1
|
Andress Huacachino A, Joo J, Narayanan N, Tehim A, Himes BE, Penning TM. Aldo-keto reductase (AKR) superfamily website and database: An update. Chem Biol Interact 2024; 398:111111. [PMID: 38878851 PMCID: PMC11232437 DOI: 10.1016/j.cbi.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The aldo-keto reductase (AKR) superfamily is a large family of proteins found across the kingdoms of life. Shared features of the family include 1) structural similarities such as an (α/β)8-barrel structure, disordered loop structure, cofactor binding site, and a catalytic tetrad, and 2) the ability to catalyze the nicotinamide adenine dinucleotide (phosphate) reduced (NAD(P)H)-dependent reduction of a carbonyl group. A criteria of family membership is that the protein must have a measured function, and thus, genomic sequences suggesting the transcription of potential AKR proteins are considered pseudo-members until evidence of a functionally expressed protein is available. Currently, over 200 confirmed AKR superfamily members are reported to exist. A systematic nomenclature for the AKR superfamily exists to facilitate family and subfamily designations of the member to be communicated easily. Specifically, protein names include the root "AKR", followed by the family represented by an Arabic number, the subfamily-if one exists-represented by a letter, and finally, the individual member represented by an Arabic number. The AKR superfamily database has been dedicated to tracking and reporting the current knowledge of the AKRs since 1997, and the website was last updated in 2003. Here, we present an updated version of the website and database that were released in 2023. The database contains genetic, functional, and structural data drawn from various sources, while the website provides alignment information and family tree structure derived from bioinformatics analyses.
Collapse
Affiliation(s)
- Andrea Andress Huacachino
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Nisha Narayanan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Anisha Tehim
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104-6061, USA.
| |
Collapse
|
2
|
Lan YW, Chen WR, Chang GRL, Chen YC, Chong KY, Chuang KC, Kao YT, Chen MS, Chen CM. Aldo-keto reductase family 1 member A1 (AKR1A1) exerts a protective function in alcohol-associated liver disease by reducing 4-HNE accumulation and p53 activation. Cell Biosci 2024; 14:18. [PMID: 38308335 PMCID: PMC10837880 DOI: 10.1186/s13578-024-01200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The development of alcohol-associated liver disease (ALD) is influenced by the amount and duration of alcohol consumption. The resulting liver damage can range from reversible stages, such as steatosis, steatohepatitis and alcoholic fibrosis, to the advanced and irreversible stage of cirrhosis. Aldo-keto reductase family 1 member A1 (AKR1A1) is a member of the aldo-keto reductase family that catalyzes the reduction of aldehyde groups to their corresponding alcohols in an NADPH-dependent manner. AKR1A1 was found to be downregulated in patients diagnosed with ALD. This study aims to interpret the protective effects of AKR1A1 on the development of ALD. METHODS A 5% alcohol-fed (AF) Akr1a1 knockout (Akr1a1-/-) mouse model and an AML12 hepatocyte model were used. The effects of AKR1A1 on liver function, inflammation, oxidative stress, lipid accumulation, and fibrosis were assessed by ELISA, western blotting, RT‒PCR, and a variety of histological staining methods in AF-induced wild-type (WT) and Akr1a1-/- mice compared to control liquid diet-fed (PF) WT and Akr1a1-/- mice. RESULTS The results demonstrated that AF-WT mice expressed higher levels of AKR1A1 than WT mice fed a control diet, and they did not show any noticeable liver steatosis. However, AF-Akr1a1-/- mice displayed a lower survival rate and more severe liver injury than AF-WT mice, as demonstrated by increased proinflammatory cytokines, oxidative stress, lipid accumulation, fibrosis, and reduced antioxidant enzymes in their livers. Additionally, elevated levels of 4-HNE and p53 phosphorylation were observed in AF-Akr1a1-/- mice, suggesting that the loss of AKR1A1 led to increased 4-HNE accumulation and subsequent activation of p53, which contributed to the progression of ALD. Furthermore, in AML12 hepatocytes, Akr1a1 knockdown aggravated oxidative stress and steatosis induced by palmitic acid/oleic acid (P/O) inflammation induced by lipopolysaccharide (LPS), and fibrosis induced by TGF-β1. CONCLUSIONS This loss-of-function study suggests that AKR1A1 plays a liver-protective role during chronic alcohol consumption by reducing the accumulation of 4-HNE and inhibiting 4-HNE-mediated p53 activation.
Collapse
Affiliation(s)
- Ying-Wei Lan
- Department of Life Sciences, and Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402, Taiwan
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Wan-Ru Chen
- Department of Life Sciences, and Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Gary Ro-Lin Chang
- Department of Life Sciences, and Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Ying-Cheng Chen
- Department of Life Sciences, and Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Kai-Cheng Chuang
- Department of Life Sciences, and Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yung-Tsung Kao
- Department of Life Sciences, and Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, 600, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Doctoral Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd, Taichung, 402, Taiwan.
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Toriumi K, Iino K, Ozawa A, Miyashita M, Yamasaki S, Suzuki K, Sugawa H, Tabata K, Yamaguchi S, Usami S, Itokawa M, Nishida A, Nagai R, Kamiguchi H, Arai M. Glucuronic acid is a novel source of pentosidine, associated with schizophrenia. Redox Biol 2023; 67:102876. [PMID: 37703666 PMCID: PMC10502438 DOI: 10.1016/j.redox.2023.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Pentosidine (PEN) is an advanced glycation end-product (AGEs), where a fluorescent cross-link is formed between lysine and arginine residues in proteins. Accumulation of PEN is associated with aging and various diseases. We previously reported that a subpopulation of patients with schizophrenia showed PEN accumulation in the blood, having severe clinical features. PEN is thought to be produced from glucose, fructose, pentoses, or ascorbate. However, patients with schizophrenia with high PEN levels present no elevation of these precursors of PEN in their blood. Therefore, the molecular mechanisms underlying PEN accumulation and the molecular pathogenesis of schizophrenia associated with PEN accumulation remain unclear. Here, we identified glucuronic acid (GlcA) as a novel precursor of PEN from the plasma of subjects with high PEN levels. We demonstrated that PEN can be generated from GlcA, both in vitro and in vivo. Furthermore, we found that GlcA was associated with the diagnosis of schizophrenia. Among patients with high PEN, the proportion of those who also have high GlcA is 25.6%. We also showed that Aldo-keto reductase (AKR) activity to degrade GlcA was decreased in patients with schizophrenia, and its activity was negatively correlated with GlcA levels in the plasma. This is the first report to show that PEN is generated from GlcA. In the future, this finding will contribute to understanding the molecular pathogenesis of not only schizophrenia but also other diseases with PEN accumulation.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kyoka Iino
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Azuna Ozawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, 156-0057, Japan
| | - Syudo Yamasaki
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Community Mental Health, School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, 862-0970, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, 113-8510, Japan
| | - Satoshi Yamaguchi
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Satoshi Usami
- Center for Research and Development on Transition from Secondary to Higher Education, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, 156-0057, Japan
| | - Atsushi Nishida
- Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, 862-0970, Japan
| | | | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|