1
|
Yue Y, Luasiri P, Li J, Laosam P, Sangsawad P. Research advancements on the diversity and host interaction of gut microbiota in chickens. Front Vet Sci 2024; 11:1492545. [PMID: 39628868 PMCID: PMC11611998 DOI: 10.3389/fvets.2024.1492545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
The maintenance of host health and immune function is heavily dependent on the gut microbiota. However, the precise contribution of individual microbial taxa to regulating the overall functionality of the gut microbiome remains inadequately investigated. Chickens are commonly used as models for studying poultry gut microbiota, with high-throughput 16S rRNA sequencing has emerged as a valuable tool for assessing both its composition and functionality. The interactions between the gut's microbial community and its host significantly influence health outcomes, disease susceptibility, and various mechanisms affecting gastrointestinal function. Despite substantial research efforts, the dynamic nature of this microbial ecosystem has led to inconsistencies in findings related to chicken gut microbiota, which is largely attributed to variations in rearing conditions. Consequently, the interaction between the chickens' gut microflora and its host remains inadequately explored. This review highlights recent advances in understanding these relationships, with a specific focus on microbial composition, diversity, functional mechanisms, and their potential implications for improving poultry production.
Collapse
Affiliation(s)
- Yong Yue
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Postharvest Technology and Innovation in Animal Unit, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Pichitpon Luasiri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Postharvest Technology and Innovation in Animal Unit, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jiezhang Li
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Phanthipha Laosam
- Research and Development Institute Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Papungkorn Sangsawad
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Postharvest Technology and Innovation in Animal Unit, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
2
|
Cortés-Martín A, Buttimer C, Maier JL, Tobin CA, Draper LA, Ross RP, Kleiner M, Hill C, Shkoporov AN. Adaptations in gut Bacteroidales facilitate stable co-existence with their lytic bacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.624012. [PMID: 39605433 PMCID: PMC11601342 DOI: 10.1101/2024.11.17.624012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Bacteriophages (phages) and bacteria within the gut microbiome persist in long-term stable coexistence. These interactions are driven by eco-evolutionary dynamics, where bacteria employ a variety of mechanisms to evade phage infection, while phages rely on counterstrategies to overcome these defences. Among the most abundant phages in the gut are the crAss-like phages that infect members of the Bacteroidales, in particular Bacteroides. In this study, we explored some of the mechanisms enabling the co-existence of four phage-Bacteroidales host pairs in vitro using a multi-omics approach (transcriptomics, proteomics and metabolomics). These included three Bacteroides species paired with three crAss-like phages (Bacteroides intestinalis and ϕcrAss001, Bacteroides xylanisolvens and ϕcrAss002, and an acapsular mutant of Bacteroides thetaiotaomicron with DAC15), and Parabacteroides distasonis paired with the siphovirus ϕPDS1. Results We show that phase variation of individual capsular polysaccharides (CPSs) is the primary mechanism promoting phage co-existence in Bacteroidales, but this is not the only strategy. Alternative resistance mechanisms, while potentially less efficient than CPS phase variation, can be activated to support bacterial survival by regulating gene expression and resulting in metabolic adaptations, particularly in amino acid degradation pathways. These mechanisms, also likely regulated by phase variation, enable bacterial populations to persist in the presence of phages, and vice versa. An acapsular variant of B. thetaiotaomicron demonstrated broader transcriptomic, proteomic, and metabolomic changes, supporting the involvement of additional resistance mechanisms beyond CPS variation. Conclusions This study advances our understanding of long-term phage-host interaction, offering insights into the long-term persistence of crAss-like phages and extending these observations to other phages, such as ϕPDS1. Knowledge of the complexities of phage-bacteria interactions is essential for designing effective phage therapies and improving human health through targeted microbiome interventions.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| | - Jessie L. Maier
