1
|
Ma Y, Lan Y, Li J, Long H, Zhou Y, Li Z, Miao M, Zhong J, Wang H, Chang W, Xu Z, Yang L. Characterization of MADS-Box Gene Family in Isatis indigotica and Functional Study of IiAP1 in Regulating Floral Transition and Formation. PLANTS (BASEL, SWITZERLAND) 2025; 14:129. [PMID: 39795389 PMCID: PMC11723362 DOI: 10.3390/plants14010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. Isatis indigotica (I. indigotica) is a traditional Chinese medicinal plant. However, available information concerning MADS-box genes in I. indigotica is insufficient. Based on the sequencing data of the I. indigotica transcriptome, we identified MADS-box gene-encoding transcription factors that have been shown to play critical roles in developmental processes. In this study, 102 I. indigotica MADS-box genes were identified and categorized into type I (Mα, Mβ, and Mγ) and type II (MIKCC and MIKC*) subfamilies. IiMADS proteins in the same cluster had similar motifs and gene structures. In total, 102 IiMADS-box genes were unevenly distributed across seven chromosomes. APETALA1 (AP1) encodes a MADS-box transcription factor which plays a pivotal role in determining floral meristem identity and also modulates developmental processes within the perianth. We then selected IiAP1 for functional studies and found that it is localized to the nucleus and highly expressed in inflorescence, sepals, and petals. The ectopic expression of IiAP1 in Arabidopsis resulted in early flowering and abnormal development of floral organs. Taken together, this research study carried out a systematic identification of MADS-box genes in I. indigotica and demonstrated that IiAP1 takes part in the regulation of floral transition and formation.
Collapse
Affiliation(s)
- Yanqin Ma
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology, College of Life Sciences Northwest University, Xi’an 710069, China;
| | - Yanhong Lan
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Ju Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Haicheng Long
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Yujie Zhou
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zhi Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Mingjun Miao
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Jian Zhong
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Haie Wang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Wei Chang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China;
| | - Ziqin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology, College of Life Sciences Northwest University, Xi’an 710069, China;
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.M.); (Y.L.); (J.L.); (H.L.); (Y.Z.); (Z.L.); (M.M.); (J.Z.); (H.W.)
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture and Rural Affairs of the P.R. China, Chengdu 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, China
| |
Collapse
|
2
|
Kaur R, Rishi V. Transcription factors and genome biases in polyploid crops. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:301-321. [PMID: 39843138 DOI: 10.1016/bs.apcsb.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear protein transcription factors (TFs) regulate all biological processes in plants and are necessary for gene regulation. The transcription of genes during plant growth and development and their response to environmental cues are regulated by TF binding to specific promoter regions in the genomic DNA. Polyploid plants with several sets of chromosomes frequently display intricate genomic biases concerning TF expression. One or more subgenomes may dominate in terms of gene expression, leading to subgenome biases or dominance. These biases can influence various aspects of the crop's biology, including its growth, development, and adaptation. Advances in genomics have speed up the improvement of many important agricultural diploid crops, yet comparable endeavours in polyploid crops have been more challenging. This challenge primarily stems from the large size and intricate nature of the complex genome in polyploid crops, along with the need for comprehensive genome assembly data for such crop varieties as bread wheat, cotton and sugarcane. Several studies have evaluated the biased/asymmetric gene expression patterns, including TFs, within the polyploid crop genomes. In many polyploid crops, not all homologues of TF genes contribute equally to the phenotype. Here, we have examined polyploid crop plants for homeolog gene expression, emphasizing TFs. It is observed that the polyploids retain many gene alleles as functional homeologs that define important features involved in stress response, sugar metabolism, and fibre formation. The possible molecular mechanism describing the structural and epigenetic basis of differential subgenomic TF expression in polyploids is discussed.
Collapse
Affiliation(s)
- Raminder Kaur
- National Agri-Food Biotechnology Institute, Knowledge City, Mohali, Punjab, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Knowledge City, Mohali, Punjab, India.
