1
|
Nikolova SE, Kamburova ZB, Vasilev PP, Kovacheva KS, Yordanova IA. Autosomal recessive type of dystrophic epidermolysis bullosa with a novel variant in the COL7A1 gene. Biomed Rep 2024; 21:167. [PMID: 39301563 PMCID: PMC11411400 DOI: 10.3892/br.2024.1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
Epidermolysis bullosa (EB) is an inherited skin condition whose hallmark is skin fragility caused by minimal trauma or friction. The dystrophic type of EB (DEB), accounting for 30% of all cases, is caused by mutations in the gene encoding type VII collagen α1 chain (COL7A1). It is inherited in an autosomal-dominant or autosomal-recessive manner. The clinical manifestations tend to be variable and frequently overlapping. Therefore, genetic testing is of great significance for establishing an exact genetic diagnosis. The present case study reports on a female patient with a clinical diagnosis of DEB, who had an inconclusive phenotype with no family history of DEB. Genetic analysis of the patient, via next-generation sequencing, revealed a compound heterozygous state for the COL7A1 gene. Segregation analysis revealed the parental origin of both variants-a missense variant [c.6022C>T p.(Arg2008Cys)] inherited from the father and a novel frameshift variant [c.3474del p.(Val1160Ter)] inherited from the mother. The established result assigned an exact genetic diagnosis and type of inheritance and allowed the personalization of the genetic counseling for this patient with regard to prognosis and future reproduction.
Collapse
Affiliation(s)
- Slavena Enkova Nikolova
- Department of Medical Genetics, Medical University-Pleven, Center of Medical Genetics, 'Dr Georgi Stranski' University Hospital, 5800 Pleven, Bulgaria
| | - Zornitsa Bogomilova Kamburova
- Department of Medical Genetics, Medical University-Pleven, Center of Medical Genetics, 'Dr Georgi Stranski' University Hospital, 5800 Pleven, Bulgaria
| | - Preslav Plamenov Vasilev
- Department of Dermatology, Venereology and Allergology, Medical University-Pleven, 'Dr Georgi Stranski' University Hospital, 5800 Pleven, Bulgaria
| | - Katya Stefanova Kovacheva
- Department of Medical Genetics, Medical University-Pleven, Center of Medical Genetics, 'Dr Georgi Stranski' University Hospital, 5800 Pleven, Bulgaria
| | - Ivelina Asparuhova Yordanova
- Department of Dermatology, Venereology and Allergology, Medical University-Pleven, 'Dr Georgi Stranski' University Hospital, 5800 Pleven, Bulgaria
| |
Collapse
|
2
|
Primerano A, De Domenico E, Cianfarani F, De Luca N, Floriddia G, Teson M, Cristofoletti C, Cardarelli S, Scaglione GL, Baldini E, Cangelosi D, Uva P, Reinoso Sánchez JF, Roubaty C, Dengjel J, Nyström A, Mastroeni S, Ulisse S, Castiglia D, Odorisio T. Histone deacetylase inhibition mitigates fibrosis-driven disease progression in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2024; 191:568-579. [PMID: 38820176 DOI: 10.1093/bjd/ljae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering disease caused by mutations in the gene encoding type VII collagen (C7). RDEB is associated with fibrosis, which is responsible for severe complications. The phenotypic variability observed in siblings with RDEB suggests that epigenetic modifications contribute to disease severity. Identifying epigenetic changes may help to uncover molecular mechanisms underlying RDEB pathogenesis and new therapeutic targets. OBJECTIVES To investigate histone acetylation in RDEB skin and to explore histone deacetylase inhibitors (HDACi) as therapeutic molecules capable of counteracting fibrosis and disease progression in RDEB mice. METHODS Acetylated histone levels were detected in human skin by immunofluorescence and in RDEB fibroblasts by enzyme-linked immunosorbent assay (ELISA). The effects of givinostat and valproic acid (VPA) on RDEB fibroblast fibrotic behaviour were assessed by a collagen-gel contraction assay, Western blot and immunocytofluorescence for α-smooth muscle actin, and ELISA for released transforming growth factor (TGF)-β1. RNA sequencing was performed in HDACi- and vehicle-treated RDEB fibroblasts. VPA was systemically administered to RDEB mice and effects on overt phenotype were monitored. Fibrosis was investigated in the skin using histological and immunofluorescence analyses. Eye and tongue defects were examined microscopically. Mass spectrometry proteomics was performed on skin protein extracts from VPA-treated RDEB and control mice. RESULTS Histone acetylation decreases in RDEB skin and primary fibroblasts. RDEB fibroblasts treated with HDACi lowered fibrotic traits, including contractility, TGF-β1 release and proliferation. VPA administration to RDEB mice mitigated severe manifestations affecting the eyes and paws. These effects were associated with fibrosis inhibition. Proteomic analysis of mouse skin revealed that VPA almost normalized protein sets involved in protein synthesis and immune response, processes linked to the increased susceptibility to cancer and bacterial infections seen in people with RDEB. CONCLUSIONS Dysregulated histone acetylation contributes to RDEB pathogenesis by facilitating the progression of fibrosis. Repurposing of HDACi could be considered for disease-modifying treatments in RDEB.
