1
|
Wang D, Chen J, Wu S, Cai K, An J, Zhang M, Kong X, Cai Z, Li Y, Li H, Long C, Chen Y, Hou R, Liu Y, Lan J. Biochemical Characteristics of Urine Metabolomics in Female Giant Pandas at Different Estrous Stages. Animals (Basel) 2024; 14:3486. [PMID: 39682452 DOI: 10.3390/ani14233486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The composition of urinary metabolites can reflect the physiological state of animals. Investigating the alterations in urine metabolomics during the estrus stage can provide valuable insights for enhancing the efficacy of estrus monitoring. This study aimed to perform an analysis of urinary metabolomics in female giant pandas, specifically examining the variations in specific metabolites across different estrous stages, namely, diestrus, proestrus, estrus, and metestrus. A total of 1234 metabolites were identified in positive ion mode from 76 samples of 19 individuals, with 643 metabolites identified in negative ion mode. The content of urine metabolites exhibited significant variation throughout different stages of estrus. During the peak of estrus, the metabolic pathways primarily enriched by significantly differential metabolites were the AMPK signaling pathway, vitamin digestion and absorption, galactose metabolism, and cysteine and methionine metabolism, as well as taurine and hypotaurine metabolism. By comparing the content of specific metabolites in distinct pathways across the four distinct estrous stages, higher levels of acetylcholine, D-fructose1,6-bisphosphate, L-homocystine, dulcitol, inositol, and S-sulfo-L-cysteine and lower levels of phosphoethanolamine, vitamin A, vitamin B12, and maleic acid were detected at estrus. This study offers a novel comparative analysis of urine metabolomics across different estrus stages in female giant pandas, identifying several potential perspectives for estrus monitoring and contributing to the breeding management of captive giant panda populations.
Collapse
Affiliation(s)
- Donghui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Jiasong Chen
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Shili Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Kailai Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Junhui An
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Mingyue Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Xiangwei Kong
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Zhigang Cai
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Yuan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Hongyan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Cuiyu Long
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Yijiao Chen
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Yuliang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| |
Collapse
|
2
|
Stobernack T, Dommershausen N, Alcolea‐Rodríguez V, Ledwith R, Bañares MA, Haase A, Pink M, Dumit VI. Advancing Nanomaterial Toxicology Screening Through Efficient and Cost-Effective Quantitative Proteomics. SMALL METHODS 2024; 8:e2400420. [PMID: 38813751 PMCID: PMC11671853 DOI: 10.1002/smtd.202400420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Proteomic investigations yield high-dimensional datasets, yet their application to large-scale toxicological assessments is hindered by reproducibility challenges due to fluctuating measurement conditions. To address these limitations, this study introduces an advanced tandem mass tag (TMT) labeling protocol. Although labeling approaches shorten data acquisition time by multiplexing samples compared to traditional label-free quantification (LFQ) methods in general, the associated costs may surge significantly with large sample sets, for example, in toxicological screenings. However, the introduced advanced protocol offers an efficient, cost-effective alternative, reducing TMT reagent usage (by a factor of ten) and requiring minimal biological material (1 µg), while demonstrating increased reproducibility compared to LFQ. To demonstrate its effectiveness, the advanced protocol is employed to assess the toxicity of nine benchmark nanomaterials (NMs) on A549 lung epithelial cells. While LFQ measurements identify 3300 proteins, they proved inadequate to reveal NM toxicity. Conversely, despite detecting 2600 proteins, the TMT protocol demonstrates superior sensitivity by uncovering alterations induced by NM treatment. In contrast to previous studies, the introduced advanced protocol allows simultaneous and straightforward assessment of multiple test substances, enabling prioritization, ranking, and grouping for hazard evaluation. Additionally, it fosters the development of New Approach Methodologies (NAMs), contributing to innovative methodologies in toxicological research.
