.1016/j.gim.2024.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
PURPOSE Rare genetic variants in the PURA gene cause the PURA-related neurodevelopmental disorder (PURA-NDD), characterized by neonatal abnormalities and developmental delay. Using genome-wide DNA methylation analysis on patients with PURA variants, we aim to establish a PURA-NDD-specific methylation profile and provide further insights on the molecular basis of the PURA-NDD. METHODS Twenty three individuals (including 12 unpublished) carrying PURA variants were enrolled. We conducted the Illumina Infinium EPIC microarray analysis in 17 PURA-NDD individuals. In vitro experiments were performed to examine how PURA variants affect Pur-a expression. RESULTS Additional phenotypes in 12 newly identified patients were described in this study. Genome-wide DNA methylation analysis unveiled distinctive methylation profiles to PURA-NDD, and the established classifier can reclassify PURA variants of uncertain significance. Patients bearing PURA hapoloinsufficient and missense variants have comparable DNA methylation profiles, and cells expressing these PURA variants showed consistent Pur-a downregulation, suggesting a haploinsufficiency mechanism. CONCLUSION Patients with PURA-NDD exhibit a specific episignature, which has potential to aid identification and diagnosis of PURA-NDD patients and offer implications for further functional investigations.
Collapse
Affiliation(s)
- Bing Xiao
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Weiqian Dai
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yongkun Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China
| | | | - Na Xu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China.
| | - Yongguo Yu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai, China.
| |
Collapse
|
8
|
Spildrejorde M, Leithaug M, Samara A, Aass HCD, Sharma A, Acharya G, Nordeng H, Gervin K, Lyle R. Citalopram exposure of hESCs during neuronal differentiation identifies dysregulated genes involved in neurodevelopment and depression. Front Cell Dev Biol 2024; 12:1428538. [PMID: 39055655 PMCID: PMC11269147 DOI: 10.3389/fcell.2024.1428538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely used antidepressants during pregnancy. However, the effects of prenatal exposure to citalopram on neurodevelopment remain poorly understood. We aimed to investigate the impact of citalopram exposure on early neuronal differentiation of human embryonic stem cells using a multi-omics approach. Citalopram induced time- and dose-dependent effects on gene expression and DNA methylation of genes involved in neurodevelopmental processes or linked to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal progenitors and neuroblasts, where exposure to citalopram subtly influenced progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal differentiation. Our findings suggest that citalopram exposure during early neuronal differentiation influences gene expression patterns associated with neurodevelopment and depression, providing insights into its potential neurodevelopmental impact and highlighting the importance of further research to understand the long-term consequences of prenatal SSRI exposure.
Collapse
Affiliation(s)
- Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Magnus Leithaug
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Biomaterials, FUTURE Center for Functional Tissue Reconstruction, University of Oslo, Oslo, Norway
| | - Hans Christian D. Aass
- The Flow Cytometry Core Facility, Department of Medical Biochemistry, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Solna, Sweden
- Center for Fetal Medicine, Karolinska University Hospital, Solna, Sweden
| | - Hedvig Nordeng
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
9
|
Inoue T, Bao X, Kageyama T, Sugino Y, Sekito S, Miyachi S, Sasaki T, Getzenberg R. Purine-Rich Element Binding Protein Alpha, a Nuclear Matrix Protein, Has a Role in Prostate Cancer Progression. Int J Mol Sci 2024; 25:6911. [PMID: 39000020 PMCID: PMC11241608 DOI: 10.3390/ijms25136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Solid tumors as well as leukemias and lymphomas show striking changes in nuclear structure including nuclear size and shape, the number and size of nucleoli, and chromatin texture. These alterations have been used in cancer diagnosis and might be related to the altered functional properties of cancer cells. The nuclear matrix (NM) represents the structural composition of the nucleus and consists of nuclear lamins and pore complexes, an internal ribonucleic protein network, and residual nucleoli. In the nuclear microenvironment, the NM is associated with multi-protein complexes, such as basal transcription factors, signaling proteins, histone-modifying factors, and chromatin remodeling machinery directly or indirectly through scaffolding proteins. Therefore, alterations in the composition of NM could result in altered DNA topology and changes in the interaction of various genes, which could then participate in a cascade of the cancer process. Using an androgen-sensitive prostate cancer cell line, LNCaP, and its androgen-independent derivative, LN96, conventional 2D-proteomic analysis of the NM proteins revealed that purine-rich element binding protein alpha (PURα) was detected in the NM proteins and differentially expressed between the cell lines. In this article, we will review the potential role of the molecule in prostate cancer.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Xin Bao
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Takumi Kageyama
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Yusuke Sugino
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Sho Sekito
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Shiori Miyachi
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Robert Getzenberg
- Dr. Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
10
|
Hayden AN, Brandel KL, Merlau PR, Vijayakumar P, Leptich EJ, Pietryk EW, Gaytan ES, Ni CW, Chao HT, Rosenfeld JA, Arey RN. Behavioral screening of conserved RNA-binding proteins reveals CEY-1/YBX RNA-binding protein dysfunction leads to impairments in memory and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574402. [PMID: 38260399 PMCID: PMC10802296 DOI: 10.1101/2024.01.05.574402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to increase memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.