Collapse
Affiliation(s)
| | | | | | - Naomi De Luca
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | | | - Massimo Teson
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| | | | - Silvia Cardarelli
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | | | - Enke Baldini
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | - Davide Cangelosi
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Uva
- Clinical Bioinformatics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Carole Roubaty
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alexander Nyström
- Department of Dermatology, University of Freiburg, Freiburg, Germany
| | | | - Salvatore Ulisse
- Laboratory of Experimental Medicine, Department of Surgery, Sapienza University, Rome, Italy
| | | | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, Rome, Italy
| |
Collapse
|
3
|
So JY, Nazaroff J, Yenamandra VK, Gorell ES, Harris N, Fulchand S, Eid E, Dolorito JA, Marinkovich MP, Tang JY. Functional genotype-phenotype associations in recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol 2024; 91:448-456. [PMID: 38735484 DOI: 10.1016/j.jaad.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Genotype-phenotype associations in recessive dystrophic epidermolysis bullosa (RDEB) have been difficult to elucidate. OBJECTIVE To investigate RDEB genotype-phenotype associations and explore a functional approach to genotype classification. METHODS Clinical examination and genetic testing of RDEB subjects, including assessment of clinical disease by RDEB subtype and extent of blistering. Genotypes were evaluated according to each variant's effect on type VII collagen function per updated literature and subsequently categorized by degree of impact on VII collagen function as low-impact (splice/missense, missense/missense), medium-impact (premature termination codon [PTC]/missense, splice/splice), and high-impact (PTC/PTC, PTC/splice). Genotype-phenotype associations were investigated using Kruskal-Wallis and Fisher's exact tests, and age-adjusted regressions. RESULTS Eighty-three participants were included. High-impact variants were associated with worse RDEB subtype and clinical disease, including increased prevalence of generalized blistering (55.6% for low-impact vs 72.7% medium-impact vs 90.4% high-impact variants, P = .002). In age-adjusted regressions, participants with high-impact variants had 40.8-fold greater odds of squamous cell carcinoma compared to low-impact variants (P = .02), and 5.7-fold greater odds of death compared to medium-impact variants (P = .05). LIMITATIONS Cross-sectional design. CONCLUSION Functional genotype categories may stratify RDEB severity; high-impact variants correlated with worse clinical outcomes. Further validation in larger cohorts is needed.
Collapse
Affiliation(s)
- Jodi Y So
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Jaron Nazaroff
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Vamsi K Yenamandra
- CSIR-Institute of Genomics & Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| | - Emily S Gorell
- Division of Dermatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nicki Harris
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Shivali Fulchand
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Edward Eid
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - John A Dolorito
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University School of Medicine, Stanford, California; Dermatology Service, Veterans Affairs Palo Alto Medical Center, Palo Alto, California
| | - Jean Y Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
4
|
Quintana‐Castanedo L, Sánchez‐Ramón S, Maseda R, Illera N, Pérez‐Conde I, Molero‐Luis M, Butta N, Arias‐Salgado EG, Monzón‐Manzano E, Zuluaga P, Martínez‐Santamaría L, Fernández‐Arquero M, Llames SG, Meana Á, de Lucas R, del Río M, Vicente Á, Escámez MJ, Sacedón R. Unveiling the value of C-reactive protein as a severity biomarker and the IL4/IL13 pathway as a therapeutic target in recessive dystrophic epidermolysis bullosa: A multiparametric cross-sectional study. Exp Dermatol 2024; 33:e15146. [PMID: 39075828 PMCID: PMC11605501 DOI: 10.1111/exd.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Patients with recessive dystrophic epidermolysis bullosa (RDEB) experience numerous complications, which are exacerbated by inflammatory dysregulation and infection. Understanding the immunological mechanisms is crucial for selecting medications that balance inflammation control and immunocompetence. In this cross-sectional study, aiming to identify potential immunotherapeutic targets and inflammatory biomarkers, we delved into the interrelationship between clinical severity and systemic inflammatory parameters in a representative RDEB cohort. Encompassing 84 patients aged 1-67 and spanning all three Epidermolysis Bullosa Disease Activity and Scarring Index (EBDASI) severity categories, we analysed the interrelationship of infection history, standard inflammatory markers, systemic cytokines and Ig levels to elucidate their roles in RDEB pathophysiology. Our findings identify C-reactive protein as an excellent biomarker for disease severity in RDEB. A type 2 inflammatory profile prevails among moderate and severe RDEB patients, correlating with dysregulated circulating IgA and IgG. These results underscore the IL4/IL13 pathways as potential evidence-based therapeutic targets. Moreover, the complete inflammatory scenario aligns with Staphylococcus aureus virulence mechanisms. Concurrently, abnormalities in IgG, IgE and IgM levels suggest an immunodeficiency state in a substantial number of the cohort's patients. Our results provide new insights into the interplay of infection and immunological factors in the pathogenesis of RDEB.