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ciara A. Tobin
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| | - Lorraine A. Draper
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| | - Andrey N. Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
3
|
Marin C, Migura-García L, Rodríguez JC, Ventero MP, Pérez-Gracia MT, Vega S, Tort-Miró C, Marco-Fuertes A, Lorenzo-Rebenaque L, Montoro-Dasi L. Swine farm environmental microbiome: exploring microbial ecology and functionality across farms with high and low sanitary status. Front Vet Sci 2024; 11:1401561. [PMID: 39021414 PMCID: PMC11252001 DOI: 10.3389/fvets.2024.1401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Stringent regulations in pig farming, such as antibiotic control and the ban on certain additives and disinfectants, complicate disease control efforts. Despite the evolution of microbial communities inside the house environment, they maintain stability over the years, exhibiting characteristics specific to each type of production and, in some cases, unique to a particular company or farm production type. In addition, some infectious diseases are recurrent in specific farms, while other farms never present these diseases, suggesting a connection between the presence of these microorganisms in animals or their environment. Therefore, the aim of this study was to characterise environmental microbiomes of farms with high and low sanitary status, establishing the relationships between both, health status, environmental microbial ecology and its functionality. Methods For this purpose, 6 pig farms were environmentally sampled. Farms were affiliated with a production company that handle the majority of the pigs slaughtered in Spain. This study investigated the relationship among high health and low health status farms using high throughput 16S rRNA gene sequencing. In addition, to identify ecologically relevant functions and potential pathogens based on the 16S rRNA gene sequences obtained, functional Annotation with PROkaryotic TAXa (FAPROTAX) was performed. Results and Discussion This study reveals notable differences in microbial communities between farms with persistent health issues and those with good health outcomes, suggesting a need for protocols tailored to address specific challenges. The variation in microbial populations among farms underscores the need for specific and eco-friendly cleaning and disinfection protocols. These measures are key to enhancing the sustainability of livestock farming, ensuring safer products and boosting competitive edge in the market.
Collapse
Affiliation(s)
- Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Lourdes Migura-García
- IRTA, Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases in Europe, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - María-Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Carla Tort-Miró
- IRTA, Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases in Europe, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Institute of Science and Animal Technology, Universitat Politècnica de Valencia, Valencia, Spain
| | - Laura Montoro-Dasi
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
4
|
Szczypka M, Lis M, Kuczkowski M, Bobrek K, Pawlak A, Zambrowicz A, Gaweł A, Obmińska-Mrukowicz B. Yolkin, a Polypeptide Complex from Egg Yolk, Affects Cytokine Levels and Leukocyte Populations in Broiler Chicken Blood and Lymphoid Organs after In Ovo Administration. Int J Mol Sci 2023; 24:17494. [PMID: 38139323 PMCID: PMC10743580 DOI: 10.3390/ijms242417494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Yolkin is a polypeptide complex isolated from hen egg yolk that exhibits immunomodulating properties. The aim of the present study was to determine whether in-ovo-delivered yolkin affects leukocyte populations and cytokine levels in broiler chickens. The experiment was carried out on eggs from Ross 308 broiler breeder birds. Yolkin was administered in ovo on the 18th day of incubation, once, at the following three doses: 1, 10, or 100 µg/egg. The immunological parameters were assessed in 1-, 7-, 14-, 21-, 28-, 35-, and 42-day-old birds kept under farming conditions and routinely vaccinated. The leukocyte populations were determined in the thymus, spleen, and blood. The cytokine (IL-1β, IL-2, IL-6, and IL-10) levels were determined in the plasma of the broiler chickens. Each experimental group included eight birds. The most pronounced effect of yolkin was an increase in the population of T cells, both CD4+ and CD8+, mainly in the blood. This effect on the lymphocyte subsets may be valuable regarding chicken immune responses, mainly against T-dependent antigens, during infection or after vaccination.
