1
|
Bucher ML, Dicent J, Duarte Hospital C, Miller GW. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024; 103:175-188. [PMID: 38857676 DOI: 10.1016/j.neuro.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Since the identification of dopamine as a neurotransmitter in the mid-20th century, investigators have examined the regulation of dopamine homeostasis at a basic biological level and in human disorders. Genetic animal models that manipulate the expression of proteins involved in dopamine homeostasis have provided key insight into the consequences of dysregulated dopamine. As a result, we have come to understand the potential of dopamine to act as an endogenous neurotoxin through the generation of reactive oxygen species and reactive metabolites that can damage cellular macromolecules. Endogenous factors, such as genetic variation and subcellular processes, and exogenous factors, such as environmental exposures, have been identified as contributors to the dysregulation of dopamine homeostasis. Given the variety of dysregulating factors that impact dopamine homeostasis and the potential for dopamine itself to contribute to further cellular dysfunction, dopamine can be viewed as both the victim and an assailant of neurotoxicity. Parkinson's disease has emerged as the exemplar case study of dopamine dysregulation due to the genetic and environmental factors known to contribute to disease risk, and due to the evidence of dysregulated dopamine as a pathologic and pathogenic feature of the disease. This review, inspired by the talk, "Dopamine in Durham: location, location, location" presented by Dr. Miller for the Jacob Hooisma Memorial Lecture at the International Neurotoxicology Association meeting in 2023, offers a primer on dopamine toxicity covering endogenous and exogenous factors that disrupt dopamine homeostasis and the actions of dopamine as an endogenous neurotoxin.
Collapse
Affiliation(s)
- Meghan L Bucher
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Jocelyn Dicent
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Carolina Duarte Hospital
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Zhang J, Huang Y, Hu Y, Bai B. Compound heterozygous mutations in three Chinese patients of Segawa syndrome and their treatment outcomes. Int J Dev Neurosci 2024; 84:305-313. [PMID: 38566307 DOI: 10.1002/jdn.10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/15/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Segawa syndrome is a rare autosomal recessive form of dopa-responsive dystonia resulting from TH gene dysfunction. Patients typically exhibit symptoms such as generalized dystonia, rigidity, tremors, infantile Parkinsonism, and pseudo-spastic paraplegia. Levodopa is often an effective treatment. Due to its rarity, high heterogeneity, and poorly understood pathological mutation and phenotype spectrums, as well as genotype-phenotype and genotype-treatment outcome correlations, Segawa syndrome poses diagnostic and therapeutic challenges. In our study, through clinical and molecular analyses of three Chinese Segawa patients, we re-evaluated the pathogenicity of a TH mutation (c.880G>C;p.G294R) previously categorized as "Conflicting classifications of pathogenicity" in ClinVar. Also, we summarized the clinical phenotypes of all reported Segawa syndrome cases until 2023 and compared them with our patients. We identified a novel phenotype, "cafe-au-lait macules," not previously observed in Segawa patients. Additionally, we discussed the correlation between specific genotypes and phenotypes, as well as genotypes and treatment outcomes of our three cases. Our findings aim to enhance the understanding of Segawa syndrome, contributing to improved diagnosis and treatment approaches in the future.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
- Department of Medical Genetics, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, National Health Commission Key Laboratory of Preconception Health Birth in Western China, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, China
- Medical school, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yaxin Huang
- Department of Medical Genetics, Yunnan Provincial Key Laboratory for Birth Defects and Genetic Diseases, National Health Commission Key Laboratory of Preconception Health Birth in Western China, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, China
- Medical school, Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yulei Hu
- Department of Pediatrics, The First People's Hospital of Yunnan Province, Kunming, China
| | - Bing Bai
- State Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| |
Collapse
|
3
|
Zhang X, Li Z, Liu Y, Xin H, Gai Z. Establishment of a non-integrated iPSC (SDQLCHi066-A) line derived from Segawa syndrome patients harboring heterozygous mutations in the TH gene (p.G247S and p.D491H). Stem Cell Res 2024; 77:103392. [PMID: 38492469 DOI: 10.1016/j.scr.2024.103392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Segawa syndrome, an autosomal recessive genetic disorder, arises from homozygous or compound heterozygous mutations in the TH gene. We established an induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMCs) of an 4-month-old girl with Segawa syndrome, who carried compound heterozygous mutations of c.739G > A/chr11:2188714 and c.1471G > C/chr11:2185579 in TH. The iPSCs displayed a normal karyotype, expressed pluripotency markers, were devoid of genomically integrated episomal plasmids, and demonstrated trilineage differentiation potential in vitro.
