1
|
Malewski T, Kamiński S, Śmiełowski J, Oleński K, Bogdanowicz W. Molecular Diversity of the Casein Gene Cluster in Bovidae: Insights from SNP Microarray Analysis. Animals (Basel) 2024; 14:3034. [PMID: 39457964 PMCID: PMC11505306 DOI: 10.3390/ani14203034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The casein gene cluster spans 250 to 350 kb across mammalian species and is flanked by non-coding DNA with largely unknown functions. These regions likely harbor elements regulating the expression of the 4 casein genes. In Bovidae, this cluster is well studied in domestic cattle and to a lesser extent in zebu and water buffalo. This study used a cattle-specific SNP microarray to analyze 12 Bovidae taxa and estimate casein gene cluster variability across 5 bovid subfamilies. Genotyping identified 126 SNPs covering the entire casein gene cluster and 2 Mb of upstream and downstream regions. Dairy cattle, watusi, and zebu showed the highest polymorphism: 63.7-68.2% in the 5'-upstream region, 35.6-40.0% in the casein cluster, and 40.4-89.4% in the 3'-downstream region. Among wild bovids, only a 'semi-aquatic' lechwe revealed high polymorphism similar to cattle. Other species exhibited lower variability, ranging from 9.1-27.3% in the 5'-upstream, 8.9-20.0% in the casein, and 4.2-10.6% in the 3'-downstream regions. For the first time, genome variability data were obtained for impala, waterbuck, and lechwe. It appears that higher variability in cattle's casein gene cluster may relate to its intense expression. This study confirms the effectiveness of cattle-derived microarrays for genotyping Bovidae.
Collapse
Affiliation(s)
- Tadeusz Malewski
- Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warszawa, Poland;
| | - Stanisław Kamiński
- Department of Animal Genetics, University of Warmia and Mazury, 10-718 Olsztyn, Poland; (S.K.); (K.O.)
| | | | - Kamil Oleński
- Department of Animal Genetics, University of Warmia and Mazury, 10-718 Olsztyn, Poland; (S.K.); (K.O.)
| | - Wiesław Bogdanowicz
- Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warszawa, Poland;
| |
Collapse
|
2
|
Fu Y, Khan MF, Wang Y, Parveen S, Sultana M, Liu Q, Shafique L. In Silico Analysis: Molecular Characterization and Evolutionary Study of CLCN Gene Family in Buffalo. Genes (Basel) 2024; 15:1163. [PMID: 39336754 PMCID: PMC11431104 DOI: 10.3390/genes15091163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Chloride channels (ClCs) have received global interest due to their significant role in the regulation of ion homeostasis, fluid transport, and electrical excitability of tissues and organs in different mammals and contributing to various functions, such as neuronal signaling, muscle contraction, and regulating the electrolytes' balance in kidneys and other organs. In order to define the chloride voltage-gated channel (CLCN) gene family in buffalo, this study used in silico analyses to examine physicochemical properties, evolutionary patterns, and genome-wide identification. We identified eight CLCN genes in buffalo. The ProtParam tool analysis identified a number of important physicochemical properties of these proteins, including hydrophilicity, thermostability, in vitro instability, and basic nature. Based on their evolutionary relationships, a phylogenetic analysis divided the eight discovered genes into three subfamilies. Furthermore, a gene structure analysis, motif patterns, and conserved domains using TBtool demonstrated the significant conservation of this gene family among selected species over the course of evolution. A comparative amino acid analysis using ClustalW revealed similarities and differences between buffalo and cattle CLCN proteins. Three duplicated gene pairs were identified, all of which were segmental duplications except for CLCN4-CLCN5, which was a tandem duplication in buffalo. For each gene pair, the Ka/Ks test ratio findings showed that none of the ratios was more than one, indicating that these proteins were likely subject to positive selection. A synteny analysis confirmed a conserved pattern of genomic blocks between buffalo and cattle. Transcriptional control in cells relies on the binding of transcription factors to specific sites in the genome. The number of transcription factor binding sites (TFBSs) was higher in cattle compared to buffalo. Five main recombination breakpoints were identified at various places in the recombination analysis. The outcomes of our study provide new knowledge about the CLCN gene family in buffalo and open the door for further research on candidate genes in vertebrates through genome-wide studies.