Collapse
Affiliation(s)
- Marianna Szczypka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Magdalena Lis
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Kamila Bobrek
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| | - Aleksandra Zambrowicz
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-640 Wrocław, Poland;
| | - Andrzej Gaweł
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (M.K.); (K.B.); (A.G.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland; (M.L.); (A.P.); (B.O.-M.)
| |
Collapse
|
5
|
Gundersen MS, Fiedler AW, Bakke I, Vadstein O. The impact of phage treatment on bacterial community structure is minor compared to antibiotics. Sci Rep 2023; 13:21032. [PMID: 38030754 PMCID: PMC10687242 DOI: 10.1038/s41598-023-48434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Phage treatment is suggested as an alternative to antibiotics; however, there is limited knowledge of how phage treatment impacts resident bacterial community structure. When phages induce bacterial lysis, resources become available to the resident community. Therefore, the density of the target bacterium is essential to consider when investigating the effect of phage treatment. This has never been studied. Thus, we invaded microcosms containing a lake-derived community with Flavobacterium columnare strain Fc7 at no, low or high densities, and treated them with either the bacteriophage FCL-2, the antibiotic Penicillin or kept them untreated (3 × 3 factorial design). The communities were sampled over the course of one week, and bacterial community composition and density were examined by 16S rDNA amplicon sequencing and flow cytometry. We show that phage treatment had minor impacts on the resident community when the host F. columnare Fc7 of the phage was present, as it caused no significant differences in bacterial density α- and β-diversity, successional patterns, and community assembly. However, a significant change was observed in community composition when the phage host was absent, mainly driven by a substantial increase in Aquirufa. In contrast, antibiotics induced significant changes in all community characteristics investigated. The most crucial finding was a bloom of γ-proteobacteria and a shift from selection to ecological drift dominating community assembly. This study investigated whether the amount of a bacterial host impacted the effect of phage treatment on community structure. We conclude that phage treatment did not significantly affect the diversity or composition of the bacterial communities when the phage host was present, but introduced changes when the host was absent. In contrast, antibiotic treatment was highly disturbing to community structure. Moreover, higher amounts of the bacterial host of the phage increased the contribution of stochastic community assembly and resulted in a feast-famine like response in bacterial density in all treatment groups. This finding emphasises that the invader density used in bacterial invasion studies impacts the experimental reproducibility. Overall, this study supports that phage treatment is substantially less disturbing to bacterial communities than antibiotic treatments.
Collapse
Affiliation(s)
- Madeleine S Gundersen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Alexander W Fiedler
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
6
|
Lorenzo-Rebenaque L, Casto-Rebollo C, Diretto G, Frusciante S, Rodríguez JC, Ventero MP, Molina-Pardines C, Vega S, Marin C, Marco-Jiménez F. Modulation of Caecal Microbiota and Metabolome Profile in Salmonella-Infected Broilers by Phage Therapy. Int J Mol Sci 2023; 24:15201. [PMID: 37894882 PMCID: PMC10607084 DOI: 10.3390/ijms242015201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment's response to phage therapy in poultry are limited. This study investigated the influence of Salmonella phage on host physiology through caecal microbiota and metabolome modulation using high-throughput 16S rRNA gene sequencing and an untargeted metabolomics approach. We employed 24 caecum content samples and 24 blood serum samples from 4-, 5- and 6-week-old broilers from a previous study where Salmonella phages were administered via feed in Salmonella-infected broilers, which were individually weighed weekly. Phage therapy did not affect the alpha or beta diversity of the microbiota. Specifically, we observed changes in the relative abundance of 14 out of the 110 genera using the PLS-DA and Bayes approaches. On the other hand, we noted changes in the caecal metabolites (63 up-accumulated and 37 down-accumulated out of the 1113 caecal metabolites). Nevertheless, the minimal changes in blood serum suggest a non-significant physiological response. The application of Salmonella phages under production conditions modulates the caecal microbiome and metabolome profiles in broilers without impacting the host physiology in terms of growth performance.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (L.L.-R.); (S.V.); (C.M.)
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Via Anguillarese, 301, Santa Maria di Galeria, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Sarah Frusciante
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Via Anguillarese, 301, Santa Maria di Galeria, 00123 Rome, Italy; (G.D.); (S.F.)
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, 03010 Alicante, Spain;
| | - María-Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, ISABIAL, 03010 Alicante, Spain; (M.-P.V.); (C.M.-P.)
| | - Carmen Molina-Pardines
- Microbiology Department, Dr. Balmis University General Hospital, ISABIAL, 03010 Alicante, Spain; (M.-P.V.); (C.M.-P.)
| | - Santiago Vega
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (L.L.-R.); (S.V.); (C.M.)