Collapse
Affiliation(s)
- Tobias Stobernack
- German Federal Institute for Risk Assessment (BfR)Department of Chemical and Product SafetyMax‐Dohrn‐Straße 8–1010589BerlinGermany
| | - Nils Dommershausen
- German Federal Institute for Risk Assessment (BfR)Department of Chemical and Product SafetyMax‐Dohrn‐Straße 8–1010589BerlinGermany
| | - Víctor Alcolea‐Rodríguez
- German Federal Institute for Risk Assessment (BfR)Department of Chemical and Product SafetyMax‐Dohrn‐Straße 8–1010589BerlinGermany
- Spanish National Research Council – Institute of Catalysis and Petrochemistry (ICP‐CSIC)Spectroscopy and Industrial Catalysis groupMarie Curie, 2Madrid28049Spain
| | - Rico Ledwith
- German Federal Institute for Risk Assessment (BfR)Department of Chemical and Product SafetyMax‐Dohrn‐Straße 8–1010589BerlinGermany
| | - Miguel A. Bañares
- Spanish National Research Council – Institute of Catalysis and Petrochemistry (ICP‐CSIC)Spectroscopy and Industrial Catalysis groupMarie Curie, 2Madrid28049Spain
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR)Department of Chemical and Product SafetyMax‐Dohrn‐Straße 8–1010589BerlinGermany
| | - Mario Pink
- German Federal Institute for Risk Assessment (BfR)Department of Chemical and Product SafetyMax‐Dohrn‐Straße 8–1010589BerlinGermany
| | - Verónica I. Dumit
- German Federal Institute for Risk Assessment (BfR)Department of Chemical and Product SafetyMax‐Dohrn‐Straße 8–1010589BerlinGermany
| |
Collapse
|
3
|
Shaji A, Kumaresan A, Sinha MK, Nag P, Patil S, Jeyakumar S, Gowdar Veerappa V, Manimaran A, Ramesha K. Identification of potential differences in salivary proteomic profiles between estrus and diestrus stage of estrous cycle in dairy cows. Syst Biol Reprod Med 2024; 70:204-217. [PMID: 39008339 DOI: 10.1080/19396368.2024.2370328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 06/15/2024] [Indexed: 07/16/2024]
Abstract
In the present study, a comparative global high-throughput proteomic analysis strategy was used to identify proteomic differences between estrus and diestrus stage of estrous cycle in dairy cows. Saliva was collected from cows during estrus and diestrus, and subjected to LC-MS/MS-based proteomic analysis. A total of 2842 proteins were detected in the saliva of cows, out of which, 2437 and 1428 non-redundant proteins were identified in estrous and diestrous saliva, respectively. Further, it was found that 1414 and 405 salivary proteins were specific to estrus and diestrus, respectively while 1023 proteins were common to both groups. Among the significantly dysregulated proteins, the expression of 56 proteins was down-regulated (abundance ratio <0.5) while 40 proteins were up-regulated (abundance ratio > 2) in estrous compared to diestrous saliva. The proteins, such as HSD17B12, INHBA, HSP70, ENO1, SRD5A1, MOS, AMH, ECE2, PDGFA, OPRK1, SYN1, CCNC, PLIN5, CETN1, AKR1C4, NMNAT1, CYP2E1, and CYP19A1 were detected only in the saliva samples derived from estrous cows. Considerable number of proteins detected in the saliva of estrous cows were found to be involved in metabolic pathway, PI3K-Akt signaling pathway, toll-like receptor signaling pathway, steroid biosynthesis pathway, insulin signaling pathway, calcium signaling pathway, estrogen signaling pathway, oxytocin signaling pathway, TGF-β signaling pathway and oocyte meiosis. On the other hand, proteins detected in saliva of diestrous cows were involved mainly in metabolic pathway. Collectively, these data provide preliminary evidence of a potential difference in salivary proteins at different stages of estrous cycle in dairy cows.
