1
|
Chen J, Wang M, Duan S, Yang Q, Liu Y, Zhao M, Sun Q, Li X, Sun Y, Su H, Wang Z, Huang Y, Zhong J, Feng Y, Zhang X, He G, Yan J. Genetic history and biological adaptive landscape of the Tujia people inferred from shared haplotypes and alleles. Hum Genomics 2024; 18:104. [PMID: 39289776 PMCID: PMC11409738 DOI: 10.1186/s40246-024-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND High-quality genomic datasets from under-representative populations are essential for population genetic analysis and medical relevance. Although the Tujia are the most populous ethnic minority in southwestern China, previous genetic studies have been fragmented and only partially reveal their genetic diversity landscape. The understanding of their fine-scale genetic structure and potentially differentiated biological adaptive features remains nascent. OBJECTIVES This study aims to explore the demographic history and genetic architecture related to the natural selection of the Tujia people, focusing on a meta-Tujia population from the central regions of the Yangtze River Basin. RESULTS Population genetic analyses conducted on the meta-Tujia people indicate that they occupy an intermediate position in the East Asian North-South genetic cline. A close genetic affinity was identified between the Tujia people and neighboring Sinitic-speaking populations. Admixture models suggest that the Tujia can be modeled as a mixture of northern and southern ancestries. Estimates of f3/f4 statistics confirmed the presence of ancestral links to ancient Yellow River Basin millet farmers and the BaBanQinCen-related groups. Furthermore, population-specific natural selection signatures were explored, revealing highly differentiated functional variants between the Tujia and southern indigenous populations, including genes associated with hair morphology (e.g., EDAR) and skin pigmentation (e.g., SLC24A5). Additionally, both shared and unique selection signatures were identified among ethnically diverse but geographically adjacent populations, highlighting their extensive admixture and the biological adaptations introduced by this admixture. CONCLUSIONS The study unveils significant population movements and genetic admixture among the Tujia and other ethno-linguistically diverse East Asian groups, elucidating the differentiated adaptation processes across geographically diverse populations from the current genetic landscape.
Collapse
Affiliation(s)
- Jing Chen
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637007, China
- Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Qingxin Yang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637007, China
- Center for Genetics and Prenatal Diagnosis, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007, China
| | - Mengyang Zhao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Xiangping Li
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoran Su
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, Sichuan, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Yuguo Huang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Jie Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Yuhang Feng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
| | - Xiaomeng Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, China.
| |
Collapse
|
2
|
Peng MS, Liu YH, Shen QK, Zhang XH, Dong J, Li JX, Zhao H, Zhang H, Zhang X, He Y, Shi H, Cui C, Ouzhuluobu, Wu TY, Liu SM, Gonggalanzi, Baimakangzhuo, Bai C, Duojizhuoma, Liu T, Dai SS, Murphy RW, Qi XB, Dong G, Su B, Zhang YP. Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Tibetan Plateau. BMC Biol 2023; 21:208. [PMID: 37798721 PMCID: PMC10557253 DOI: 10.1186/s12915-023-01707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
- Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, Kunming, 650118, China
| | - Jiajia Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Hui Zhang
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Tian-Yi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Shi-Ming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- The First People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ti Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Xue-Bin Qi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China.
- Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
3
|
Halili B, Yang X, Wang R, Zhu K, Hai X, Wang CC. Inferring the population history of Kyrgyz in Xinjiang, Northwest China from genome-wide array genotyping. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181:611-625. [PMID: 37310136 DOI: 10.1002/ajpa.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Xinjiang plays a vital role in the trans-Eurasian population migration, language diffusion, and culture and technology exchange. However, the underrepresentation of Xinjiang's genomes has hindered a more comprehensive understanding of Xinjiang's genetic structure and population history. MATERIALS AND METHODS We collected and genotyped 70 southern Xinjiang's Kyrgyz (SXJK) individuals and combined the data with modern and ancient Eurasians published. We used allele-frequency methods, including PCA, ADMIXTURE, f-statistics, qpWave/qpAdm, ALDER, Treemix, and haplotype-shared methods including shared-IBD segments, fineSTRUCTURE, and GLOBETROTTER to unveil the fine-scale population structure and reconstruct admixture history. RESULTS We identified genetic substructure within the SXJK population with subgroups showing different genetic affinities to West and East Eurasians. All SXJK subgroups were suggested to have close genetic relationships with surrounding Turkic-speaking groups that is, Uyghur, Kyrgyz from north Xinjiang and Tajikistan, and Chinese Kazakh, suggesting a shared ancestry among those populations. Outgroup-f3 and symmetrical f4 statistics showed a high genetic affinity of SXJK to present-day Tungusic, Mongolic-speaking populations and Ancient Northeast Asian (ANA) related groups. Allele sharing and haplotype sharing profiles revealed the east-west admixture pattern of SXJK. The qpAdm-based admixture models showed that SXJK derived ancestry from East Eurasian (ANA and East Asian, 42.7%-83.3%) and West Eurasian (Western Steppe herders and Central Asian, 16.7%-57.3%), the recent east-west admixture event could be traced to 1000 years ago based on ALDER and GLOBETROTTER analysis. DISCUSSION The high genetic affinity of SXJK to present-day Tungusic and Mongolic-speaking populations and short-shared IBD segments indicated their shared common ancestry. SXJK harbored a close genetic affinity to ANA-related populations, indicating the Northeast Asian origin of SXJK. The West and East Eurasian admixture models observed in SXJK further provided evidence of the dynamic admixture history in Xinjiang. The east-west admixture pattern and the identified ancestral makeup of SXJK suggested a genetic continuity from some Iron Age Xinjiang populations to present-day SXJK.
Collapse
Affiliation(s)
- Bubibatima Halili
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiangjun Hai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Su Y, Tang Y, Tang X, Shen Y. Case report of a pediatric Chinese cystic fibrosis patient with the c.1521_1523delCTT/c.3874-4522A>G genotype. Pediatr Pulmonol 2023; 58:556-558. [PMID: 36349818 DOI: 10.1002/ppul.26236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/15/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
This report describes a case of an 11-year-old Chinese boy with cystic fibrosis (CF) bearing the c.1521_1523delCTT/c.3874-4522A>G genotype, an extremely rare CF genotype in the Chinese population. Notably, the deep intron mutation c.3874-4522A>G, which has mainly been reported in patients with phenotypically mild CF, is identified here for the first time in a Chinese patient with severe CF. In the case discussed here, the c.3874-4522A>G mutation was associated with severe pulmonary disease with early symptoms onset, progressive bronchiectasis, recurrent airway infection with both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus, rapid decline of lung function and poor weight gain. Despite intensive hospital-based pulmonary care and optimized therapy, the child died of cardiopulmonary failure 3 months after discharge.
Collapse
Affiliation(s)
- Yanyan Su
- Respiratory Departement, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou children's Hospital, Zhengzhou, Henan, China
| | - Yu Tang
- Respiratory Departement, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou children's Hospital, Zhengzhou, Henan, China
| | - Xiaolei Tang
- Department II of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yuelin Shen
- Department II of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
5
|
Hou X, Zhang X, Li X, Huang T, Li W, Zhang H, Huang H, Wen Y. Genomic insights into the genetic structure and population history of Mongolians in Liaoning Province. Front Genet 2022; 13:947758. [PMID: 36313460 PMCID: PMC9596793 DOI: 10.3389/fgene.2022.947758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
The Mongolian population exceeds six million and is the largest population among the Mongolic speakers in China. However, the genetic structure and admixture history of the Mongolians are still unclear due to the limited number of samples and lower coverage of single-nucleotide polymorphism (SNP). In this study, we genotyped genome-wide data of over 700,000 SNPs in 38 Mongolian individuals from Fuxin in Liaoning Province to explore the genetic structure and population history based on typical and advanced population genetic analysis methods [principal component analysis (PCA), admixture, FST, f3-statistics, f4-statistics, qpAdm/qpWave, qpGraph, ALDER, and TreeMix]. We found that Fuxin Mongolians had a close genetic relationship with Han people, northern Mongolians, other Mongolic speakers, and Tungusic speakers in East Asia. Also, we found that Neolithic millet farmers in the Yellow River Basin and West Liao River Basin and Neolithic hunter–gatherers in the Mongolian Plateau and Amur River Basin were the dominant ancestral sources, and there were additional gene flows related to Eurasian Steppe pastoralists and Neolithic Iranian farmers in the gene pool of Fuxin Mongolians. These results shed light on dynamic demographic history, complex population admixture, and multiple sources of genetic diversity in Fuxin Mongolians.
Collapse
|