Collapse
Affiliation(s)
- Ashley N Hayden
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Katie L Brandel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Paul R Merlau
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | | | - Emily J Leptich
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
| | - Edward W Pietryk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
| | - Elizabeth S Gaytan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, TX, 77030
| | - Connie W Ni
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Neuroscience, Rice University, Houston, TX 77005
| | - Hsiao-Tuan Chao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, 77030
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030
- Baylor Genetics Laboratories, Houston, TX 77021
| | - Rachel N Arey
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
11
|
Proske M, Janowski R, Bacher S, Kang HS, Monecke T, Koehler T, Hutten S, Tretter J, Crois A, Molitor L, Varela-Rial A, Fino R, Donati E, De Fabritiis G, Dormann D, Sattler M, Niessing D. PURA syndrome-causing mutations impair PUR-domain integrity and affect P-body association. eLife 2024; 13:RP93561. [PMID: 38655849 PMCID: PMC11042805 DOI: 10.7554/elife.93561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.
Collapse
Affiliation(s)
- Marcel Proske
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz MunichNeuherbergGermany
- Institute of Pharmaceutical Biotechnology, Ulm UniversityUlmGermany
| | - Robert Janowski
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz MunichNeuherbergGermany
| | - Sabrina Bacher
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz MunichNeuherbergGermany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz MunichNeuherbergGermany
- Chemistry Department, Biomolecular NMR and Center for Integrated Protein Science Munich, Technical University of MunichMainzGermany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm UniversityUlmGermany
| | - Tony Koehler
- Institute of Pharmaceutical Biotechnology, Ulm UniversityUlmGermany
| | - Saskia Hutten
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU)MainzGermany
| | - Jana Tretter
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz MunichNeuherbergGermany
| | - Anna Crois
- Institute of Pharmaceutical Biotechnology, Ulm UniversityUlmGermany
| | - Lena Molitor
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz MunichNeuherbergGermany
| | | | | | | | | | - Dorothee Dormann
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU)MainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz MunichNeuherbergGermany
- Chemistry Department, Biomolecular NMR and Center for Integrated Protein Science Munich, Technical University of MunichMainzGermany
| | - Dierk Niessing
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz MunichNeuherbergGermany
- Institute of Pharmaceutical Biotechnology, Ulm UniversityUlmGermany
| |
Collapse
|
12
|
Shrestha R, Karunadasa S, Grismer TS, Reyes AV, Xu SL. SECRET AGENT O-GlcNAcylates Hundreds of Proteins Involved in Diverse Cellular Processes in Arabidopsis. Mol Cell Proteomics 2024; 23:100732. [PMID: 38336175 PMCID: PMC10979276 DOI: 10.1016/j.mcpro.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
O-GlcNAcylation is a critical post-translational modification of proteins observed in both plants and animals and plays a key role in growth and development. While considerable knowledge exists about over 3000 substrates in animals, our understanding of this modification in plants remains limited. Unlike animals, plants possess two putative homologs: SECRET AGENT (SEC) and SPINDLY, with SPINDLY also exhibiting O-fucosylation activity. To investigate the role of SEC as a major O-GlcNAc transferase in plants, we utilized lectin-weak affinity chromatography enrichment and stable isotope labeling in Arabidopsis labeling, quantifying at both MS1 and MS2 levels. Our findings reveal a significant reduction in O-GlcNAc levels in the sec mutant, indicating the critical role of SEC in mediating O-GlcNAcylation. Through a comprehensive approach, combining higher-energy collision dissociation and electron-transfer high-energy collision dissociation fragmentation with substantial fractionations, we expanded our GlcNAc profiling, identifying 436 O-GlcNAc targets, including 227 new targets. The targets span diverse cellular processes, suggesting broad regulatory functions of O-GlcNAcylation. The expanded targets also enabled exploration of crosstalk between O-GlcNAcylation and O-fucosylation. We also examined electron-transfer high-energy collision dissociation fragmentation for site assignment. This report advances our understanding of O-GlcNAcylation in plants, facilitating further research in this field.