Collapse
Affiliation(s)
- Arsha Shaji
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Shivanagouda Patil
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Sakthivel Jeyakumar
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Vedamurthy Gowdar Veerappa
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Ayyasamy Manimaran
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kerekoppa Ramesha
- Dairy Production Section, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
4
|
Rajamanickam K, Visha P, Elango A, Leela V. Salivary heat shock protein 70 as a potential non-invasive biomarker of environmental thermal stress in dairy cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024:10.1007/s00484-024-02826-y. [PMID: 39556253 DOI: 10.1007/s00484-024-02826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
The present study aims to explore the potential biomarker application of salivary heat shock 70 kDa protein in detecting thermal stress in dairy animals noninvasively. The study spans for 45 days during the mid-summer season (April-May), involving twelve multiparous non-pregnant adult Jersey crossbred cows by randomly allocating them into groups (six animals in each group). The control animals were maintained in the shed, whereas the thermal stress group animals were exposed to environment heat between 10:00 h to 16.00 h and they were feed and watered ad libitum. During the experimental period, the hematobiochemical, physiological, behavioural, nutritional and production responses were recorded and the whole blood and saliva were collected fortnightly. Results revealed significant increase in WBC, AST, ALP, blood urea nitrogen, triglycerides, cholesterol, HDL, blood and salivary cortisol, respiratory rate, rectal temperature, skin temperature of neck, lumbar and forelimb regions, standing time, salivary and blood HSP70 mRNA expression and their protein concentrations in heat stressed animals. In addition, RBC, haemoglobin, MCV, PCV, platelet, platelet-large cell ratio (PLCR), lying time, feed intake, milk yield and rumination time were significantly decreased in thermally stress animals. Furthermore, ROC curve analysis revealed the biomarker potential of these significantly altered parameters with 100% sensitivity and specificity for predicting environmental heat stress in dairy cows with AUC and Youden's - index of 1.00 except platelet. Moreover, salivary HSP70 demonstrated significant correlation with these biomarkers. Noteworthily, salivary HSP70 also exhibited strong association with blood HSP70 and salivary cortisol. Furthermore, salivary HSP70 revealed 100% sensitivity and specificity in discriminating the dairy cattle succumbed to heat stress from healthy. In conclusion, the present study provides a newer insight into the multifaceted roles of HSP70 and identified salivary heat shock 70 kDa protein as a potential, reliable and more sensitive non-invasive biomarker for identifying environmental heat stress in dairy cattle.
Collapse
Affiliation(s)
- Kandasamy Rajamanickam
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute, Salem, Tamil Nadu, 636 112, India.
| | - Pasuvalingam Visha
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute, Salem, Tamil Nadu, 636 112, India
| | - Ayyasamy Elango
- Veterinary College and Research Institute, Dean, Salem, Tamil Nadu, 636 112, India
| | - Venkatasubramanian Leela
- Department of Veterinary Physiology, Madras Veterinary College, Chennai, Tamil Nadu, 600 007, India
| |
Collapse
|
5
|
Goudet G, Beauclercq S, Douet C, Reigner F, Deleuze S, Nadal-Desbarats L. Saliva and plasma metabolome changes during anoestrus, the oestrous cycle and early gestation in the mare: A pilot study. Theriogenology 2024; 228:110-120. [PMID: 39141998 DOI: 10.1016/j.theriogenology.