| |
Collapse
|
3
|
Mirzaghaderi G. Genome-wide analysis of MADS-box transcription factor gene family in wild emmer wheat (Triticum turgidum subsp. dicoccoides). PLoS One 2024; 19:e0300159. [PMID: 38451993 PMCID: PMC10919676 DOI: 10.1371/journal.pone.0300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
The members of MADS-box gene family have important roles in regulating the growth and development of plants. MADS-box genes are highly regarded for their potential to enhance grain yield and quality under shifting global conditions. Wild emmer wheat (Triticum turgidum subsp. dicoccoides) is a progenitor of common wheat and harbors valuable traits for wheat improvement. Here, a total of 117 MADS-box genes were identified in the wild emmer wheat genome and classified to 90 MIKCC, 3 MIKC*, and 24 M-type. Furthermore, a phylogenetic analysis and expression profiling of the emmer wheat MADS-box gene family was presented. Although some MADS-box genes belonging to SOC1, SEP1, AGL17, and FLC groups have been expanded in wild emmer wheat, the number of MIKC-type MADS-box genes per subgenome is similar to that of rice and Arabidopsis. On the other hand, M-type genes of wild emmer wheat is less frequent than that of Arabidopsis. Gene expression patterns over different tissues and developmental stages agreed with the subfamily classification of MADS-box genes and was similar to common wheat and rice, indicating their conserved functionality. Some TdMADS-box genes are also differentially expressed under drought stress. The promoter region of each of the TdMADS-box genes harbored 6 to 48 responsive elements, mainly related to light, however hormone, drought, and low-temperature related cis-acting elements were also present. In conclusion, the results provide detailed information about the MADS-box genes of wild emmer wheat. The present work could be useful in the functional genomics efforts toward breeding for agronomically important traits in T. dicoccoides.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
4
|
Nan J, An J, Yang Y, Zhao G, Yang X, Liu H, Han B. Genome-wide identification of the MADS-box gene family in Avena sativa and its role in photoperiod-insensitive oat. PeerJ 2024; 12:e16759. [PMID: 38274325 PMCID: PMC10809983 DOI: 10.7717/peerj.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Background Traditional spring-summer sown oat is a typical long-day crop that cannot head under short-day conditions. The creation of photoperiod-insensitive oats overcomes this limitation. MADS-box genes are a class of transcription factors involved in plant flowering signal transduction regulation. Previous transcriptome studies have shown that MADS-box genes may be related to the oat photoperiod. Methods Putative MADS-box genes were identified in the whole genome of oat. Bioinformatics methods were used to analyze their classification, conserved motifs, gene structure, evolution, chromosome localization, collinearity and cis-elements. Ten representative genes were further screened via qRT‒PCR analysis under short days. Results In total, sixteen AsMADS genes were identified and grouped into nine subfamilies. The domains, conserved motifs and gene structures of all AsMADS genes were conserved. All members contained light-responsive elements. Using the photoperiod-insensitive oat MENGSIYAN4HAO (MSY4) and spring-summer sown oat HongQi2hao (HQ2) as materials, qRT‒PCR analysis was used to analyze the AsMADS gene at different panicle differentiation stages under short-day conditions. Compared with HQ2, AsMADS3, AsMADS8, AsMADS11, AsMADS13, and AsMADS16 were upregulated from the initial stage to the branch differentiation stage in MSY4, while AsMADS12 was downregulated. qRT‒PCR analysis was also performed on the whole panicle differentiation stages in MSY4 under short-day conditions, the result showed that the expression levels of AsMADS9 and AsMADS11 gradually decreased. Based on the subfamily to which these genes belong, the above results indicated that AsMADS genes, especially SVP, SQUA and Mα subfamily members, regulated panicle development in MSY4 by responding to short-days. This work provides a foundation for revealing the function of the AsMADS gene family in the oat photoperiod pathway.
Collapse
Affiliation(s)
- Jinsheng Nan
- Inner Mongolia Agricultural University, Key Lab of Germplasm Innovation and Utlization of Triticeae Crop at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jianghong An
- Inner Mongolia Agricultural University, Key Lab of Germplasm Innovation and Utlization of Triticeae Crop at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, Inner Mongolia, China
| | - Yan Yang
- Inner Mongolia Agricultural University, Key Lab of Germplasm Innovation and Utlization of Triticeae Crop at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Guofen Zhao
- Inner Mongolia Agricultural University, Key Lab of Germplasm Innovation and Utlization of Triticeae Crop at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiaohong Yang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, HeBei Province, China
| | - Huiyan Liu
- Inner Mongolia Agricultural University, Key Lab of Germplasm Innovation and Utlization of Triticeae Crop at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Bing Han
- Inner Mongolia Agricultural University, Key Lab of Germplasm Innovation and Utlization of Triticeae Crop at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Zhang J, Zhang Z, Zhang R, Yang C, Zhang X, Chang S, Chen Q, Rossi V, Zhao L, Xiao J, Xin M, Du J, Guo W, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:200-215. [PMID: 37752705 PMCID: PMC10754016 DOI: 10.1111/pbi.14180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.