Collapse
Affiliation(s)
- Yiheng Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
| | - Muhammad Farhan Khan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China;
- Department of Chemistry, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Yingqi Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Shakeela Parveen
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab 63100, Pakistan; (S.P.); (M.S.)
| | - Mehwish Sultana
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab 63100, Pakistan; (S.P.); (M.S.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China;
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Laiba Shafique
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, China;
| |
Collapse
|
3
|
Hassan FU, Deng T, Rehman MSU, Rehman ZU, Sarfraz S, Mushahid M, Rehman SU. Genome-wide identification and evolutionary analysis of the FGF gene family in buffalo. J Biomol Struct Dyn 2023; 42:10225-10236. [PMID: 37697717 DOI: 10.1080/07391102.2023.2256861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
Fibroblast growth factors (FGFs) are important polypeptide growth factors that play a critical role in many developmental processes, including differentiation, cell proliferation, and migration in mammals. This study employs in silico analyses to characterize the FGF gene family in buffalo, investigating their genome-wide identification, physicochemical properties, and evolutionary patterns. For this purpose, genomic and proteomic sequences of buffalo, cattle, goat, and sheep were retrieved from NCBI database. We identified a total of 22 FGF genes in buffalo. Physicochemical properties observed through ProtParam tool showed notable features of these proteins including in-vitro instability, thermostability, hydrophilicity, and basic nature. Phylogenetic analysis grouped 22 identified genes into nine sub-families based on evolutionary relationships. Additionally, analysis of gene structure, motif patterns, and conserved domains using TBtools revealed the remarkable conservation of this gene family across selected species throughout the course of evolution. Comparative amino acid analysis performed through ClustalW demonstrated significant conservation between buffalo and cattle FGF proteins. Mutational analysis showed three non-synonymous mutations at positions R103 > G, P7 > L, and E98 > Q in FGF4, FGF6, and FGF19, respectively in buffalo. Duplication events revealed only one segmental duplication (FGF10/FGF22) in buffalo and two in cattle (FGF10/FGF22 and FGF13/FGF13-like) with Ka/Ks values <1 indicating purifying selection pressure for these duplications. Comparison of protein structures of buffalo, goat, and sheep exhibited more similarities in respective structures. In conclusion, our study highlights the conservation of the FGF gene family in buffalo during evolution. Furthermore, the identified non-synonymous mutations may have implications for the selection of animals with better performance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Muhammad Saif-Ur Rehman
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zia-Ur Rehman
- University of Agriculture, Faisalabad-Sub Campus Toba Tek Sing, Pakistan
| | - Saad Sarfraz
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Mushahid
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saif Ur Rehman
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| |
Collapse
|
4
|
Abdullah M, Rehman MSU, Rehman MSNU, AlKahtane AA, Al-Hazani TM, Hassan FU, Rehman SU. Genome-Wide Identification, Evolutionary and Mutational Analysis of the Buffalo Sox Gene Family. Animals (Basel) 2023; 13:2246. [PMID: 37508024 PMCID: PMC10376873 DOI: 10.3390/ani13142246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Sox gene family constitutes transcription factors with a conserved high mobility group box (HMG) that regulate a variety of developmental processes, including sex differentiation, neural, cartilage, and early embryonic development. In this study, we systematically analyzed and characterized the 20 Sox genes from the whole buffalo genome, using comparative genomic and evolutionary analyses. All the buffalo Sox genes were divided into nine sub-groups, and each gene had a specific number of exons and introns, which contributed to different gene structures. Molecular phylogeny revealed more sequence similarity of buffalo Sox genes with those of cattle. Furthermore, evolutionary analysis revealed that the HMG domain remained conserved in the all members of the Sox gene family. Similarly, all the genes are under strong purifying selection pressure; seven segmental duplications occurred from 9.65 to 21.41 million years ago (MYA), and four potential recombination breakpoints were also predicted. Mutational analysis revealed twenty non-synonymous mutations with potential effects on physiological functions, including embryonic development and cell differentiation in the buffalo. The present study provides insights into the genetic architecture of the Sox gene family in buffalo, highlights the significance of mutations, and provides their potential utility for marker-assisted selection for targeted genetic improvement in buffalo.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Saif-Ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Abdullah A AlKahtane