Collapse
Affiliation(s)
- Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - TaraBryn S Grismer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA.
| |
Collapse
|
13
|
Mora-Martinez S, Castaño-Giraldo N, Nati-Castillo HA, Barahona Machado L, Mora Arbeláez T, Gordillo-Gonzalez G, Izquierdo-Condoy JS. Case Report: Expanding the phenotypic spectrum of PURA syndrome in South America with the first presentation of concurrent vitiligo. Front Pediatr 2024; 12:1323014. [PMID: 38606370 PMCID: PMC11007168 DOI: 10.3389/fped.2024.1323014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Purine-rich element-binding protein A (PURα) regulates multiple cellular processes. Rare de novo mutations can lead to PURA syndrome, which manifests as a range of multisystem disturbances, including hypotonia, global developmental delay, swallowing disorders, apnea, seizures, visual impairments, and congenital heart defects. We report the case of a Colombian girl with no relevant medical history who was diagnosed with PURA syndrome at the age of 7, due to a heterozygous mutation located at 5q31.2, specifically the variant c.697_699del (p.Phe233del), in exon 1 of the PURA gene. This represents the first documented case of PURA syndrome in South America and the first association of the syndrome with vitiligo, thereby expanding the known phenotypic spectrum. In addition to enriching the literature concerning the phenotypic diversity of PURA syndrome, this report highlights, for the first time, the diagnostic challenges faced by developing countries like Colombia in diagnosing high-burden rare diseases such as PURA syndrome.
Collapse
Affiliation(s)
- S. Mora-Martinez
- Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | | | | | | | | | - G. Gordillo-Gonzalez
- Clinical Genetics Department, Universidad Cooperativa de Colombia, Santa Marta, Colombia
| | | |
Collapse
|
14
|
Foote AT, Kelm RJ. Aromatic Residues Dictate the Transcriptional Repressor and Single-Stranded DNA Binding Activities of Purine-Rich Element Binding Protein B. Biochemistry 2023; 62:2597-2610. [PMID: 37556352 DOI: 10.1021/acs.biochem.3c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Purine-rich element binding protein B (Purβ) is a single-stranded DNA (ssDNA) and RNA-binding protein that functions as a transcriptional repressor of genes encoding certain muscle-restricted contractile proteins in the setting of cellular stress or tissue injury. A prior report from our laboratory implicated specific basic amino acid residues in the physical and functional interaction of Purβ with the smooth muscle-α actin gene (Acta2) promoter. Independent structural analysis of fruit fly Purα uncovered a role for several aromatic residues in the binding of this related protein to ssDNA. Herein, we examine the functional importance of a comparable set of hydrophobic residues that are positionally conserved in the repeat I (Y59), II (F155), and III (F256) domains of murine Purβ. Site-directed Y/F to alanine substitutions were engineered, and the resultant Purβ point mutants were tested in various biochemical and cell-based assays. None of the mutations affected the cellular expression, structural stability, or dimerization capacity of Purβ. However, the Y59A and F155A mutants demonstrated weaker Acta2 repressor activity in transfected fibroblasts and reduced binding affinity for the purine-rich strand of an Acta2 cis-regulatory element in vitro. Mutation of Y59 and F155 also altered the multisite binding properties of Purβ for ssDNA and diminished the interaction of Purβ with Y-box binding protein 1, a co-repressor of Acta2. Collectively, these findings suggest that some of the same aromatic residues, which govern the specific and high-affinity binding of Purβ to ssDNA, also mediate certain heterotypic protein interactions underlying the Acta2 repressor function of Purβ.
