1
|
Rogina B, Franceschi C, Tissenbaum HA. Editorial: Year in review: discussions in genetics of aging. Front Genet 2024; 15:1470451. [PMID: 39355686 PMCID: PMC11443155 DOI: 10.3389/fgene.2024.1470451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Affiliation(s)
- Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- Institute for Systems Genomics, Farmington, CT, United States
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, Russia
| | - Heidi A Tissenbaum
- Department of Molecular, Cell, and Cancer Biology, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
2
|
Baliou S, Ioannou P, Apetroaei MM, Vakonaki E, Fragkiadaki P, Kirithras E, Tzatzarakis MN, Arsene AL, Docea AO, Tsatsakis A. The Impact of the Mediterranean Diet on Telomere Biology: Implications for Disease Management-A Narrative Review. Nutrients 2024; 16:2525. [PMID: 39125404 PMCID: PMC11313773 DOI: 10.3390/nu16152525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION Telomeres are nucleoprotein complexes at the ends of chromosomes that are under the control of genetic and environmental triggers. Accelerated telomere shortening is causally implicated in the increasing incidence of diseases. The Mediterranean diet has recently been identified as one that confers protection against diseases. This review aimed to identify the effect of each component of the Mediterranean diet on telomere length dynamics, highlighting the underlying molecular mechanisms. METHODS PubMed was searched to identify relevant studies to extract data for conducting a narrative review. RESULTS The Mediterranean diet alleviates clinical manifestations in many diseases. Focusing on autoimmune diseases, the Mediterranean diet can be protective by preventing inflammation, mitochondrial malfunction, and abnormal telomerase activity. Also, each Mediterranean diet constituent seems to attenuate aging through the sustenance or elongation of telomere length, providing insights into the underlying molecular mechanisms. Polyphenols, vitamins, minerals, and fatty acids seem to be essential in telomere homeostasis, since they inhibit inflammatory responses, DNA damage, oxidative stress, mitochondrial malfunction, and cell death and induce telomerase activation. CONCLUSIONS The Mediterranean diet is beneficial for maintaining telomere dynamics and alleviating age-related illnesses. This review provides a comprehensive overview of cross-sectional, observational, and randomized controlled trials regarding the beneficial impact of every constituent in the Mediterranean diet on telomere length and chronic disease management.
Collapse
Affiliation(s)
- Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (A.L.A.)
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Evangelos Kirithras
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
| | - Andreea Letitia Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania; (M.-M.A.); (A.L.A.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy, Petru Rares, 200349 Craiova, Romania
| | - Aristides Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.B.); (E.V.); (P.F.); (E.K.); (M.N.T.); (A.T.)
- Lifeplus S.A., Science & Technological Park of Crete, C Building, Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
3
|
Chen C, Plonski NM, Dong Q, Song N, Zhang X, Parikh HM, Finch ER, Easton J, Mulder HL, Walker E, Neale G, Pan Y, Li Q, Zhang J, Krull K, Robison LL, Armstrong GT, Yasui Y, Ness KK, Hudson MM, Wang H, Huang IC, Wang Z. Race and Ethnicity, Socioeconomic Factors, and Epigenetic Age Acceleration in Survivors of Childhood Cancer. JAMA Netw Open 2024; 7:e2419771. [PMID: 38954412 PMCID: PMC11220564 DOI: 10.1001/jamanetworkopen.2024.19771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/01/2024] [Indexed: 07/04/2024] Open
Abstract
Importance Current research in epigenetic age acceleration (EAA) is limited to non-Hispanic White individuals. It is imperative to improve inclusivity by considering racial and ethnic minorities in EAA research. Objective To compare non-Hispanic Black with non-Hispanic White survivors of childhood cancer by examining the associations of EAA with cancer treatment exposures, potential racial and ethnic disparity in EAA, and mediating roles of social determinants of health (SDOH). Design, Setting, and Participants In this cross-sectional study, participants were from the St Jude Lifetime Cohort, which was initiated in 2007 with ongoing follow-up. Eligible participants included non-Hispanic Black and non-Hispanic White survivors of childhood cancer treated at St Jude Children's Research Hospital between 1962 and 2012 who had DNA methylation data. Data analysis was conducted from February 2023 to May 2024. Exposure Three treatment exposures for childhood cancer (chest radiotherapy, alkylating agents, and epipodophyllotoxin). Main Outcomes and Measures DNA methylation was generated from peripheral blood mononuclear cell-derived DNA. EAA was calculated as residuals from regressing Levine or Horvath epigenetic age on