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Successful reproductive management of domestic mammals depends primarily upon timely identification of oestrous cycle stages. There is a need to develop an alternative non-invasive, welfare-friendly, accurate and reliable method to identify reproductive cycle stages. This is of particular interest for horse breeders, because horses are high-value farm animals that require careful management and individual monitoring. Saliva sampling is non-invasive, painless and welfare-friendly. Thus, we performed a metabolomic analysis of equine saliva during different reproductive stages to identify changes in the salivary metabolome during anoestrus, the oestrous cycle and early gestation. We compared the saliva and plasma metabolomes to investigate the relationship between the two fluids according to the physiological stage. We collected saliva and plasma samples from six mares during seasonal anoestrus, during the follicular phase 3 days, 2 days and 1 day before ovulation and the day when ovulation was detected, during the luteal phase 6 days after ovulation, and during early gestation 18 days after ovulation and insemination. Metabolome analysis was performed by proton-nuclear magnetic resonance spectroscopy. We identified 58 and 51 metabolites in saliva and plasma, respectively. The levels of four metabolites or groups of metabolites in saliva and five metabolites or groups of metabolites in plasma showed significant modifications during the 4 days until ovulation, ie 3 days prior to and on the day of ovulation. The levels of 11 metabolites or groups of metabolites in saliva and 17 metabolites or groups of metabolites in plasma were significantly different between the seasonal anoestrus and the ovarian cyclicity period. The physiological mechanisms involved in the onset of ovarian cyclicity and in ovulation induced modifications of the metabolome both in plasma and saliva. The metabolites whose salivary levels changed during the reproductive cycle could be potential salivary biomarkers to detect the reproductive stage in a welfare friendly production system. In particular, we propose creatine and alanine as candidate salivary biomarkers of ovulation and of the onset of ovarian cyclicity, respectively. However, extensive validation of their reliability is required. Our study contributes to extend to domestic mammals the use of saliva as a non-invasive alternative diagnostic fluid for reproduction in a welfare-friendly production system.
Collapse
Affiliation(s)
- Ghylène Goudet
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380, Nouzilly, France.
| | | | - Cécile Douet
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380, Nouzilly, France.
| | | | - Stéfan Deleuze
- Faculté de Médecine Vétérinaire, Département des Sciences Cliniques, Clinique Equine, Université de Liège, B-4000, Liège, Belgium.
| | | |
Collapse
|
6
|
Joshi M, Kumar V, Singh D, Onteru SK. Taurine dynamics in serum during the oestrous cycle in buffaloes. Reprod Domest Anim 2024; 59:e14560. [PMID: 38595035 DOI: 10.1111/rda.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Estrus identification is one of the common issues in buffaloes because of their short estrus duration and silent estrus problem. Hence, specific biomarkers facilitating in identifying the estrus stage would be helpful to buffalo farmers and researchers. In our previous studies, taurine, a non-protein amino acid that helps in the secretion of reproductive hormones such as GnRH, was found to be associated with postpartum anestrus in buffaloes. Therefore, the present study was conducted to explore the level of taurine in serum during different stages of the oestrous cycle in healthy cyclic buffaloes. Blood samples were collected from healthy cyclic buffaloes (n = 4), and taurine was estimated at the estrus (0th day), proestrus (-2nd day), metestrus (3rd day) and diestrus (+10th day) stages using TLC method. The days of the oestrous cycle were determined by ultrasonography and observation of behavioural signs by trained professionals. The results revealed that taurine was consistently present in the serum. However, the highest concentration of taurine was observed at the proestrus (0.20 ± 0.03 mg/mL) stage, which was greater (p < .05) than metestrus (0.10 ± 0.05 mg/mL) and diestrus (0.13 ± 0.03 mg/mL) stages, but comparable with the estrus stage. These results were also validated in the simulated population datasets of population size 6 to 10,000. Further, ROC curve analysis for the large simulated population indicated the efficiency of taurine to distinguish proestrus from metestrus and diestrus stages at a lower cutoff value of <0.1643 mg/mL with 60% sensitivity and specificity. Therefore, the present study concludes that serum taurine concentration could help in detecting proestrus stage of buffalo estrous cycle.