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahani Mohamed Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj 11940, Saudi Arabia
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
5
|
Su J, Li Z, Gao P, Ahmed I, Liu Q, Li R, Cui K, Rehman SU. Comparative evolutionary and molecular genetics based study of Buffalo lysozyme gene family to elucidate their antibacterial function. Int J Biol Macromol 2023; 234:123646. [PMID: 36775226 DOI: 10.1016/j.ijbiomac.2023.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023]
Abstract
Lysozyme is used as a food preservative, biological medicine, and infant food additive as a natural anti-infective chemical having bactericidal activity and abundantly secreted in mammals' milk, saliva, etc. We systematically analyzed the 16 coding LYZ genes (C and G-type) in buffalo and cattle to elucidate their evolutionary perspective thoroughly by evaluating an evolutionary relationship, motif patterning, physicochemical attributes, gene, and protein structure, as well as the functional role of the mammary gland-specific expressed buffalo and cattle LYZ genes precisely while considering expression levels difference and the interaction sites variation with bacteria envisaged the potential ability of buffalo LYZ protein with enhanced antibacterial effect. Thus, we speculated that the buffalo mammary glands expressed lysozyme has good antibacterial activity. This study on the buffalo lysozyme gene family not only provides comprehensive insights into the genetic architecture and their antibacterial effect but also offers a theoretical basis for the development of new veterinary drugs and animal health care for mastitis, as well as a new molecular genetic basis to study food or medical lysozyme.
Collapse
Affiliation(s)
- Jie Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Peipei Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, VIC, Australia
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Ruijia Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| | - Saif Ur Rehman
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.
| |
Collapse
|
6
|
Massender E, Oliveira HR, Brito LF, Maignel L, Jafarikia M, Baes CF, Sullivan B, Schenkel FS. Genome-wide association study for milk production and conformation traits in Canadian Alpine and Saanen dairy goats. J Dairy Sci 2023; 106:1168-1189. [PMID: 36526463 DOI: 10.3168/jds.2022-22223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
Increasing the productivity of Canadian dairy goats is critical to the competitiveness of the sector; however, little is known about the underlying genetic architecture of economically important traits in these populations. Consequently, the objectives of this study were as follows: (1) to perform a single-step GWAS for milk production traits (milk, protein, and fat yields, and protein and fat percentages in first and later lactations) and conformation traits (body capacity, dairy character, feet and legs, fore udder, general appearance, rear udder, suspensory ligament, and teats) in the Canadian Alpine and Saanen breeds; and (2) to identify positional and functional candidate genes related to these traits. The data available for analysis included 305-d milk production records for 6,409 Alpine and 3,434 Saanen does in first lactation and 5,827 Alpine and 2,632 Saanen does in later lactations; as well as linear type conformation records for 5,158 Alpine and 2,342 Saanen does. Genotypes were available for 833 Alpine and 874 Saanen animals. Both single-breed and multiple-breed GWAS were performed using single-trait animal models. Positional and functional candidate genes were then identified in downstream analyses. The GWAS identified 189 unique SNP that were significant at the chromosomal level, corresponding to 271 unique positional candidate genes within 50 kb up- and downstream, across breeds and traits. This study provides evidence for the economic importance of several candidate genes (e.g., CSN1S1, CSN2, CSN1S2, CSN3, DGAT1, and ZNF16) in the Canadian Alpine and Saanen populations that have been previously reported in other dairy goat populations. Moreover, several novel positional and functional candidate genes (e.g., RPL8, DCK, and MOB1B) were also identified. Overall, the results of this study have provided greater insight into the genetic architecture of milk production and conformation traits in the Canadian Alpine and Saanen populations. Greater understanding of these traits will help to improve dairy goat breeding programs.