Collapse
Affiliation(s)
- Andrea T Foote
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont 05405, United States
| | - Robert J Kelm
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont 05405, United States
- Department of Biochemistry, University of Vermont, Larner College of Medicine, Burlington, Vermont 05405, United States
| |
Collapse
|
15
|
Chen F, Zhang W, Xu S, Zhang H, Chen L, Chen C, Zhu Z, Zhao Y. Discovery and validation of PURA as a transcription target of 20(S)-protopanaxadiol: Implications for the treatment of cognitive dysfunction. J Ginseng Res 2023; 47:662-671. [PMID: 37720572 PMCID: PMC10499581 DOI: 10.1016/j.jgr.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 09/19/2023] Open
Abstract
Background 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, has prominent benefits for the central nervous system, especially in improving learning and memory. However, its transcriptional targets in brain tissue remain unknown. Methods In this study, we first used mass spectrometry-based drug affinity responsive target stability (DARTS) to identify the potential proteins of ginsenosides and intersected them with the transcription factor library. Second, the transcription factor PURA was confirmed as a target of PPD by biolayer interferometry (BLI) and molecular docking. Next, the effect of PPD on the transcriptional levels of target genes of PURA in brain tissues was determined by qRT-PCR. Finally, bioinformatics analysis was used to analyze the potential biological features of these target proteins. Results The results showed three overlapping transcription factors between the proteomics of DARTS and transcription factor library. BLI analysis further showed that PPD had a higher direct interaction with PURA than parent ginsenosides. Subsequently, BLI kinetic analysis, molecular docking, and mutations in key amino acids of PURA indicated that PPD specifically bound to PURA. The results of qRT-PCR showed that PPD could increase the transcription levels of PURA target genes in brain. Finally, bioinformatics analysis showed that these target proteins were involved in learning and memory function. Conclusion The above-mentioned findings indicate that PURA is a transcription target of PPD in brain, and PPD upregulate the transcription levels of target genes related to cognitive dysfunction by binding PURA, which could provide a chemical and biological basis for the study of treating cognitive impairment by targeting PURA.
Collapse
Affiliation(s)
- Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cuihua Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Noda Y, Kido J, Misumi Y, Sugawara K, Ohori S, Fujita A, Matsumoto N, Ueda M, Nakamura K. Heterozygous c.175C>T variant in PURA gene causes severe developmental delay. Clin Case Rep 2023; 11:e7779. [PMID: 37692153 PMCID: PMC10483498 DOI: 10.1002/ccr3.7779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
Key Clinical Message This case report presents a child with PURA-related neurodevelopmental disorder, caused by the heterozygous pathogenic variant c.175C>T (p.Gln59*). The clinical symptoms included microcephaly, brachygnathia, central and peripheral hypotonia, and developmental delay (non-verbal), among others. On comparison with published literature, even patients with the same mutation present different clinical symptoms. Abstract This case report presents a child with PURA-related neurodevelopmental disorder, caused by the heterozygous pathogenic variant c.175C>T (p.Gln59*), whose symptoms included microcephaly, brachygnathia, the development of a high anterior hairline, hip dysplasia, strabismus, severe hypotonia, developmental delay (non-meaningful verbal), feeding difficulties, and respiratory difficulties. His development ceased with age, such that his development at 10 years corresponded to an infant of 6 months. Moreover, even patients with the same variant can have different clinical symptoms, such as the presence or absence of epilepsy or congenital malformations. Therefore, we should follow his long-term clinical course and provide medical support as necessary.