Collapse
Affiliation(s)
- Mansi Joshi
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Varun Kumar
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
7
|
Doshi P, Bhalaiya C, Suthar V, Patidar V, Joshi C, Patel A, Raval I. Untargeted metabolomics of buffalo urine reveals hydracyrlic acid, 3-bromo-1-propanol and benzyl serine as potential estrus biomarkers. J Proteomics 2024; 296:105124. [PMID: 38364903 DOI: 10.1016/j.jprot.2024.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Buffalo is a silent heat animal and doesn't show prominent signs of estrous like cattle so it becomes difficult for farmers to determine the receptivity of the animal based purely on the animal behaviour. India, having a huge population size, needs to produce more milk for the population. Successful artificial insemination greatly depends on the receptivity of the animal. Hence the present study aimed to identify the changes in the metabolome of the buffalo. GC-MS based mass spectrometric analysis was deployed for the determination of estrous by differential expression of metabolites. It was found that hydracrylic acid, 3-bromo-1-propanol and benzyl serine were significantly upregulated in the estrous phase of buffalo (p.value ≤0.05, FC ≥ 2). The pathway enrichment analysis also supported the same as pathways related to amino acid metabolism and fatty acid metabolism were up regulated along with the Warburg effect which is linked to the rapid cell proliferation which might help prepare animals to meet the energy requirement during the estrous. Further analysis of the metabolic biomarkers using ROC analysis also supported these three metabolites as probable biomarkers as they were identified with AUC values of 0.7 or greater. SIGNIFICANCE: The present study focuses on the untargeted metabolomics studies of buffalo urine with special reference to the estrous phase of reproductive cycle. The estrous signals are more prominent in cattle, where animals show clear estrous signals such as mounting and discharge along with vocal signals. Buffalo is a silent heat animal and it becomes difficult for farmers to detect the estrous based on the physical and behavioral signals. Hence the present study focuses on GC-MS based untargeted metabolomics to identify differentially expressed urine metabolites. In this study, hydracrylic acid, 3-bromo-1-propanol and benzyl serine were found to be significantly upregulated in the estrous phase of buffalo (p-value ≤0.05, FC ≥ 2). Further confirmation of the metabolic biomarkers was done using Receiver operating characteristics (ROC) analysis which also supported these three metabolites as probable biomarkers as they had AUC values of 0.7 or greater. Hence, this study will be of prime importance for the people working in the area of animal metabolomics.
Collapse
Affiliation(s)
- Pooja Doshi
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India
| | - Chetana Bhalaiya
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India
| | - Vishal Suthar
- Kamdhenu University, Gandhinagar, Karmayogi Bhavan, Block-1, B1-Wing, 4th Floor, Sector-10-A, Gandhinagar, Gujarat 382010, India
| | - Vikas Patidar
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India.
| | - Amrutlal Patel
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India.
| | - Ishan Raval
- Gujarat Biotechnology Research Centre (GBRC), 6(th) Floor MS Building, Sector 11, Gandhinagar, Gujarat 382010, India.
| |
Collapse
|
8
|
Rios TB, Maximiano MR, Feitosa GC, Malmsten M, Franco OL. Nanosensors for animal infectious disease detection. SENSING AND BIO-SENSING RESEARCH 2024; 43:100622. [DOI: 10.1016/j.sbsr.2024.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
9
|