Collapse
Affiliation(s)
- Erin Massender
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Hinayah R Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Laurence Maignel
- Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Mohsen Jafarikia
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Brian Sullivan
- Canadian Centre for Swine Improvement Inc., Ottawa, ON, K1A 0C6, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
7
|
Parveen S, Zhu P, Shafique L, Lan H, Xu D, Ashraf S, Ashraf S, Sherazi M, Liu Q. Molecular Characterization and Phylogenetic Analysis of Casein Gene Family in Camelus ferus. Genes (Basel) 2023; 14:genes14020256. [PMID: 36833182 PMCID: PMC9957437 DOI: 10.3390/genes14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Camel milk is known for its exceptional medical uses. It has been used since ancient times to treat infant diarrhea, hepatitis, insulin-dependent diabetes (IDDM), lactose intolerance, alcohol-induced liver damage, allergies, and autism. It has the power to treat several diseases, with cancer being the most significant. This study investigated the evolutionary relationship, physiochemical characteristics, and comparative genomic analysis of the casein gene family (CSN1S1, CSN2, CSN1S2, and CSN3) in Camelus ferus. Molecular phylogenetics showing the camelid species clustered casein nucleotide sequences into four groups: CSN1S1, CSN2, CSN1S2, and CSN3. The casein proteins from camels were evaluated and found to be unstable, thermostable, and hydrophilic. CSN1S2, CSN2, and CSN3 were acidic, but CSN1S1 was basic. CSN1S1 showed positive selection for one amino acid (Q), CSN1S2 and CSN2 for three (T, K, Q), and CSN3 showed no positive selection. We also compared high-milk-output species such as cattle (Bos Tarus) and low-milk-yield species such as sheep (Ovies Aries) with camels (Camel ferus) and discovered that YY1 sites are more frequent in sheep than in camels and very low in cattle. We concluded that the ratio of YY1 sites in these species may affect milk production.
Collapse
Affiliation(s)
- Shakeela Parveen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi 535011, China
- Department of Zoology, Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi 535011, China
| | - Laiba Shafique
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi 535011, China
- Correspondence: (L.S.); (Q.L.)
| | - Hong Lan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Dingyun Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Sana Ashraf
- Department of Zoology, Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Saba Ashraf
- Department of Zoology, Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Maryam Sherazi
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- Correspondence: (L.S.); (Q.L.)
| |
Collapse
|
8
|
Xiaobo W, Hassan FU, Liu S, Yang S, Ahmad M, Ahmed I, Huang K, Iqbal HMN, Yu H, Liu Q, Rehman SU. De Novo Transcriptome Dataset Generation of the Swamp Buffalo Brain and Non-Brain Tissues. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4472940. [PMID: 36408285 PMCID: PMC9668446 DOI: 10.1155/2022/4472940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022]
Abstract
The sequenced data availability opened new horizons related to buffalo genetic control of economic traits and genomic diversity. The visceral organs (brain, liver, etc.) significantly involved in energy metabolism, docility, or social interactions. We performed swamp buffalo transcriptomic profiling of 24 different tissues (brain and non-brain) to identify novel transcripts and analyzed the differentially expressed genes (DEGs) of brain vs. non-brain tissues with their functional annotation. We obtained 178.57 Gb clean transcriptomic data with GC contents 52.77%, reference genome alignment 95.36%, exonic coverage 88.49%. Totally, 26363 mRNAs transcripts including 5574 novel genes were obtained. Further, 7194 transcripts were detected as DEGs by comparing brain vs. non-brain tissues group, of which 3,999 were upregulated and 3,195 downregulated. These DEGs were functionally associated with cellular metabolic activities, signal transduction, cytoprotection, and structural and binding activities. The related functional pathways included cancer pathway, PI3k-Akt signaling, axon guidance, JAK-STAT signaling, basic cellular metabolism, thermogenesis, and oxidative phosphorylation. Our study provides an in-depth understanding of swamp buffalo transcriptomic data including DEGs potentially involved in basic cellular activities and development that helped to maintain their working capacity and social interaction with humans, and also, helpful to disclose the genetic architecture of different phenotypic traits and their gene expression regulation.