Collapse
Affiliation(s)
- Jianing Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Ruijie Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiaobang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Siyuan Chang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Vincenzo Rossi
- Council for Agricultural Research and EconomicsResearch Centre for Cereal and Industrial CropsBergamoItaly
| | - Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
6
|
Roche J, Guérin C, Dupuits C, Elmodafar C, Goupil P, Mouzeyar S. In silico analysis of the Seven IN Absentia (SINA) genes in bread wheat sheds light on their structure in plants. PLoS One 2023; 18:e0295021. [PMID: 38127955 PMCID: PMC10734943 DOI: 10.1371/journal.pone.0295021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Seven IN Absentia (SINA) is a small family of genes coding for ubiquitin-ligases that play major roles in regulating various plant growth and developmental processes, as well as in plant response to diverse biotic and abiotic stresses. Here, we studied the SINA genes family in bread wheat Triticum aestivum which is a culture of major importance for food security worldwide. One hundred and forty-one SINA family genes have been identified in bread wheat and showed that their number is very high compared to other plant species such as A. thaliana or rice. The expansion of this family seems to have been more important in monocots than in eudicots. In bread wheat, the chromosome 3 distal region is the site of a massive amplification of the SINA family, since we found that 83 of the 141 SINA genes are located on this chromosome in the Chinese Spring variety. This amplification probably occurred as a result of local duplications, followed by sequences divergence. The study was then extended to 4856 SINA proteins from 97 plant species. Phylogenetic and structural analyses identified a group of putative ancestral SINA proteins in plants containing a 58 aminoacid specific signature. Based on sequence homology and the research of that "Ancestral SINA motif" of 58 amino acids, a methodological process has been proposed and lead to the identification of functional SINA genes in a large family such as the Triticae that might be used for other species. Finally, tis paper gives a comprehensive overview of wheat gene family organization and functionalization taken the SINA genes as an example.
Collapse
Affiliation(s)
- Jane Roche
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| | - Claire Guérin
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| | - Céline Dupuits
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| | - Cherkaoui Elmodafar
- Faculté des Sciences et Techniques, Centre d’Agrobiotechnologie et Bioingénierie, Université Cadi Ayyad, Marrakech, Morocco
| | - Pascale Goupil
- UMR A547 Physiologie Intégrative de l’Arbre en environnement Fluctuant, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| | - Said Mouzeyar
- UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Université Clermont-Auvergne, INRAe, Clermont–Ferrand, France
| |
Collapse
|
7
|
Wang F, Zhou Z, Zhu L, Gu Y, Guo B, Lv C, Zhu J, Xu R. Genome-wide analysis of the MADS-box gene family involved in salt and waterlogging tolerance in barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178065. [PMID: 37229117 PMCID: PMC10203460 DOI: 10.3389/fpls.2023.1178065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/07/2023] [Indexed: 05/27/2023]
Abstract
MADS-box transcription factors are crucial members of regulatory networks underlying multiple developmental pathways and abiotic stress regulatory networks in plants. Studies on stress resistance-related functions of MADS-box genes are very limited in barley. To gain insight into this gene family and elucidate their roles in salt and waterlogging stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in barley. A whole-genome survey of barley revealed 83 MADS-box genes, which were categorized into type I (Mα, Mβ and Mγ) and type II (AP1, SEP1, AGL12, STK, AGL16, SVP and MIKC*) lineages based on phylogeny, protein motif structure. Twenty conserved motifs were determined and each HvMADS contained one to six motifs. We also found tandem repeat duplication was the driven force for HvMADS gene family expansion. Additionally, the co-expression regulatory network of 10 and 14 HvMADS genes was predicted in response to salt and waterlogging stress, and we proposed HvMADS11,13 and 35 as candidate genes for further exploration of the functions in abiotic stress. The extensive annotations and transcriptome profiling reported in this study ultimately provides the basis for MADS functional characterization in genetic engineering of barley and other gramineous crops.
Collapse
|
8
|
Genome-Wide Identification and Expression of the Paulownia fortunei MADS-Box Gene Family in Response to Phytoplasma Infection. Genes (Basel) 2023; 14:genes14030696. [PMID: 36980968 PMCID: PMC10048600 DOI: 10.3390/genes14030696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Paulownia witches’ broom (PaWB), caused by phytoplasmas, is the most devastating infectious disease of Paulownia. Although a few MADS-box transcription factors have been reported to be involved in the formation of PaWB, there has been little investigation into all of the MADS-box gene family in Paulownia. The objective of this study is to identify the MADS-box gene family in Paulownia fortunei on a genome-wide scale and explore their response to PaWB infection. Bioinformatics software were used for identification, characterization, subcellular localization, phylogenetic analysis, the prediction of conserved motifs, gene structures, cis-elements, and protein-protein interaction network construction. The tissue expression profiling of PfMADS-box genes was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Transcriptome data and the protein interaction network prediction were combined to screen the genes associated with PaWB formation. We identified 89 MADS-box genes in the P. fortunei genome and categorized them into 14 subfamilies. The comprehensive analysis showed that segment duplication events had significant effects on the evolution of the PfMADS-box gene family; the motif distribution of proteins in the same subfamily are similar; development-related, phytohormone-responsive, and stress-related cis-elements were enriched in the promoter regions. The tissue expression pattern of PfMADS-box genes suggested that they underwent subfunctional differentiation. Three genes, PfMADS3, PfMADS57, and PfMADS87, might be related to the occurrence of PaWB. These results will provide a valuable resource to explore the potential functions of PfMADS-box genes and lay a solid foundation for understanding the roles of PfMADS-box genes in paulownia–phytoplasma interactions.