Fang S, Li Z, Pang S, Gan Y, Ding X, Peng H. Identification of postnatal development dependent genes and proteins in porcine epididymis. BMC Genomics 2023; 24:729. [PMID: 38049726 PMCID: PMC10694963 DOI: 10.1186/s12864-023-09827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The epididymis is a highly regionalized tubular organ possesses vectorial functions of sperm concentration, maturation, transport, and storage. The epididymis-expressed genes and proteins are characterized by regional and developmental dependent pattern. However, a systematic and comprehensive insight into the postnatal development dependent changes in gene and protein expressions of porcine epididymis is still lacking. Here, the RNA and protein of epididymis of Duroc pigs at different postnatal development stages were extracted by using commercial RNeasy Midi kit and extraction buffer (7 M Urea, 2 M thiourea, 3% CHAPS, and 1 mM PMSF) combined with sonication, respectively, which were further subjected to transcriptomic and proteomic profiling. RESULTS Transcriptome analysis indicated that 198 and 163 differentially expressed genes (DEGs) were continuously up-regulated and down-regulated along with postnatal development stage changes, respectively. Most of the up-regulated DEGs linked to functions of endoplasmic reticulum and lysosome, while the down-regulated DEGs mainly related to molecular process of extracellular matrix. Moreover, the following key genes INSIG1, PGRMC1, NPC2, GBA, MMP2, MMP14, SFRP1, ELN, WNT-2, COL3A1, and SPARC were highlighted. A total of 49 differentially expressed proteins (DEPs) corresponding to postnatal development stages changes were uncovered by the proteome analysis. Several key proteins ACSL3 and ACADM, VDAC1 and VDAC2, and KNG1, SERPINB1, C3, and TF implicated in fatty acid metabolism, voltage-gated ion channel assembly, and apoptotic and immune processes were emphasized. In the integrative network, the key genes and proteins formed different clusters and showed strong interactions. Additionally, NPC2, COL3A1, C3, and VDAC1 are located at the hub position in each cluster. CONCLUSIONS The identified postnatal development dependent genes and proteins in the present study will pave the way for shedding light on the molecular basis of porcine epididymis functions and are useful for further studies on the specific regulation mechanisms responsible for epididymal sperm maturation.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Zhechen Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Shuo Pang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Yating Gan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Xiaoning Ding
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Hui Peng
- College of Animal Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
10
|
Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases. Animals (Basel) 2023; 13:ani13050780. [PMID: 36899637 PMCID: PMC10000156 DOI: 10.3390/ani13050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Precision livestock farming has a crucial function as farming grows in significance. It will help farmers make better decisions, alter their roles and perspectives as farmers and managers, and allow for the tracking and monitoring of product quality and animal welfare as mandated by the government and industry. Farmers can improve productivity, sustainability, and animal care by gaining a deeper understanding of their farm systems as a result of the increased use of data generated by smart farming equipment. Automation and robots in agriculture have the potential to play a significant role in helping society fulfill its future demands for food supply. These technologies have already enabled significant cost reductions in production, as well as reductions in the amount of intensive manual labor, improvements in product quality, and enhancements in environmental management. Wearable sensors can monitor eating, rumination, rumen pH, rumen temperature, body temperature, laying behavior, animal activity, and animal position or placement. Detachable or imprinted biosensors that are adaptable and enable remote data transfer might be highly important in this quickly growing industry. There are already multiple gadgets to evaluate illnesses such as ketosis or mastitis in cattle. The objective evaluation of sensor methods and systems employed on the farm is one of the difficulties presented by the implementation of modern technologies on dairy farms. The availability of sensors and high-precision technology for real-time monitoring of cattle raises the question of how to objectively evaluate the contribution of these technologies to the long-term viability of farms (productivity, health monitoring, welfare evaluation, and environmental effects). This review focuses on biosensing technologies that have the potential to change early illness diagnosis, management, and operations for livestock.