Collapse
Affiliation(s)
- Wang Xiaobo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sheng Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shuli Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences (SBBUVAS), Sakrand 67210, Pakistan
| | - Ishtiaq Ahmed
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, Victoria 3690, Australia
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Hafiz M. N. Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
9
|
Comparative Genomic Characterization of Relaxin Peptide Family in Cattle and Buffalo. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1581714. [PMID: 36246983 PMCID: PMC9553489 DOI: 10.1155/2022/1581714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022]
Abstract
Relaxin family peptides significantly regulate reproduction, nutrient metabolism, and immune response in mammals. The present study aimed to identify and characterize the relaxin family peptides in cattle and buffalo at the genome level. The genomic and proteomic sequences of cattle, buffalo, goat, sheep, horse, and camel were accessed through the NCBI database, and BLAST was performed. We identified four relaxin peptides genes (RLN3, INSL3, INSL5, and INSL6) in Bos taurus, whereas three relaxin genes (RLN3, INSL3, and INSL6) in Bubalus bubalis. Evolutionary analysis revealed the conserved nature of relaxin family peptides in buffalo and cattle. Physicochemical properties revealed that relaxin proteins were thermostable, hydrophilic, and basic peptides except for INSL5 which was an acidic peptide. Three nonsynonymous mutations (two in RLN3 at positions A16 > T and P29 > A, and one in INSL6 at position R32 > Q) in Bos taurus, whereas two nonsynonymous mutations (one in RLN3 at positions G105 > w and one in INSL3 at position G22 > R) in Bubalus bubalis, were identified. INSL3 had one indel (insertion) at position 55 in Bos taurus. Gene duplication analysis revealed predominantly segmental duplications (INSL5/RLN3 and INSL6/INSL3 gene pairs) that helped expand this gene family, whereas Bubalus bubalis showed primarily tandem duplication (INSL3/RLN3). Our study concluded that relaxin family peptides remained conserved during the evolution, and gene duplications might help to adapt and enrich specific functions like reproduction, nutrient metabolism, and immune response. Further, the nonsynonymous mutations identified potentially affect these functions in buffalo.
Collapse
|
10
|
Genomic analysis of arginine vasopressin gene in riverine buffalo reveals its potential association with silent estrus behavior. Mol Biol Rep 2022; 49:9315-9324. [PMID: 35902449 DOI: 10.1007/s11033-022-07776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 07/06/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Poor estrus expression behavior causes suboptimal reproductive efficiency through poor conception rate. Various signaling pathways are involved in estrus expression but arginine vasopressin (AVP) gene with oxytocin predominantly regulates estrus behavior. This study aimed to perform genomic characterization and evolutionary dynamics of AVP gene through association testing of the novel polymorphic loci and comparative genomic analysis to explore the potential effect of AVP gene on estrus behavior of Nili-Ravi buffaloes. METHODS AND RESULTS 198 Nili-Ravi buffaloes were screened for the quest of novel polymorphism in the AVP gene. In exon-1, five polymorphic sites were detected including deletion of two (c.47delA and c.57delA) nucleotides that caused drastic variation in subsequent amino acid sequence due to frame shift including functional short peptide of nine residues. The 3-D structure revealed a loss of transmembrane loop between 16 and 31 residues in Nili-Ravi buffalo AVP protein sequence, suggesting that missing loop apparently reduced the gene functionality in Nili-Ravi buffalo by inhibiting cellular reactions and muting the animal estrus cyclicity. Three polymorphisms detected in AVP gene were significantly associated with silent estrus (P < 0.05). The comparative genomic analysis revealed that AVP gene is present on chromosome 14 having one conserved motif (Neurohypophysial) in buffalo. CONCLUSIONS This study suggested the potential use of polymorphic sites as promising genetic markers for selection of buffaloes with pronounced estrus expression.
Collapse
|
11
|
Rehman MSU, Mushtaq M, Hassan FU, Zia-ur Rehman, Mushahid M, Shokrollahi B. Comparative Genomic Characterization of Insulin-Like Growth Factor Binding Proteins in Cattle and Buffalo. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5893825. [PMID: 35924270 PMCID: PMC9343199 DOI: 10.1155/2022/5893825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
The somatotropic axis consists of genes associated with economic traits like muscle growth and carcass traits in livestock. Insulin-like growth factor binding proteins (IGFBPs) are the major proteins that play a vital role in the somatotropic axis. The present study performed a genome-wide characterization of IGFBP genes in cattle. Genomic sequences of the IGFBP gene family for different mammals (cattle, buffalo, goat, and sheep) were recovered from the NCBI database. Sequence analyses were performed to investigate cattle's genomic variations in the IGFBP gene family. Phylogenetic analysis, gene structure, motif patterns, and conserved domain analysis (CDA) of the IGFBP family revealed the evolutionarily conserved nature of the IGFBP genes in cattle and other studied species. Physicochemical properties of IGFBP proteins in cattle revealed that most of these proteins are unstable, hydrophilic, thermostable, and acidic. Comparative amino acid analysis revealed variations in all protein sequences with single indels in IGFBP3 and IGFBP6. Mutation analysis revealed only one nonsynonymous mutation D212 > E in the IGFBP6 protein of cattle. A total of 245 nuclear hormone receptor (NHRs) sites were detected, including 139 direct repeats (DR), 65 everted repeats (ER), and 41 inverted repeats (IR). Out of 133 transcription factors (TFs), 10 TFs (AHR, AHRARNT, AP4, CMYB, E47, EGR2, GATA, SP1, and SRF) had differential distribution (P value < 0.05) of putative transcriptional binding sites (TFBS) in cattle compared to buffalo. Synteny analysis revealed the conserved nature of genes between cattle and buffalo. Two gene pairs (IGFBP1/IGFBP3 and IGFBP2/IGFBP5) showed tandem duplication events in cattle and buffalo. This study highlights the functional importance of genomic variation in IGFBP genes and necessitates further investigations better to understand the role and mechanisms of IGFBPs in bovines.