Collapse
Affiliation(s)
- Yusuke Noda
- Department of PediatricsKumamoto University HospitalKumamotoJapan
- Department of Pediatrics Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Jun Kido
- Department of PediatricsKumamoto University HospitalKumamotoJapan
- Department of Pediatrics Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yohei Misumi
- Department of NeurologyKumamoto University HospitalKumamotoJapan
| | - Keishin Sugawara
- Department of Pediatrics Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Sachiko Ohori
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Atsushi Fujita
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineYokohamaJapan
| | - Mitsuharu Ueda
- Department of NeurologyKumamoto University HospitalKumamotoJapan
| | - Kimitoshi Nakamura
- Department of PediatricsKumamoto University HospitalKumamotoJapan
- Department of Pediatrics Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
17
|
Mishra S, Sarkar S, Pandey A, Yadav SK, Negi R, Yadav S, Pant AB. Crosstalk Between miRNA and Protein Expression Profiles in Nitrate-Exposed Brain Cells. Mol Neurobiol 2023; 60:3855-3872. [DOI: 10.1007/s12035-023-03316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
|
18
|
Molitor L, Klostermann M, Bacher S, Merl-Pham J, Spranger N, Burczyk S, Ketteler C, Rusha E, Tews D, Pertek A, Proske M, Busch A, Reschke S, Feederle R, Hauck S, Blum H, Drukker M, Fischer-Posovszky P, König J, Zarnack K, Niessing D. Depletion of the RNA-binding protein PURA triggers changes in posttranscriptional gene regulation and loss of P-bodies. Nucleic Acids Res 2023; 51:1297-1316. [PMID: 36651277 PMCID: PMC9943675 DOI: 10.1093/nar/gkac1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
The RNA-binding protein PURA has been implicated in the rare, monogenetic, neurodevelopmental disorder PURA Syndrome. PURA binds both DNA and RNA and has been associated with various cellular functions. Only little is known about its main cellular roles and the molecular pathways affected upon PURA depletion. Here, we show that PURA is predominantly located in the cytoplasm, where it binds to thousands of mRNAs. Many of these transcripts change abundance in response to PURA depletion. The encoded proteins suggest a role for PURA in immune responses, mitochondrial function, autophagy and processing (P)-body activity. Intriguingly, reduced PURA levels decrease the expression of the integral P-body components LSM14A and DDX6 and strongly affect P-body formation in human cells. Furthermore, PURA knockdown results in stabilization of P-body-enriched transcripts, whereas other mRNAs are not affected. Hence, reduced PURA levels, as reported in patients with PURA Syndrome, influence the formation and composition of this phase-separated RNA processing machinery. Our study proposes PURA Syndrome as a new model to study the tight connection between P-body-associated RNA regulation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nadine Spranger
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Carolin Ketteler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Daniel Tews
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89070 Ulm, Germany
| | - Anna Pertek
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Marcel Proske
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89070 Ulm, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
19
|
Mroczek M, Iyadurai S. Neuromuscular and Neuromuscular Junction Manifestations of the PURA-NDD: A Systematic Review of the Reported Symptoms and Potential Treatment Options. Int J Mol Sci 2023; 24:2260. [PMID: 36768582 PMCID: PMC9917016 DOI: 10.3390/ijms24032260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
PURA-related neurodevelopmental disorders (PURA-NDDs) are a rare genetic disease caused by pathogenic autosomal dominant variants in the PURA gene or a deletion encompassing the PURA gene. PURA-NDD is clinically characterized by neurodevelopmental delay, learning disability, neonatal hypotonia, feeding difficulties, abnormal movements, and epilepsy. It is generally considered to be central nervous system disorders, with generalized weakness, associated hypotonia, cognitive and development deficits in early development, and seizures in late stages. Although it is classified predominantly as a central nervous syndrome disorder, some phenotypic features, such as myopathic facies, respiratory insufficiency of muscle origin, and myopathic features on muscle biopsy and electrodiagnostic evaluation, point to a peripheral (neuromuscular) source of weakness. Patients with PURA-NDD have been increasingly identified in exome-sequenced cohorts of patients with neuromuscular- and congenital myasthenic syndrome-like phenotypes. Recently, fluctuating weakness noted in a PURA-NDD patient, accompanied by repetitive nerve stimulation abnormalities, suggested the disease to be a channelopathy and, more specifically, a neuromuscular junction disorder. Treatment with pyridostigmine or salbutamol led to clinical improvement of neuromuscular function in two reported cases. The goal of this systematic retrospective review is to highlight the motor symptoms of PURA-NDD, to further describe the neuromuscular phenotype, and to emphasize the role of potential treatment opportunities of the neuromuscular phenotype in the setting of the potential role of PURA protein in the neuromuscular junction and the muscles.