Collapse
|
11
|
Zhao Y, Zhang J, Zhang Y, Li S, Gao Y, Chang C, Liu X, Xu L, Yang G. Proteomic Analysis of Protective Effects of Dl-3-n-Butylphthalide against mpp + -Induced Toxicity via downregulating P53 pathway in N2A Cells. Proteome Sci 2023; 21:1. [PMID: 36597095 PMCID: PMC9809048 DOI: 10.1186/s12953-022-00199-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dl-3-n-butylphthalide (NBP) is an important medial therapy for acute ischemic stroke in China. Recent studied have revealed that NBP not only rescued the loss of dopaminergic neurons in cellular and animal models of Parkinson's disease (PD), but also could improve motor symptoms in PD patients. However, the protective mechanism is not fully understood. P53 is a multifunctional protein implicated in numerous cellular processes, including apoptosis, DNA repair, mitochondrial functions, redox homeostasis, autophagy and protein aggregations. In PD, p53 integrated with various neurodegeneration-related signals inducing neuronal loss, indicating the suppression of P53 might be a promising target for PD treatment. Therefore, the purpose of the current study was to systemically screen new therapeutic targets of NBP in PD. METHOD In our study, we constructed mpp + induced N2A cells to investigate the benefit effect of NBP in PD. MTT assay was performed to evaluate the cell viability; TMT-based LC-MS/MS was applied to determine the different expressed proteins (DEPs) of NBP pretreatment; online bioinformatics databases such as DAVID, STRING, and KEGG was used to construe the proteomic data. After further analyzed and visualized the protein-protein interactions (PPI) by Cytoscape, DEPs were verified by western blot. RESULT A total of 5828 proteins were quantified in the comparative proteomics experiments and 417 proteins were considered as DEPs (fold change > 1.5 and p < 0.05). Among the 417 DEPs, 140 were upregulated and 277 were downregulated in mpp + -induced N2A cells with NBP pretreatment. KEGG pathway analysis indicated that lysosome, phagosome, apoptosis, endocytosis and ferroptosis are the mainly enriched pathways. By using MCL clustering in PPI analysis, 48 clusters were generated and the subsequent KEGG analysis of the top 3 clusters revealed that P53 signaling pathway was recognized as the dominant pathway for NBP treatment. CONCLUSION NBP significantly relived mpp + -induced cell toxicity. The neuroprotective role of NBP was implicated with P53 signaling pathway in some extent. These findings will reinforce the understanding of the mechanism of NBP in PD and identify novel therapeutic targets.
Collapse
Affiliation(s)
- Yuan Zhao
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Jian Zhang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Yidan Zhang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Shuyue Li
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ya Gao
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Cui Chang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiang Liu
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lei Xu
- grid.452702.60000 0004 1804 3009Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Guofeng Yang
- grid.452702.60000 0004 1804 3009Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
12
|
Comparative Analysis of Saliva and Plasma Proteins Patterns in Pregnant Cows—Preliminary Studies. Animals (Basel) 2022; 12:ani12202850. [PMID: 36290238 PMCID: PMC9597767 DOI: 10.3390/ani12202850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary One of the most crucial topics about cattle breeding is pregnancy. During this state, there are many changes in protein expression and abundance. These changes find reflection not only in plasma protein patterns but also in saliva, which is easier to obtain than blood. The aim of this study was the analysis of plasma and salivary protein profiles in pregnant cows in order to search for valuable markers of pregnancy status. In this study, the presence of apolipoproteins possibly related to bovine pregnancy was confirmed both in plasma and saliva. This means that saliva can be considered a good source of information about the condition of the organism, including during pregnancy. It is possible that the comparison of salivary and plasma proteomes can be a helpful tool to assess the pregnancy status of cattle, and can be useful for developing rapid tests from saliva. Abstract Pregnancy is a physiological state that can be described, from a biochemical point of view, using protein patterns. The present study focused on the comparison of protein patterns between the saliva and plasma of pregnant cows to search for possible markers which are present both in plasma and saliva. Saliva and plasma were collected from healthy, pregnant (3–4 months) and non-pregnant (C; n = 4) cows aged between 4 and 8 years (P; n = 8) from the same farm. Biological material was analyzed using 2D electrophoresis and MS identification. Among identified spots, there were those which could be related to pregnancy (e.g., apolipoproteins I and II in all examined matrices or transforming growth factor-beta-induced protein ig-h3 in albumin-free plasma) as well as those which are responsible for regulating of cellular processes (e.g., pyruvate kinase and aspartate aminotransferase in all examined matrices, or lactate dehydrogenase, phosphoglycerate kinase, and NADH dehydrogenase in plasma). Further identification of common spots and those only specific to saliva as well as the comparison between other periods of pregnancy are necessary; it is already clear that saliva can be considered a valuable diagnostic matrix containing potential markers of physiological and pathological status.
Collapse
|