Collapse
Affiliation(s)
- Muhammad Saif-ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muqeet Mushtaq
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zia-ur Rehman
- University of Agriculture, Faisalabad–Subcampus Toba Tek Singh, Pakistan
| | - Muhammad Mushahid
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Borhan Shokrollahi
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
12
|
Molecular Characterization of TGF-Beta Gene Family in Buffalo to Identify Gene Duplication and Functional Mutations. Genes (Basel) 2022; 13:genes13081302. [PMID: 35893038 PMCID: PMC9331672 DOI: 10.3390/genes13081302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
The TGF-β superfamily is ubiquitously distributed from invertebrates to vertebrates with diverse cellular functioning such as cell adhesion, motility, proliferation, apoptosis, and differentiation. The present study aimed to characterize the TGF-β gene superfamily in buffalo through evolutionary, structural, and single nucleotide polymorphism (SNPs) analyses to find the functional effect of SNPs in selected genes. We detected 32 TGF-β genes in buffalo genome and all TGF-β proteins exhibited basic nature except INHA, INHBC, MSTN, BMP10, and GDF2, which showed acidic properties. According to aliphatic index, TGF-β proteins were thermostable but unstable in nature. Except for GDF1 and AMH, TGF-β proteins depicted hydrophilic nature. Moreover, all the detected buffalo TGF-β genes showed evolutionary conserved nature. We also identified eight segmental and one tandem duplication event TGF-β gene family in buffalo, and the ratio of Ka/Ks demonstrated that all the duplicated gene pairs were under selective pressure. Comparative amino acid analysis demonstrated higher variation in buffalo TGF-β gene family, as a total of 160 amino acid variations in all the buffalo TGF-β proteins were detected. Mutation analysis revealed that 13 mutations had an overall damaging effect that might have functional consequences on buffalo growth, folliculogenesis, or embryogenesis.
Collapse
|
13
|
Zheng Y, Zhang Y, Wu L, Riaz H, Li Z, Shi D, Rehman SU, Liu Q, Cui K. Generation of Heritable Prominent Double Muscle Buttock Rabbits via Novel Site Editing of Myostatin Gene Using CRISPR/Cas9 System. Front Vet Sci 2022; 9:842074. [PMID: 35669173 PMCID: PMC9165342 DOI: 10.3389/fvets.2022.842074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Rabbits have been domesticated for meat, wool, and fur production, and have also been cherished as a companion, artistic inspiration, and an experimental model to study many human diseases. In the present study, the muscle mass negative regulator gene myostatin (MSTN) was knocked out in rabbits at two novel sites in exon3, and the function of these mutations was determined in subsequent generations. The prominent double muscle phenotype with hyperplasia or hypertrophy of muscle fiber was observed in the MSTN-KO rabbits, and a similar phenotype was confirmed in the F1 generation. Moreover, the average weight of 80-day-old MSTN-KO rabbits (2,452 ± 63 g) was higher than that of wild-type rabbits (2,393.2 ± 106.88 g), and also the bodyweight of MSTN-KO rabbits (3,708 ± 43.06g) was significantly higher (P < 0.001) at the age of 180 days than wild-type (WT) rabbits (3,224 ± 48.64g). In MSTN-KO rabbits, fourteen rabbit pups from the F1 generation and thirteen from the F2 generation stably inherited the induced MSTN gene mutations. Totally, 194 pups were produced in the F1 generation of which 49 were MSTN-KO rabbits, while 47 pups were produced in the F2 generation of which 20 were edited rabbits, and the ratio of edited to wild-type rabbits in the F2 generation was approximately 1:1. Thus, we successfully generated a heritable double muscle buttocks rabbits via myostatin mutation with CRISPR/Cas9 system, which could be valuable in rabbit's meat production and also a useful animal model to study the development of muscles among livestock species and improve their important economic traits as well as the human muscle development-related diseases.