Collapse
Affiliation(s)
- Xue Zhang
- Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China; The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Zilong Li
- Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China
| | - Yi Liu
- Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China
| | - Hongmei Xin
- Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China
| | - Zhongtao Gai
- Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, China
| |
Collapse
|
4
|
Wu F, Su D, Wang W, Song X, Fan S, Su J, Ma L, Xu J, Rao Q. Case report: Clinical, imaging, and genetic characteristics of type B niemann pick disease combined with segawa syndrome diagnosed via dual gene sequencing. Front Genet 2024; 15:1391936. [PMID: 38826802 PMCID: PMC11140116 DOI: 10.3389/fgene.2024.1391936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/02/2024] [Indexed: 06/04/2024] Open
Abstract
Niemann Pick disease B (NPB) often presents with hepatosplenomegaly and lung pathological changes, but it usually does not present with central nervous system symptoms. This report presents the unique case of a 21-year-old woman with a 10-year history of hard skin and hepatosplenomegaly. Genetic sequencing revealed NPB and also suggested Segawa syndrome. Although symptomatic supportive treatments were administered in an attempt to improve muscle tone and treat the skin sclerosis, their efficacy was not satisfactory, and the patient refused further treatment. This case provides several noteworthy findings. First, although NPB and Segawa syndrome are rare, both are autosomal recessive inherited diseases that share common clinical symptoms and imaging manifestations. Second, when NPB and Segawa syndrome are highly suspected, screening for tyrosine hydroxylase (TH) and sphingomyelin phosphodiesterase-1 (SMPD1) gene mutations is critical to determine an accurate diagnosis. Finally, early diagnosis and comprehensive therapies are crucial for improving the prognosis of patients with NPB and Segawa syndrome.
Collapse
Affiliation(s)
- Fang Wu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Dongying Su
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Weisi Wang
- Department of Respiratory, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xia Song
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Shufeng Fan
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinzhan Su
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Linying Ma
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jianxia Xu
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinpan Rao
- Department of Radiology, Second Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Jung-Kc K, Tristán-Noguero A, Altankhuyag A, Piñol Belenguer D, Prestegård KS, Fernandez-Carasa I, Colini Baldeschi A, Sigatulina Bondarenko M, García-Cazorla A, Consiglio A, Martinez A. Tetrahydrobiopterin (BH 4) treatment stabilizes tyrosine hydroxylase: Rescue of tyrosine hydroxylase deficiency phenotypes in human neurons and in a knock-in mouse model. J Inherit Metab Dis 2024; 47:494-508. [PMID: 38196161 DOI: 10.1002/jimd.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Proteostatic regulation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis, is crucial for maintaining proper brain neurotransmitter homeostasis. Variants of the TH gene are associated with tyrosine hydroxylase deficiency (THD), a rare disorder with a wide phenotypic spectrum and variable response to treatment, which affects protein stability and may lead to accelerated degradation, loss of TH function and catecholamine deficiency. In this study, we investigated the effects of the TH cofactor tetrahydrobiopterin (BH4) on the stability of TH in isolated protein and in DAn- differentiated from iPSCs from a human healthy subject, as well as from THD patients with the R233H variant in homozygosity (THDA) and R328W and T399M variants in heterozygosity (THDB). We report an increase in TH and dopamine levels, and an increase in the number of TH+ cells in control and THDA cells. To translate this in vitro effect, we treated with BH4 a knock-in THD mouse model with Th variant corresponding to R233H in patients. Importantly, treatment with BH4 significantly improved motor function in these mice, as demonstrated by increased latency on the rotarod test and improved horizontal activity (catalepsy). In conclusion, our study demonstrates the stabilizing effects of BH4 on TH protein levels and function in THD neurons and mice, rescuing disease phenotypes and improving motor outcomes. These findings highlight the therapeutic potential of BH4 as a treatment option for THDA patients with specific variants and provide insights into the modulation of TH stability and its implications for THD management.