Collapse
Affiliation(s)
- Lucía Quintana‐Castanedo
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
- Department of DermatologyMarqués de Valdecilla University HospitalSantanderSpain
| | - Silvia Sánchez‐Ramón
- Department of Immunology, IML and IdISSC Health Research InstituteHospital Clínico San CarlosMadridSpain
| | - Rocío Maseda
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Nuria Illera
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Isabel Pérez‐Conde
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | | | - Nora Butta
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Elena G. Arias‐Salgado
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Elena Monzón‐Manzano
- Department of Hematology and Hemotherapy, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Pilar Zuluaga
- Department of Statistics and Operations ResearchFaculty of MedicineMadridSpain
| | - Lucía Martínez‐Santamaría
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Miguel Fernández‐Arquero
- Department of Immunology, IML and IdISSC Health Research InstituteHospital Clínico San CarlosMadridSpain
| | - Sara G. Llames
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
- Unidad de Ingeniería TisularCentro Comunitario Sangre y Tejidos de Asturias (CCST)OviedoSpain
- Instituto Universitario Fernández‐Vega, Fundación de Investigación Oftalmológica (FIO)OviedoSpain
| | - Álvaro Meana
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Unidad de Ingeniería TisularCentro Comunitario Sangre y Tejidos de Asturias (CCST)OviedoSpain
- Instituto Universitario Fernández‐Vega, Fundación de Investigación Oftalmológica (FIO)OviedoSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)OviedoSpain
| | - Raúl de Lucas
- Department of Dermatology, IdiPAZ Health Research InstituteHospital La PazMadridSpain
| | - Marcela del Río
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of MedicineUCM, Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - María José Escámez
- Departamento de BioingenieríaUniversidad Carlos III de MadridMadridSpain
- Centro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)‐ISCIIIMadridSpain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD, UAM)MadridSpain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of MedicineUCM, Health Research Institute of the Hospital Clínico San Carlos (IdISSC)MadridSpain
| |
Collapse
|
5
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Kawakami Y, Kajita A, Hasui KI, Matsuda Y, Iwatsuki K, Morizane S. Elevated expression of interleukin-6 (IL-6) and serum amyloid A (SAA) in the skin and the serum of recessive dystrophic epidermolysis bullosa: Skin as a possible source of IL-6 through Toll-like receptor ligands and SAA. Exp Dermatol 2024; 33:e15040. [PMID: 38429888 DOI: 10.1111/exd.15040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/17/2024] [Accepted: 02/10/2024] [Indexed: 03/03/2024]
Abstract
The effect of persistent skin inflammation on extracutaneous organs and blood is not well studied. Patients with recessive dystrophic epidermolysis bullosa (RDEB), a severe form of the inherited blistering skin disorder, have widespread and persistent skin ulcers, and they develop various complications including anaemia, hyperglobulinaemia, hypoalbuminaemia and secondary amyloidosis. These complications are associated with the bioactivities of IL-6, and the development of secondary amyloidosis requires the persistent elevation of serum amyloid A (SAA) level. We found that patients with RDEB had significantly higher serum levels of IL-6 and SAA compared to healthy volunteers and patients with psoriasis or atopic dermatitis. Both IL-6 and SAA were highly expressed in epidermal keratinocytes and dermal fibroblasts of the skin ulcer lesions. Keratinocytes and fibroblasts surrounding the ulcer lesions are continuously exposed to Toll-like receptor (TLR) ligands, pathogen-associated and damage-associated molecular pattern molecules. In vitro, TLR ligands induced IL-6 expression via NF-κB in normal human epidermal keratinocytes (NHEKs) and dermal fibroblasts (NHDFs). SAA further induced the expression of IL-6 via TLR1/2 and NF-κB in NHEKs and NHDFs. The limitation of this study is that NHEKs and NHDFs were not derived from RDEB patients. These observations suggest that TLR-mediated persistent skin inflammation might increase the risk of IL-6-related systemic complications, including RDEB.
Collapse
Affiliation(s)
- Yoshio Kawakami
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ai Kajita
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken-Ichi Hasui
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Matsuda
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
7
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Rafei-Shamsabadi D, Scholten L, Lu S, Castiglia D, Zambruno G, Volz A, Arnold A, Saleva M, Martin L, Technau-Hafsi K, Meiss F, von Bubnoff D, Has C. Epidermolysis-Bullosa-Associated Squamous Cell Carcinomas Support an Immunosuppressive Tumor Microenvironment: Prospects for Immunotherapy. Cancers (Basel) 2024; 16:471. [PMID: 38275911 PMCID: PMC10814073 DOI: 10.3390/cancers16020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Cutaneous squamous cell carcinomas (SCCs) are a major complication of some subtypes of epidermolysis bullosa (EB), with high morbidity and mortality rates and unmet therapeutic needs. The high rate of endogenous mutations and the fibrotic stroma are considered to contribute to the pathogenesis. Patients with dystrophic EB (DEB) and Kindler EB (KEB) have the highest propensity for developing SCCs. Another patient group that develops high-risk SCCs is immunosuppressed (IS) patients, especially after organ transplantation. Herein, we interrogate whether immune checkpoint proteins and immunosuppressive enzymes are dysregulated in EB-associated SCCs as an immune resistance mechanism and compare the expression patterns with those in SCCs from IS patients, who frequently develop high-risk tumors and sporadic SCCs, and immunocompetent (IC) individuals. The expression of indoleamine 2,3-dioxygenase (IDO), programmed cell death protein-1 (PD-1), programmed cell death ligand-1 (PD-L1), T cell immunoglobulin and mucin-domain-containing protein-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), and inflammatory infiltrates (CD4, CD8, and CD68) was assessed via immunohistochemistry and semi-quantitative analysis in 30 DEB-SCCs, 22 KEB-SCCs, 106 IS-SCCs, and 100 sporadic IC-SCCs. DEB-SCCs expressed significantly higher levels of IDO and PD-L1 in tumor cells and PD-1 in the tumor microenvironment (TME) compared with SCCs from IC and IS individuals. The number of CD4-positive T cells per mm2 was significantly lower in DEB-SCCs compared with IC-SCCs. KEB-SCCs showed the lowest expression of the exhaustion markers TIM-3 and LAG-3 compared with all other groups. These findings identify IDO, PD-1, and PD-L1 to be increased in EB-SCCs and candidate targets for combinatory treatments, especially in DEB-SCCs.