Collapse
Affiliation(s)
- Magdalena Mroczek
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, 8952 Schlieren, Switzerland
| | - Stanley Iyadurai
- Division of Neurology, Johns Hopkins All Children’s Hospital, 501 6th Ave S, St. Petersburg, FL 33701, USA
| |
Collapse
|
20
|
Kim YK, Jung YS, Song J. Transcriptome Profile in the Mouse Brain of Hepatic Encephalopathy and Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010675. [PMID: 36614117 PMCID: PMC9821016 DOI: 10.3390/ijms24010675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023] Open
Abstract
Hepatic encephalopathy (HE) is a chronic metabolic disease accompanied by neuropathological and neuropsychiatric features, including memory deficits, psychomotor dysfunction, depression, and anxiety. Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by tau hyperphosphorylation, excessive amyloid beta (Aβ) accumulation, the formation of fibrillary tangles, hippocampus atrophy, and neuroinflammation. Recent studies have suggested a positive correlation between HE and AD. Some studies reported that an impaired cholesterol pathway, abnormal bile acid secretion, excessive ammonia level, impaired Aβ clearance, astrocytic dysfunction, and abnormal γ-aminobutyric acid GABAergic neuronal signaling in HE may also be involved in AD pathology. However, the mechanisms and related genes involved in AD-like pathology in the HE brain are unclear. Thus, we compared the cortical transcriptome profile between an HE mouse model, bile duct ligation (BDL), and an AD mouse model, the 5×FAD. Our study showed that the expression of many genes implicated in HE is associated with neuronal dysfunction in AD mice. We found changes in various protein-coding RNAs, implicated in synapses, neurogenesis, neuron projection, neuron differentiation, and neurite outgrowth, and non-coding RNAs possibly associated with neuropathology. Our data provide an important resource for further studies to elucidate AD-like pathophysiology in HE patients.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
21
|
Qashqari H, McNiven V, Gonorazky H, Mendoza-Londono R, Hassan A, Kulkarni T, Amburgey K, Dowling JJ. PURA syndrome: neuromuscular junction manifestations with potential therapeutic implications. Neuromuscul Disord 2022; 32:842-844. [PMID: 36210261 DOI: 10.1016/j.nmd.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
PURA syndrome is caused by heterozygous de novo pathogenic variants in PURA. It is characterized by moderate to severe neurodevelopmental disability with a wide clinical spectrum and an evolving phenotype. We present two individuals with genetically confirmed PURA syndrome who had severe neonatal signs and symptoms and a novel phenotype suggestive of neuromuscular junction pathology. We demonstrate that PURA syndrome shares features consistent with a congenital myasthenic syndrome; we thus recommend electrodiagnostic study in neonates and infants with PURA syndrome, and consideration of salbutamol as a therapeutic option.
Collapse
Affiliation(s)
- Hebah Qashqari
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Pediatrics, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Vanda McNiven
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Fred A Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hernan Gonorazky
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program for Genetics and Genome Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ahmad Hassan
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Tapas Kulkarni
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly Amburgey
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - James J Dowling
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Program for Genetics and Genome Biology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
López-Rivera JJ, Rodríguez-Salazar L, Soto-Ospina A, Estrada-Serrato C, Serrano D, Chaparro-Solano HM, Londoño O, Rueda PA, Ardila G, Villegas-Lanau A, Godoy-Corredor M, Cuartas M, Vélez JI, Vidal OM, Isaza-Ruget MA, Arcos-Burgos M. Structural Protein Effects Underpinning Cognitive Developmental Delay of the PURA p.Phe233del Mutation Modelled by Artificial Intelligence and the Hybrid Quantum Mechanics–Molecular Mechanics Framework. Brain Sci 2022; 12:brainsci12070871. [PMID: 35884678 PMCID: PMC9313109 DOI: 10.3390/brainsci12070871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
A whole-exome capture and next-generation sequencing was applied to an 11 y/o patient with a clinical history of congenital hypotonia, generalized motor and cognitive neurodevelopmental delay, and severe cognitive deficit, and without any identifiable Syndromic pattern, and to her parents, we disclosed a de novo heterozygous pathogenic mutation, c.697_699del p.Phe233del (rs786204835)(ACMG classification PS2, PM1, PM2, PP5), harbored in the PURA gene (MIM*600473) (5q31.3), associated with Autosomal Dominant Mental Retardation 31 (MIM # 616158). We used the significant improvement in the accuracy of protein structure prediction recently implemented in AlphaFold that incorporates novel neural network architectures and training procedures based on the evolutionary, physical, and geometric constraints of protein structures. The wild-type (WT) sequence and the mutated sequence, missing the Phe233, were reconstructed. The predicted local Distance Difference Test (lDDT) for the PURAwt and the PURA–Phe233del showed that the occurrence of the Phe233del affects between 220–320 amino acids. The distortion in the PURA structural conformation in the ~5 Å surrounding area after the p.Phe233del produces a conspicuous disruption of the repeat III, where the DNA and RNA helix unwinding capability occurs. PURA Protein–DNA docking corroborated these results in an in silico analysis that showed a loss of the contact of the PURA–Phe233del III repeat domain model with the DNA. Together, (i) the energetic and stereochemical, (ii) the hydropathic indexes and polarity surfaces, and (iii) the hybrid Quantum Mechanics–Molecular Mechanics (QM–MM) analyses of the PURA molecular models demarcate, at the atomic resolution, the specific surrounding region affected by these mutations and pave the way for future cell-based functional analysis. To the best of our knowledge, this is the first report of a de novo mutation underpinning a PURA syndrome in a Latin American patient and highlights the importance of predicting the molecular effects in protein structure using artificial intelligence algorithms and molecular and atomic resolution stereochemical analyses.