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, Alfara del Patriarca, 45115 Valencia, Spain; (L.L.-R.); (S.V.); (C.M.)
| | - Francisco Marco-Jiménez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
7
|
A Taxonomy-Agnostic Approach to Targeted Microbiome Therapeutics-Leveraging Principles of Systems Biology. Pathogens 2023; 12:pathogens12020238. [PMID: 36839510 PMCID: PMC9959781 DOI: 10.3390/pathogens12020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The study of human microbiomes has yielded insights into basic science, and applied therapeutics are emerging. However, conflicting definitions of what microbiomes are and how they affect the health of the "host" are less understood. A major impediment towards systematic design, discovery, and implementation of targeted microbiome therapeutics is the continued reliance on taxonomic indicators to define microbiomes in health and disease. Such reliance often confounds analyses, potentially suggesting associations where there are none, and conversely failing to identify significant, causal relationships. This review article discusses recent discoveries pointing towards a molecular understanding of microbiome "dysbiosis" and away from a purely taxonomic approach. We highlight the growing role of systems biological principles in the complex interrelationships between the gut microbiome and host cells, and review current approaches commonly used in targeted microbiome therapeutics, including fecal microbial transplant, bacteriophage therapies, and the use of metabolic toxins to selectively eliminate specific taxa from dysbiotic microbiomes. These approaches, however, remain wholly or partially dependent on the bacterial taxa involved in dysbiosis, and therefore may not capitalize fully on many therapeutic opportunities presented at the bioactive molecular level. New technologies capable of addressing microbiome-associated diseases as molecular problems, if solved, will open possibilities of new classes and categories of targeted microbiome therapeutics aimed, in principle, at all dysbiosis-driven disorders.
Collapse
|
8
|
Abd-El Wahab A, Basiouni S, El-Seedi HR, Ahmed MFE, Bielke LR, Hargis B, Tellez-Isaias G, Eisenreich W, Lehnherr H, Kittler S, Shehata AA, Visscher C. An overview of the use of bacteriophages in the poultry industry: Successes, challenges, and possibilities for overcoming breakdowns. Front Microbiol 2023; 14:1136638. [PMID: 37025628 PMCID: PMC10071031 DOI: 10.3389/fmicb.2023.1136638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The primary contaminants in poultry are Salmonella enterica, Campylobacter jejuni, Escherichia coli, and Staphylococcus aureus. Their pathogenicity together with the widespread of these bacteria, contributes to many economic losses and poses a threat to public health. With the increasing prevalence of bacterial pathogens being resistant to most conventional antibiotics, scientists have rekindled interest in using bacteriophages as antimicrobial agents. Bacteriophage treatments have also been investigated as an alternative to antibiotics in the poultry industry. Bacteriophages' high specificity may allow them only to target a specific bacterial pathogen in the infected animal. However, a tailor-made sophisticated cocktail of different bacteriophages could broaden their antibacterial activity in typical situations with multiple clinical strains infections. Bacteriophages may not only be used in terms of reducing bacterial contamination in animals but also, under industrial conditions, they can be used as safe disinfectants to reduce contamination on food-contact surfaces or poultry carcasses. Nevertheless, bacteriophage therapies have not been developed sufficiently for widespread use. Problems with resistance, safety, specificity, and long-term stability must be addressed in particular. This review highlights the benefits, challenges, and current limitations of bacteriophage applications in the poultry industry.
Collapse
Affiliation(s)
- Amr Abd-El Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Basiouni
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Egypt
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Marwa F. E. Ahmed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Lisa R. Bielke
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Billy Hargis
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Guillermo Tellez-Isaias
- Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center, Technical University of Munich (TUM), Garching, Germany
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, a Part of Finktec Group, Bönen, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
- Research and Development Section, PerNaturam GmbH, An der Trift, Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, Bönen, Germany
- *Correspondence: Awad A. Shehata,
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Christian Visscher,
| |
Collapse
|