Collapse
Affiliation(s)
- David Rafei-Shamsabadi
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Lena Scholten
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Sisi Lu
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Via Monti di Creta 104, 00167 Rome, Italy;
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00165 Rome, Italy;
| | - Andreas Volz
- Dermatologie am Rhein, 4051 Basel, Switzerland (A.A.)
| | | | - Mina Saleva
- Department of Dermatology and Venereology, University Hospital “Alexandrovska”, Faculty of Medicine, Sofia University of Medicine, 1431 Sofia, Bulgaria;
| | - Ludovic Martin
- MAGEC Nord Reference Center for Rare Skin Diseases, Department of Dermatology, Angers University Hospital, 49933 Angers, France;
| | - Kristin Technau-Hafsi
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Frank Meiss
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| | - Dagmar von Bubnoff
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany;
| | - Cristina Has
- Department of Dermatology, Medical Center—University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany; (L.S.); (S.L.); (K.T.-H.); (F.M.); (C.H.)
| |
Collapse
|
9
|
Hainzl S, Trattner L, Liemberger B, Bischof J, Kocher T, Ablinger M, Nyström A, Obermayer A, Klausegger A, Guttmann-Gruber C, Wally V, Bauer JW, Hofbauer JP, Koller U. Splicing Modulation via Antisense Oligonucleotides in Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2024; 25:761. [PMID: 38255836 PMCID: PMC10815346 DOI: 10.3390/ijms25020761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) patient cells carrying a frequent genomic variant (c.425A > G) that disrupts splicing in the COL7A1 gene by using short 2'-O-(2-Methoxyethyl) oligoribo-nucleotides (2'-MOE ASOs). COL7A1-encoded type VII collagen (C7) forms the anchoring fibrils within the skin that are essential for the attachment of the epidermis to the underlying dermis. As such, gene variants of COL7A1 leading to functionally impaired or absent C7 manifest in the form of extensive blistering and wounding. The severity of the disease pattern warrants the development of novel therapies for patients. The c.425A > G variant at the COL7A1 exon 3/intron 3 junction lowers the efficiency of splicing at this junction, resulting in non-functional C7 transcripts. However, we found that correct splicing still occurs, albeit at a very low level, highlighting an opportunity for intervention by modulating the splicing reaction. We therefore screened 2'-MOE ASOs that bind along the COL7A1 target region ranging from exon 3 to the intron 3/exon 4 junction for their ability to modulate splicing. We identified ASOs capable of increasing the relative levels of correctly spliced COL7A1 transcripts by RT-PCR, sqRT-PCR, and ddPCR. Furthermore, RDEB-derived skin equivalents treated with one of the most promising ASOs exhibited an increase in full-length C7 expression and its accurate deposition along the basement membrane zone (BMZ).
Collapse
Affiliation(s)
- Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Lisa Trattner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center—University of Freiburg, 79110 Freiburg, Germany;
| | - Astrid Obermayer
- Core Facility of Electron Microscopy, Department of Environment & Biodiversity, Paris Lodron University Salzburg (PLUS Salzburg), 5020 Salzburg, Austria;
| | - Alfred Klausegger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Johann W. Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (S.H.); (L.T.); (B.L.); (J.B.); (T.K.); (M.A.); (A.K.); (C.G.-G.); (V.W.); (J.P.H.)
| |
Collapse
|
10
|
Illmer J, Zauner R, Piñón Hofbauer J, Wimmer M, Gruner S, Ablinger M, Bischof J, Dorfer S, Hainzl S, Tober V, Bergson S, Sarig O, Samuelov L, Guttmann-Gruber C, Shalom-Feuerstein R, Sprecher E, Koller U, Laimer M, Bauer JW, Wally V. MicroRNA-200b-mediated reversion of a spectrum of epithelial-to-mesenchymal transition states in recessive dystrophic epidermolysis bullosa squamous cell carcinomas. Br J Dermatol 2023; 190:80-93. [PMID: 37681509 DOI: 10.1093/bjd/ljad335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.
Collapse
Affiliation(s)
- Julia Illmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Monika Wimmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Stefanie Gruner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Sonja Dorfer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Vanessa Tober
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Shir Bergson
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Martin Laimer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
11
|
Niida Y, Kobayashi A, Togi S, Ura H. Recessive dystrophic epidermolysis bullosa caused by a novel COL7A1 variant with isodisomy. Hum Genome Var 2023; 10:29. [PMID: 37985760 PMCID: PMC10661991 DOI: 10.1038/s41439-023-00257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
Recessive dystrophic epidermolysis bullosa is a genetic collagen disorder characterized by skin fragility that leads to generalized severe blistering, wounds, and scarring. In this report, we present a patient with a novel COL7A1 homozygous nonsense variant, c.793C>T p.(Gln265*). Although the parents were not consanguineous, both were heterozygous carriers of the variant. Single nucleotide polymorphism (SNP) array analysis revealed an isodisomy area on 3p22.1p21.1, encompassing COL7A1, suggesting that the variant originated from a common ancestor.