Collapse
Affiliation(s)
- Yalin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Yu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Liyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hasan Riaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
14
|
Darwish AM, Abdelhafez MA, El-Metwaly HA, Khim JS, Allam AA, Ajarem JS. Genetic divergence of two casein genes and correlated milk traits in Maghrebi camels. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Yuan X, Shi W, Jiang J, Li Z, Fu P, Yang C, Rehman SU, Pauciullo A, Liu Q, Shi D. Comparative metabolomics analysis of milk components between Italian Mediterranean buffaloes and Chinese Holstein cows based on LC-MS/MS technology. PLoS One 2022; 17:e0262878. [PMID: 35077464 PMCID: PMC8789157 DOI: 10.1371/journal.pone.0262878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
Buffalo and cow milk have a very different composition in terms of fat, protein, and total solids. For a better knowledge of such a difference, the milk metabolic profiles and characteristics of metabolites was investigated in Italian Mediterranean buffaloes and Chinese Holstein cows were investigated by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in this study. Totally, 23 differential metabolites were identified to be significantly different in the milk from the two species of which 15 were up-regulated and 8 down-regulated in Italian Mediterranean buffaloes. Metabolic pathway analysis revealed that 4 metabolites (choline, acetylcholine, nicotinamide and uric acid) were significantly enriched in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, as well as purine metabolism. The results provided further insights for a deep understanding of the potential metabolic mechanisms responsible for the different performance of Italian Mediterranean buffaloes' and Chinese Holstein cows' milk. The findings will offer new tools for the improvement and novel directions for the development of dairy industry.
Collapse
Affiliation(s)
- Xiang Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Wen Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jianping Jiang
- Guangxi Engineering Technology Research Center of Chinese Medicinal Materials Stock Breeding, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Penghui Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Chunyan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco (TO), Italy
- * E-mail: (AP); (QL); (DS)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (AP); (QL); (DS)
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- * E-mail: (AP); (QL); (DS)
| |
Collapse
|
16
|
Wu S, Hassan FU, Luo Y, Fatima I, Ahmed I, Ihsan A, Safdar W, Liu Q, Rehman SU. Comparative Genomic Characterization of Buffalo Fibronectin Type III Domain Proteins: Exploring the Novel Role of FNDC5/Irisin as a Ligand of Gonadal Receptors. BIOLOGY 2021; 10:1207. [PMID: 34827201 PMCID: PMC8615036 DOI: 10.3390/biology10111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
FN-III proteins are widely distributed in mammals and are usually involved in cellular growth, differentiation, and adhesion. The FNDC5/irisin regulates energy metabolism and is present in different tissues (liver, brain, etc.). The present study aimed to investigate the physiochemical characteristics and the evolution of FN-III proteins and FNDC5/irisin as a ligand targeting the gonadal receptors including androgen (AR), DDB1 and CUL4 associated factor 6 (DCAF6), estrogen-related receptor β (ERR-β), estrogen-related receptor γ (ERR-γ), Krüppel-like factor 15 (KLF15), and nuclear receptor subfamily 3 group C member 1 (NR3C1). Moreover, the putative role of irisin in folliculogenesis and spermatogenesis was also elucidated. We presented the molecular structure and function of 29 FN-III genes widely distributed in the buffalo genome. Phylogenetic analysis, motif, and conserved domain pattern demonstrated the evolutionary well-conserved nature of FN-III proteins with a variety of stable to unstable, hydrophobic to hydrophilic, and thermostable to thermo-unstable properties. The comparative structural configuration of FNDC5 revealed amino acid variations but still the FNDC5 structure of humans, buffalo, and cattle was quite similar to each other. For the first time, we predicted the binding scores and interface residues of FNDC5/irisin as a ligand for six representative receptors having a functional role in energy homeostasis, and a significant involvement in folliculogenesis and spermatogenesis in buffalo.