Collapse
|
9
|
Genome-Wide Analysis of the Mads-Box Transcription Factor Family in Solanum melongena. Int J Mol Sci 2023; 24:ijms24010826. [PMID: 36614267 PMCID: PMC9821028 DOI: 10.3390/ijms24010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
The MADS-box transcription factors are known to be involved in several aspects of plant growth and development, especially in floral organ specification. However, little is known in eggplant. Here, 120 eggplant MADS-box genes were identified and categorized into type II (MIKCC and MIKC*) and type I (Mα, Mβ, and Mγ) subfamilies based on phylogenetic relationships. The exon number in type II SmMADS-box genes was greater than that in type I SmMADS-box genes, and the K-box domain was unique to type II MADS-box TFs. Gene duplication analysis revealed that segmental duplications were the sole contributor to the expansion of type II genes. Cis-elements of MYB binding sites related to flavonoid biosynthesis were identified in three SmMADS-box promoters. Flower tissue-specific expression profiles showed that 46, 44, 38, and 40 MADS-box genes were expressed in the stamens, stigmas, petals, and pedicels, respectively. In the flowers of SmMYB113-overexpression transgenic plants, the expression levels of 3 SmMADS-box genes were co-regulated in different tissues with the same pattern. Correlation and protein interaction predictive analysis revealed six SmMADS-box genes that might be involved in the SmMYB113-regulated anthocyanin biosynthesis pathway. This study will aid future studies aimed at functionally characterizing important members of the MADS-box gene family.
Collapse
|
10
|
Hussain B, Akpınar BA, Alaux M, Algharib AM, Sehgal D, Ali Z, Aradottir GI, Batley J, Bellec A, Bentley AR, Cagirici HB, Cattivelli L, Choulet F, Cockram J, Desiderio F, Devaux P, Dogramaci M, Dorado G, Dreisigacker S, Edwards D, El-Hassouni K, Eversole K, Fahima T, Figueroa M, Gálvez S, Gill KS, Govta L, Gul A, Hensel G, Hernandez P, Crespo-Herrera LA, Ibrahim A, Kilian B, Korzun V, Krugman T, Li Y, Liu S, Mahmoud AF, Morgounov A, Muslu T, Naseer F, Ordon F, Paux E, Perovic D, Reddy GVP, Reif JC, Reynolds M, Roychowdhury R, Rudd J, Sen TZ, Sukumaran S, Ozdemir BS, Tiwari VK, Ullah N, Unver T, Yazar S, Appels R, Budak H. Capturing Wheat Phenotypes at the Genome Level. FRONTIERS IN PLANT SCIENCE 2022; 13:851079. [PMID: 35860541 PMCID: PMC9289626 DOI: 10.3389/fpls.2022.851079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Collapse
Affiliation(s)
- Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Michael Alaux
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| | - Ahmed M. Algharib
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Gudbjorg I. Aradottir
- Department of Pathology, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Halise B. Cagirici
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Fred Choulet
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - James Cockram
- The John Bingham Laboratory, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Pierre Devaux
- Research & Innovation, Florimond Desprez Group, Cappelle-en-Pévèle, France
| | - Munevver Dogramaci
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gabriel Dorado
- Department of Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | | | - David Edwards
- University of Western Australia, Perth, WA, Australia
| | - Khaoula El-Hassouni
- State Plant Breeding Institute, The University of Hohenheim, Stuttgart, Germany
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), Bethesda, MD, United States
| | - Tzion Fahima
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Campus de Teatinos, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Kulvinder S. Gill
- Department of Crop Science, Washington State University, Pullman, WA, United States
| | - Liubov Govta
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Goetz Hensel
- Center of Plant Genome Engineering, Heinrich-Heine-Universität, Düsseldorf, Germany
- Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Amir Ibrahim
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | | | | | - Tamar Krugman
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Yinghui Li
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Shuyu Liu
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Alexey Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Faiza Naseer
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Etienne Paux
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Gadi V. P. Reddy
- USDA-Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, United States
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Rajib Roychowdhury
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Jackie Rudd
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Taner Z. Sen
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | | | | | | | - Naimat Ullah
- Institute of Biological Sciences (IBS), Gomal University, D. I. Khan, Pakistan
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara, Turkey
| | - Selami Yazar
- General Directorate of Research, Ministry of Agriculture, Ankara, Turkey
| | | | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| |
Collapse
|