Collapse
Affiliation(s)
- Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Uchinada, Japan.
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Uchinada, Japan.
| | - Azusa Kobayashi
- Department of Pediatrics, Kanazawa Medical University, Ishikawa, Uchinada, Japan
| | - Sumihito Togi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Uchinada, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Uchinada, Japan
| | - Hiroki Ura
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Uchinada, Japan
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Uchinada, Japan
| |
Collapse
|
12
|
Sacedón R, de Arriba MC, Martínez-Santamaría L, Maseda R, Herráiz-Gil S, Jiménez E, Rosales I, Quintana L, Illera N, García M, Butta N, Fernández-Bello I, Lwin SM, Fernández-Arquero M, León C, McGrath JA, Vicente MÁ, Del Río M, de Lucas R, Sánchez-Ramón S, Escámez MJ. Gluten-sensitive enteropathy in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2023; 189:774-776. [PMID: 37655918 DOI: 10.1093/bjd/ljad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering genodermatosis due to biallelic loss-of-function variants in the type VII collagen (C7) gene (COL7A1). We report the impact of inflammation/autoimmunity on the gut (and other organs) in the nine children with RDEB recruited to an early-phase clinical trial of systemic cell therapy (NCT04153630). This pilot study provides evidence that autoimmunity may play an important role in sustaining chronic inflammation and the coexistence of coeliac disease, which, in turn, could exacerbate anaemia/malnutrition and progression in RDEB. Testing this hypothesis in a larger cohort including children and adults with RDEB and other epidermolysis bullosa (EB) subtypes is warranted so that targeted interventions may improve outcomes.
Collapse
Affiliation(s)
- Rosa Sacedón
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense, Madrid
- Instituto de Investigación Sanitaria
| | - M Carmen de Arriba
- Departamento de Bioingeniería, Universidad Carlos III de Madrid; Centro de Investigación Biomédica en Red de Enfermedades Raras-ISCIII; Instituto de Investigación Sanitaria Fundación Jiménez Diaz; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid
| | - Lucía Martínez-Santamaría
- Departamento de Bioingeniería, Universidad Carlos III de Madrid; Centro de Investigación Biomédica en Red de Enfermedades Raras-ISCIII; Instituto de Investigación Sanitaria Fundación Jiménez Diaz; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid
| | | | - Sara Herráiz-Gil
- Departamento de Bioingeniería, Universidad Carlos III de Madrid; Centro de Investigación Biomédica en Red de Enfermedades Raras-ISCIII; Instituto de Investigación Sanitaria Fundación Jiménez Diaz; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid
| | - Eva Jiménez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense, Madrid
- Instituto de Investigación Sanitaria
| | - Isabel Rosales
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense, Madrid
- Instituto de Investigación Sanitaria
| | | | - Nuria Illera
- Departamento de Bioingeniería, Universidad Carlos III de Madrid; Centro de Investigación Biomédica en Red de Enfermedades Raras-ISCIII; Instituto de Investigación Sanitaria Fundación Jiménez Diaz; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid
| | - Marta García
- Departamento de Bioingeniería, Universidad Carlos III de Madrid; Centro de Investigación Biomédica en Red de Enfermedades Raras-ISCIII; Instituto de Investigación Sanitaria Fundación Jiménez Diaz; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid
| | - Nora Butta
- Servicio de Hematología y Hemoterapia, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ); Hospital Universitario La Paz, Madrid, Spain
| | - Ihosvany Fernández-Bello
- Servicio de Hematología y Hemoterapia, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ); Hospital Universitario La Paz, Madrid, Spain
| | - Su M Lwin
- St John's Institute of Dermatology, King's College London, London, UK
| | | | - Carlos León
- Departamento de Bioingeniería, Universidad Carlos III de Madrid; Centro de Investigación Biomédica en Red de Enfermedades Raras-ISCIII; Instituto de Investigación Sanitaria Fundación Jiménez Diaz; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | - M Ángeles Vicente
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense, Madrid
- Instituto de Investigación Sanitaria
| | - Marcela Del Río
- Departamento de Bioingeniería, Universidad Carlos III de Madrid; Centro de Investigación Biomédica en Red de Enfermedades Raras-ISCIII; Instituto de Investigación Sanitaria Fundación Jiménez Diaz; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid
| | | | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdISSC, Hospital Clínico San Carlos (IdISSC), Madrid
| | - María José Escámez
- Departamento de Bioingeniería, Universidad Carlos III de Madrid; Centro de Investigación Biomédica en Red de Enfermedades Raras-ISCIII; Instituto de Investigación Sanitaria Fundación Jiménez Diaz; Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid
| |
Collapse
|
13
|
South AP, Laimer M, Gueye M, Sui JY, Eichenfield LF, Mellerio JE, Nyström A. Type VII Collagen Deficiency in the Oncogenesis of Cutaneous Squamous Cell Carcinoma in Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2023; 143:2108-2119. [PMID: 37327859 DOI: 10.1016/j.jid.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFβ signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.