Collapse
Affiliation(s)
- Kunwar Jung-Kc
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Alba Tristán-Noguero
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Molecular Physiology of the Synapse, Institut de Recerca Sant Pau (IR Sant Pau), Universitat Autònoma Barcelona, Barcelona, Spain
| | | | - David Piñol Belenguer
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | | | - Irene Fernandez-Carasa
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Arianna Colini Baldeschi
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Maria Sigatulina Bondarenko
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Angeles García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Neurology Department, Institut Pediàtric de Recerca and MetabERN, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica En Red Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Jung-Klawitter S, Richter P, Yuan Y, Welzel K, Kube M, Bähr S, Leibner A, Flory E, Opladen T. Tyrosine hydroxylase variants influence protein expression, cellular localization, stability, enzymatic activity and the physical interaction between tyrosine hydroxylase and GTP cyclohydrolase 1. J Inherit Metab Dis 2024; 47:517-532. [PMID: 38084654 DOI: 10.1002/jimd.12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 05/16/2024]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis catalyzing the tetrahydrobiopterin (BH4)-dependent hydroxylation of tyrosine to L-DOPA. Here, we analyzed 25 TH variants associated with various degrees of dopa-responsive dystonia and evaluate the effect of each variant on protein stability, activity and cellular localization. Furthermore, we investigated the physical interaction between TH and human wildtype (wt) GTP cyclohydrolase 1 (GTPCH) and the effect of variants on this interaction. Our in vitro results classify variants according to their resistance to proteinase K digestion into three groups (stable, intermediate, unstable). Based on their cellular localization, two groups of variants can be identified, variant group one with cytoplasmic distribution and variant group two forming aggregates. These aggregates do not correlate with loss of enzymatic activity but nevertheless might be a good target for molecular chaperones. Unfortunately, no obvious correlation between the half-life of a variant and its enzymatic activity or between solubility, stability and enzymatic activity of a given variant could be found. Excitingly, some variants disrupt the physical interaction between TH and human wildtype GTPCH, thereby interfering with enzymatic activity and offering new druggable targets for therapy. Taken together, our results highlight the importance of an in-depth molecular analysis of each variant in order to be able to classify groups of disease variants and to find specific therapies for each subgroup. Stand-alone in silico analyses predict less precise the effect of specific variants and should be combined with other in vitro analyses in cellular model systems.
Collapse
Affiliation(s)
- Sabine Jung-Klawitter
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Petra Richter
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Yuheng Yuan
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Karin Welzel
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institute, Langen, Germany
| | - Marie Kube
- Institute of Molecular Biology, Mainz, Germany
| | - Stella Bähr
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Alexander Leibner
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Egbert Flory
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institute, Langen, Germany
| | - Thomas Opladen
- Medical Faculty, Center for Child and Adolescent Medicine, Pediatric Clinic I, Section of Neuropediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Reyes ZMD, Lynch E, Henry J, De Simone LM, Sobotka SA. Diagnosis of autism in a rare case of tyrosine hydroxylase deficiency: a case report. BMC Med Genomics 2023; 16:78. [PMID: 37041529 PMCID: PMC10088295 DOI: 10.1186/s12920-023-01510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Tyrosine hydroxylase deficiency (THD) is a rare movement disorder with broad phenotypic expression caused by bi-allelic mutations in the TH gene, which encode for tyrosine hydroxylase (TH) protein. Some patients with THD have improvement in dystonia with carbidopa-levodopa, a synthetic form of dopamine typically used in Parkinson's disease, and are considered to have dopa-responsive THD. THD has been found in 0.5-1 per million persons, although due to overlapping symptoms with other disorders and the need for genetic testing, prevalence is likely underestimated. Existing literature describes some patients with THD having intellectual disability, but comorbid autism spectrum disorder (ASD) has not been reported. CASE PRESENTATION A nearly 3-year-old boy was referred to pediatric neurology due to hypotonia, delayed motor milestones, and expressive speech delay. Whole exome sequencing confirmed tyrosine hydroxylase deficiency, detecting a novel variant p.S307C first reported here. The child was treated with carbidopa-levodopa with an excellent response, resulting in improved balance, fewer falls, and improved ability to jump, run and climb stairs. He was determined to have dopa-responsive THD. Due to his delays in expressive speech, the boy also had an assessment with a developmental and behavioral pediatrician, who identified a pattern of social pragmatic speech delay, sensory sensitivities, and restricted interests, and determined that he met criteria for a diagnosis of ASD. CONCLUSIONS While ASD can stand alone as a clinical diagnosis, it is also a cardinal feature of other genetically-based neurological disorders. To our knowledge, this is the first case that describes a patient with both disorders. Perhaps THD may be among the genetic disorders linked with ASD.
Collapse
Affiliation(s)
| | - Emma Lynch
- Section of Developmental and Behavioral Pediatrics, Department of Pediatrics, The University of Chicago, 950 East 61St Street, Suite 207, Chicago, IL, 60637, USA
| | - Julia Henry
- Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, USA
| | | | - Sarah A Sobotka
- Section of Developmental and Behavioral Pediatrics, Department of Pediatrics, The University of Chicago, 950 East 61St Street, Suite 207, Chicago, IL, 60637, USA.
| |
Collapse
|