Collapse
Affiliation(s)
- Siwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Yuhong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad 38000, Pakistan;
| | - Ishtiaq Ahmed
- School of Medical Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia;
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan;
| | - Warda Safdar
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60000, Pakistan;
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.W.); (Y.L.)
| |
Collapse
|
17
|
Shafique L, Wu S, Aqib AI, Ali MM, Ijaz M, Naseer MA, Sarwar Z, Ahmed R, Saleem A, Qudratullah, Ahmad AS, Pan H, Liu Q. Evidence-Based Tracking of MDR E. coli from Bovine Endometritis and Its Elimination by Effective Novel Therapeutics. Antibiotics (Basel) 2021; 10:997. [PMID: 34439047 PMCID: PMC8388920 DOI: 10.3390/antibiotics10080997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant bacteria have become the predominant etiology of endometritis and thus require effective treatment approaches. We used ultrasonography coupled with clinical signs and presented complaints of reproductive issues to investigate the epidemiology, phylogenetic analysis, antimicrobial resistance, and development of novel therapeutics against Escherichia coli isolated from endometritis in bovine (n = 304 from 10 commercial dairy farms). The prevalence of bovine endometritis in this study was 43.75%, while among these, 72.18% samples were positive for E. coli. Nucleotide analysis performed through BLAST and MEGAX showed 98% similarity to the nucleotide sequence of the reference E. coli strain (accession number CP067311.1). The disk diffusion assay revealed pathogen resistance to most antibiotics. Pattern of MIC order of resistance was as follows: enrofloxacin < gentamicin < co-amoxiclav < streptomycin < amoxicillin < metronidazole < oxytetracycline. Field trials revealed the highest recovery rate (in terms of clearance of endometritis and establishment of pregnancy) in case of gentamicin + enrofloxacin (100%) and gentamicin alone (100%), followed by co-amoxiclav + gentamicin (84.61%), oxytetracycline alone (78.57%), and metronidazole + enrofloxacin (33.33%). Hence, the current study reported a higher prevalence of multidrug-resistant E. coli showing considerable similarity with reference strain, and finally, the effective response of novel antibiotics to treat cases.
Collapse
Affiliation(s)
- Laiba Shafique
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (L.S.); (S.W.); (H.P.)
| | - Siwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (L.S.); (S.W.); (H.P.)
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Misbah Ijaz
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38000, Pakistan; (M.I.); (M.A.N.)
| | - Muhammad Aamir Naseer
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38000, Pakistan; (M.I.); (M.A.N.)
| | - Zaeem Sarwar
- Department of Theriogenology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Rais Ahmed
- Central Diagnostic Laboratory, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Arslan Saleem
- Department of Geography, Government College University, Lahore 54000, Pakistan;
| | - Qudratullah
- Department of Surgery, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Abdullah Saghir Ahmad
- Department of Parasitology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (L.S.); (S.W.); (H.P.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (L.S.); (S.W.); (H.P.)
| |
Collapse
|
18
|
Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-Genome Sequencing and Characterization of Buffalo Genetic Resources: Recent Advances and Future Challenges. Animals (Basel) 2021; 11:904. [PMID: 33809937 PMCID: PMC8004149 DOI: 10.3390/ani11030904] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/17/2022] Open
Abstract
The buffalo was domesticated around 3000-6000 years ago and has substantial economic significance as a meat, dairy, and draught animal. The buffalo has remained underutilized in terms of the development of a well-annotated and assembled reference genome de novo. It is mandatory to explore the genetic architecture of a species to understand the biology that helps to manage its genetic variability, which is ultimately used for selective breeding and genomic selection. Morphological and molecular data have revealed that the swamp buffalo population has strong geographical genomic diversity with low gene flow but strong phenotypic consistency, while the river buffalo population has higher phenotypic diversity with a weak phylogeographic structure. The availability of recent high-quality reference genome and genotyping marker panels has invigorated many genome-based studies on evolutionary history, genetic diversity, functional elements, and performance traits. The increasing molecular knowledge syndicate with selective breeding should pave the way for genetic improvement in the climatic resilience, disease resistance, and production performance of water buffalo populations globally.
Collapse
Affiliation(s)
- Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Xier Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; (S.u.R.); (X.L.); (Z.L.)
| |
Collapse
|