Collapse
Affiliation(s)
- Andrew P South
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Martin Laimer
- Department of Dermatology and Allergology and EB House Austria, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | | | - Jennifer Y Sui
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, San Diego, California, USA; Division of Pediatric Dermatology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Jemima E Mellerio
- St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
14
|
Sproule TJ, Wilpan RY, Wilson JJ, Low BE, Kabata Y, Ushiki T, Abe R, Wiles MV, Roopenian DC, Sundberg JP. Dystonin modifiers of junctional epidermolysis bullosa and models of epidermolysis bullosa simplex without dystonia musculorum. PLoS One 2023; 18:e0293218. [PMID: 37883475 PMCID: PMC10602294 DOI: 10.1371/journal.pone.0293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The Lamc2jeb junctional epidermolysis bullosa (EB) mouse model has been used to demonstrate that significant genetic modification of EB symptoms is possible, identifying as modifiers Col17a1 and six other quantitative trait loci, several with strong candidate genes including dystonin (Dst/Bpag1). Here, CRISPR/Cas9 was used to alter exon 23 in mouse skin specific isoform Dst-e (Ensembl GRCm38 transcript name Dst-213, transcript ID ENSMUST00000183302.5, protein size 2639AA) and validate a proposed arginine/glutamine difference at amino acid p1226 in B6 versus 129 mice as a modifier of EB. Frame shift deletions (FSD) in mouse Dst-e exon 23 (Dst-eFSD/FSD) were also identified that cause mice carrying wild-type Lamc2 to develop a phenotype similar to human EB simplex without dystonia musculorum. When combined, Dst-eFSD/FSD modifies Lamc2jeb/jeb (FSD+jeb) induced disease in unexpected ways implicating an altered balance between DST-e (BPAG1e) and a rarely reported rodless DST-eS (BPAG1eS) in epithelium as a possible mechanism. Further, FSD+jeb mice with pinnae removed are found to provide a test bed for studying internal epithelium EB disease and treatment without severe skin disease as a limiting factor while also revealing and accelerating significant nasopharynx symptoms present but not previously noted in Lamc2jeb/jeb mice.
Collapse
Affiliation(s)
| | - Robert Y. Wilpan
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - John J. Wilson
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Benjamin E. Low
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Yudai Kabata
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Riichiro Abe
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Michael V. Wiles
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
15
|
Ewald CY, Nyström A. Mechanotransduction through hemidesmosomes during aging and longevity. J Cell Sci 2023; 136:jcs260987. [PMID: 37522320 DOI: 10.1242/jcs.260987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Hemidesmosomes are structural protein complexes localized at the interface of tissues with high mechanical demand and shear forces. Beyond tissue anchoring, hemidesmosomes have emerged as force-modulating structures important for translating mechanical cues into biochemical and transcriptional adaptation (i.e. mechanotransduction) across tissues. Here, we discuss the recent insights into the roles of hemidesmosomes in age-related tissue regeneration and aging in C. elegans, mice and humans. We highlight the emerging concept of preserved dynamic mechanoregulation of hemidesmosomes in tissue maintenance and healthy aging.
Collapse
Affiliation(s)
- Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Schwerzenbach CH-8603, Switzerland
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg DE-79104, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albertstraße 19, Freiburg im Breisgau DE-79104, Germany
| |
Collapse
|
16
|
Niebergall-Roth E, Dieter K, Daniele C, Fluhr S, Khokhrina M, Silva I, Ganss C, Frank MH, Kluth MA. Kinetics of Wound Development and Healing Suggests a Skin-Stabilizing Effect of Allogeneic ABCB5 + Mesenchymal Stromal Cell Treatment in Recessive Dystrophic Epidermolysis Bullosa. Cells 2023; 12:1468. [PMID: 37296590 PMCID: PMC10252830 DOI: 10.3390/cells12111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Recessive dystrophic epidermolysis (RDEB) is a rare, inherited, and currently incurable skin blistering disorder characterized by cyclically recurring wounds coexisting with chronic non-healing wounds. In a recent clinical trial, three intravenous infusions of skin-derived ABCB5+ mesenchymal stromal cells (MSCs) to 14 patients with RDEB improved the healing of wounds that were present at baseline. Since in RDEB even minor mechanical forces perpetually provoke the development of new or recurrent wounds, a post-hoc analysis of patient photographs was performed to specifically assess the effects of ABCB5+ MSCs on new or recurrent wounds by evaluating 174 wounds that occurred after baseline. During 12 weeks of systemic treatment with ABCB5+ MSCs, the number of newly occurring wounds declined. When compared to the previously reported healing responses of the wounds present at baseline, the newly occurring wounds healed faster, and a greater portion of healed wounds remained stably closed. These data suggest a previously undescribed skin-stabilizing effect of treatment with ABCB5+ MSCs and support repeated dosing of ABCB5+ MSCs in RDEB to continuously slow the wound development and accelerate the healing of new or recurrent wounds before they become infected or progress to a chronic, difficult-to-heal stage.