Collapse
Affiliation(s)
- Juan Javier López-Rivera
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá 111321, Colombia;
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
- Correspondence: (J.J.L.-R.); (M.A.-B.)
| | - Luna Rodríguez-Salazar
- Grupo de Bioinformática, Laboratorio de Clínica Colsanitas, Bogotá 110221, Colombia; (L.R.-S.); (P.A.R.); (G.A.)
| | - Alejandro Soto-Ospina
- Genética Molecular (GenMol), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050012, Colombia; (A.S.-O.); (A.V.-L.)
| | - Carlos Estrada-Serrato
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
| | - David Serrano
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
| | - Henry Mauricio Chaparro-Solano
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
| | - Olga Londoño
- Grupo de Genética Médica, Clínica Universitaria Colombia y Clínica Pediátrica Colsanitas, Bogotá 111321, Colombia; (C.E.-S.); (D.S.); (H.M.C.-S.); (O.L.)
| | - Paula A. Rueda
- Grupo de Bioinformática, Laboratorio de Clínica Colsanitas, Bogotá 110221, Colombia; (L.R.-S.); (P.A.R.); (G.A.)
| | - Geraldine Ardila
- Grupo de Bioinformática, Laboratorio de Clínica Colsanitas, Bogotá 110221, Colombia; (L.R.-S.); (P.A.R.); (G.A.)
| | - Andrés Villegas-Lanau
- Genética Molecular (GenMol), Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050012, Colombia; (A.S.-O.); (A.V.-L.)
- Grupo de Neurociencias de Antioquia (GNA), Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| | | | - Mauricio Cuartas
- Grupo de Investigación Estudios en Psicología, Departamento de Psicología, Escuela de Humanidades, Universidad EAFIT, Medellín 050022, Colombia;
| | - Jorge I. Vélez
- Universidad del Norte, Barranquilla 080001, Colombia; (J.I.V.); (O.M.V.)
| | - Oscar M. Vidal
- Universidad del Norte, Barranquilla 080001, Colombia; (J.I.V.); (O.M.V.)
| | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
- Correspondence: (J.J.L.-R.); (M.A.-B.)
| |
Collapse
|
23
|
Carey JL, Guo L. Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases. Front Mol Biosci 2022; 9:826719. [PMID: 35187086 PMCID: PMC8847598 DOI: 10.3389/fmolb.2022.826719] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation of RNA-binding proteins mediates the formation of numerous membraneless organelles with essential cellular function. However, aberrant phase transition of these proteins leads to the formation of insoluble protein aggregates, which are pathological hallmarks of neurodegenerative diseases including ALS and FTD. TDP-43 and FUS are two such RNA-binding proteins that mislocalize and aggregate in patients of ALS and FTD. They have similar domain structures that provide multivalent interactions driving their phase separation in vitro and in the cellular environment. In this article, we review the factors that mediate and regulate phase separation of TDP-43 and FUS. We also review evidences that connect the phase separation property of TDP-43 and FUS to their functional roles in cells. Aberrant phase transition of TDP-43 and FUS leads to protein aggregation and disrupts their regular cell function. Therefore, restoration of functional protein phase of TDP-43 and FUS could be beneficial for neuronal cells. We discuss possible mechanisms for TDP-43 and FUS aberrant phase transition and aggregation while reviewing the methods that are currently being explored as potential therapeutic strategies to mitigate aberrant phase transition and aggregation of TDP-43 and FUS.
Collapse
|