Collapse
Affiliation(s)
| | | | | | - Silvia Fluhr
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | | | - Ines Silva
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | | | - Markus H. Frank
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | | |
Collapse
|
17
|
Li H, Roy T, Boateng ST, He H, Liu C, Liu W, Li D, Wu P, Seeram NP, Chamcheu JC, Ma H. Standardized Pomegranate (Pomella ®) and Red Maple (Maplifa ®) Extracts and Their Phenolics Protect Type I Collagen by the Inhibition of Matrix Metalloproteinases, Collagenase, and Collagen Cross-Linking. Molecules 2022; 27:7919. [PMID: 36432019 PMCID: PMC9696304 DOI: 10.3390/molecules27227919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolics enriched pomegranate fruit (Pomella®) and red maple leaf (Maplifa®) extracts and their major phenolic constituents have demonstrated beneficial skin effects through the protection of human skin keratinocytes from oxidative-stress-induced damage. However, their mechanisms of protection of cutaneous collagen are still unclear. Herein, the collagen protective effects of Pomella® and Maplifa®, and their major bioactive phytochemicals, namely, punicalagin (PA) and ginnalin A (GA), respectively, were evaluated using enzymatic assays including collagenase, anti-glycation and cell-based models as well as computational methods. The importance of the modulatory effects was validated at the protein level for type I collagen and matrix metalloproteinases (MMPs) using human-skin-derived keratinocytes. The synergistic collagenase inhibitory effects upon combinations of Pomella® + Maplifa® and PA + GA at a combination ratio of 1:2 and 1:1, respectively, were evaluated using their combination index (CI; a well-established assessment of synergism). Pomella® (50-400 µg/mL), Maplifa® (100-800 µg/mL), PA (50-400 µM), and GA (50-400 µM) dose-dependently inhibited collagenase activity by 26.3-86.3%, 25.7-94.0%, 26.2-94.0%, and 12.0-98.0%, respectively. The CI of the anti-collagenase activity of Pomella® and Maplifa® ranged from 0.53-0.90, while that of PA and GA (12.5/12.5 and 25/25 µM) ranged from 0.66 and 0.69, respectively, suggesting a synergistic inhibitory effect. Interestingly, in the cell-based assays by Western blotting, Pomella® and Maplifa® reduced the protein expression levels of collagen degradation enzymes (MMPs), while simultaneously increasing that of type I collagen in epidermoid carcinoma A431 cells. This is the first report to show that these extracts exert synergistic collagen protective effects. Taken together, these findings provide molecular insights into the usefulness of Pomella® and Maplifa® or their phenolics as bioactive ingredients for skin care products to slow down aging and enhance skin tone.
Collapse
Affiliation(s)
- Huifang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Hao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Weixi Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
18
|
Identification of Potential Prognostic Biomarkers Associated with Monocyte Infiltration in Lung Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6860510. [PMID: 35993054 PMCID: PMC9388304 DOI: 10.1155/2022/6860510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
The five-year survival rate of lung squamous cell carcinoma is significantly lower than that of other cancer types. It is therefore urgent to discover novel prognosis biomarkers and therapeutic targets and understand their correction with infiltrating immune cells to improve the prognosis of patients with lung squamous cell carcinoma. In this study, we employed robust rank aggregation algorithms to overcome the shortcomings of small sizes and potential bias in each Gene Expression Omnibus dataset of lung squamous cell carcinoma and identified 513 robust differentially expressed genes including 220 upregulated and 293 downregulated genes from six microarray datasets. Functional enrichment analysis showed that these robust differentially expressed genes were obviously involved in the extracellular matrix and structure organization, epidermis development, cell adhesion molecule binding, p53 signaling pathway, and interleukin-17 signaling pathway to affect the progress of lung squamous cell carcinoma. We further identified six hub genes from 513 robust differentially expressed genes by protein-protein interaction network and 10 topological analyses. Moreover, the results of immune cell infiltration analysis from six integrated Gene Expression Omnibus datasets and our sequencing transcriptome data demonstrated that the abundance of monocytes was significantly lower in lung squamous cell carcinoma compared to controls. Immune correlation analysis and survival analysis of hub genes suggested that three hub genes, collagen alpha-1(VII) chain, mesothelin, and chordin-like protein 1, significantly correlated with tumor-infiltrating monocytes as well as may be potential prognostic biomarkers and therapy targets in lung squamous cell carcinoma. The investigation of the correlation of hub gene markers and infiltrating monocytes can also improve to well understand the molecular mechanisms of lung squamous cell carcinoma development.
Collapse
|
19
|
Lehr S, Felber F, Tantcheva-Poór I, Keßler C, Eming R, Nyström A, Rizzi M, Kiritsi D. Occurrence of autoantibodies against skin proteins in patients with hereditary epidermolysis bullosa predisposes to development of autoimmune blistering disease. Front Immunol 2022; 13:945176. [PMID: 35958577 PMCID: PMC9358991 DOI: 10.3389/fimmu.2022.945176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Skin blistering disorders are associated with inherited defects in proteins involved in the dermal-epidermal adhesion or autoantibodies targeting those proteins. Although blistering in hereditary epidermolysis bullosa (EB) is pathogenetically linked to genetic deficiency of distinct proteins of the epidermis or the dermal-epidermal junction, circulating autoantibodies against these proteins have also been identified in EB patients. So far, autoantibodies have been considered bystanders in EB and active pathogenicity of them in EB has not been disclosed. In sera of a cohort of 258 EB patients, we found by ELISA in 22% of the patients autoantibodies against the bullous pemphigoid antigen BP180. The titers correlated negatively with collagen VII skin expression and positively with disease severity. Among those patients, we identified six (2.33%) with clinical features of an autoimmune bullous disorder (AIBD) and positive indirect immunofluorescence (IIF) staining. In literature, we found four more cases of EB patients developing disease-aggravating AIBD. Co-existence of these two rare skin disorders suggests that EB patients have a predisposition for the development of AIBD. Our work highlights that EB patients with increased itch or blister formation should be evaluated for additional AIBD and repeated screening for changes in autoantibody titers and skin-binding specificities is advised.
Collapse
Affiliation(s)
- Saskia Lehr
- Department of Dermatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felicitas Felber
- Department of Dermatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Christina Keßler
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Dimitra Kiritsi,
| |
Collapse
|
20
|
Ehl S, Thimme R. Immune‐mediated pathology as a consequence of impaired immune reactions: the IMPATH paradox. Eur J Immunol 2022; 52:1386-1389. [DOI: 10.1002/eji.202250069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine Medical Center ‐ University of Freiburg Freiburg Germany
| | - Robert Thimme
- Dept. of Medicine II, Medical Center ‐ University of Freiburg and Faculty of Medicine Medical Center ‐ University of Freiburg Freiburg Germany
| |
Collapse
|
21
|
Schauer F, Nyström A, Kunz M, Hübner S, Scholl S, Athanasiou I, Alter S, Fischer J, Has C, Kiritsi D. Case Report: Diagnostic and Therapeutic Challenges in Severe Mechanobullous Epidermolysis Bullosa Acquisita. Front Immunol 2022; 13:883967. [PMID: 35464429 PMCID: PMC9021387 DOI: 10.3389/fimmu.2022.883967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Collagen VII is the main constituent of the anchoring fibrils, important adhesive structures that attach the epidermis to the dermal extracellular matrix. Two disorders are caused by dysfunction of collagen VII, both characterized by skin and mucosa fragility, epidermolysis bullosa acquisita (EBA) and dystrophic epidermolysis bullosa (DEB). EBA and DEB share high clinical similarities with significant difference in patients’ age of onset and pathogenesis. Our patients presented with severe and recalcitrant mechanobullous EBA with characteristic DIF, IIF and ELISA diagnostics. But in both women recessive COL7A1 variants were also found, in a monoallelic state. Collagen VII from EBA keratinocytes of our cases was significantly more vulnerable to proteolytic degradation than control keratinocytes, hinting that the heterozygous pathogenic variants were sufficient to destabilize the molecule in vitro. Thus, even if the amount and functionality of mutant and normal type VII collagen polypeptides is sufficient to assure dermal-epidermal adhesion in healthy individuals, the functionally-impaired proteins are probably more prone to development of autoantibodies against them. Our work suggests that testing for COL7A1 genetic variants should be considered in patients with EBA, which either have a patient history hinting towards underlying dystrophic epidermolysis bullosa or pose therapeutic challenges.
Collapse
Affiliation(s)
- Franziska Schauer
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Leipzig, Germany
| | - Stefanie Hübner
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Scholl
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ioannis Athanasiou
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Svenja Alter
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Judith Fischer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Minguet S, Nyström A, Kiritsi D, Rizzi M. Inborn errors of immunity and immunodeficiencies: antibody-mediated pathology and autoimmunity as a consequence of impaired immune reactions. Eur J Immunol 2022; 52:1396-1405. [PMID: 35443081 DOI: 10.1002/eji.202149529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
B cell tolerance to self-antigen is an active process that requires the temporal and spatial integration of signals of defined intensity. In common variable immune deficiency disorders (CVID), CTLA-4 deficiency, autoimmune lymphoproliferative syndrome (ALPS), or in collagen VII deficiency, genetic defects in molecules regulating development, activation, maturation and extracellular matrix composition alter the generation of B cells, resulting in immunodeficiency. Paradoxically, at the same time, the defective immune processes favor autoantibody production and immunopathology through impaired establishment of tolerance. The development of systemic autoimmunity in the framework of defective BCR signaling is relatively unusual in genetic mouse models. In sharp contrast, such reduced signaling in humans is clearly linked to pathological autoimmunity. The molecular mechanisms by which tolerance is broken in these settings are only starting to be explored resulting in novel therapeutic interventions. For instance, in CTLA-4 deficiency, homeostasis can be restored by CTLA-4 Ig treatment. Following this example, the identification of the molecular targets causing the reduced signals and their restoration is a visionary way to reestablish tolerance and develop novel therapeutic avenues for immunopathologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Susana Minguet
- Faculty of Biology, Albert-Ludwigs-University, of, Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University, of, Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University, Clinics, and, Medical, Faculty, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University, of, Freiburg
| | - Alexander Nyström
- Freiburg Institute for Advanced Studies (FRIAS), University, of, Freiburg.,Department of Dermatology, Medical Faculty, Medical, Center, -, University, of, Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Faculty, Medical, Center, -, University, of, Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Signalling Research Centres BIOSS and CIBSS, University, of, Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University, Clinics, and, Medical, Faculty, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University, of, Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Chen F, Wang Y, Wang X, Yao Z, Li M. Complex genetic models in dystrophic epidermolysis bullosa families with marked intra-familial phenotypic heterogeneity. J Eur Acad Dermatol Venereol 2022; 36:e550-e553. [PMID: 35181940 DOI: 10.1111/jdv.18020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- F Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Y Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - X Wang
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Z Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - M Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|