chronological age. SDOH included educational attainment, annual personal income, and the socioeconomic area deprivation index (ADI). General linear models evaluated cross-sectional associations of EAA with race and ethnicity (non-Hispanic Black and non-Hispanic White) and/or SDOH, adjusting for sex, body mass index, smoking, and cancer treatments. Adjusted least square means (ALSM) of EAA were calculated for group comparisons. Mediation analysis treated SDOH as mediators with average causal mediation effect (ACME) calculated for the association of EAA with race and ethnicity. Results Among a total of 1706 survivors including 230 non-Hispanic Black survivors (median [IQR] age at diagnosis, 9.5 [4.3-14.3] years; 103 male [44.8%] and 127 female [55.2%]) and 1476 non-Hispanic White survivors (median [IQR] age at diagnosis, 9.3 [3.9-14.6] years; 766 male [51.9%] and 710 female [48.1%]), EAA was significantly greater among non-Hispanic Black survivors (ALSM = 1.41; 95% CI, 0.66 to 2.16) than non-Hispanic White survivors (ALSM = 0.47; 95% CI, 0.12 to 0.81). Among non-Hispanic Black survivors, EAA was significantly increased among those exposed to chest radiotherapy (ALSM = 2.82; 95% CI, 1.37 to 4.26) vs those unexposed (ALSM = 0.46; 95% CI, -0.60 to 1.51), among those exposed to alkylating agents (ALSM = 2.33; 95% CI, 1.21 to 3.45) vs those unexposed (ALSM = 0.95; 95% CI, -0.38 to 2.27), and among those exposed to epipodophyllotoxins (ALSM = 2.83; 95% CI, 1.27 to 4.40) vs those unexposed (ALSM = 0.44; 95% CI, -0.52 to 1.40). The association of EAA with epipodophyllotoxins differed by race and ethnicity (β for non-Hispanic Black survivors, 2.39 years; 95% CI, 0.74 to 4.04 years; β for non-Hispanic White survivors, 0.68; 95% CI, 0.05 to 1.31 years) and the difference was significant (1.77 years; 95% CI, 0.01 to 3.53 years; P for interaction = .049). Racial and ethnic disparities in EAA were mediated by educational attainment ( Conclusions and Relevance In this cross-sectional study of childhood cancer survivors, race and ethnicity moderated the association of EAA with epipodophyllotoxin exposure and racial and ethnic differences in EAA were partially mediated by educational attainment and ADI, indicating differential treatment toxic effects by race and ethnicity. These findings suggest that improving social support systems may mitigate socioeconomic disadvantages associated with even greater accelerated aging and reduce health disparities among childhood cancer survivors.
Collapse
Affiliation(s)
- Cheng Chen
- The Fourth Affiliated Hospital of Soochow University, SuZhou, Jiangsu, China
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Noel-Marie Plonski
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Qian Dong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Nan Song
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Xijun Zhang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hemang M. Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa
| | - Emily R. Finch
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Heather L. Mulder
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Emily Walker
- Hartwell Center, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Geoffrey Neale
- Hartwell Center, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yue Pan
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Qian Li
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kevin Krull
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - I-Chan Huang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
4
|
Rogina B, Tissenbaum HA. SIRT1, resveratrol and aging. Front Genet 2024; 15:1393181. [PMID: 38784035 PMCID: PMC11112063 DOI: 10.3389/fgene.2024.1393181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Aging is linked to a time-associated decline in both cellular function and repair capacity leading to malfunction on an organismal level, increased frailty, higher incidence of diseases, and death. As the population grows older, there is a need to reveal mechanisms associated with aging that could spearhead treatments to postpone the onset of age-associated decline, extend both healthspan and lifespan. One possibility is targeting the sirtuin SIRT1, the founding member of the sirtuin family, a highly conserved family of histone deacetylases that have been linked to metabolism, stress response, protein synthesis, genomic instability, neurodegeneration, DNA damage repair, and inflammation. Importantly, sirtuins have also been implicated to promote health and lifespan extension, while their dysregulation has been linked to cancer, neurological processes, and heart disorders. SIRT1 is one of seven members of sirtuin family; each requiring nicotinamide adenine dinucleotide (NAD+) as co-substrate for their catalytic activity. Overexpression of yeast, worm, fly, and mice SIRT1 homologs extend lifespan in each animal, respectively. Moreover, lifespan extension due to calorie restriction are associated with increased sirtuin activity. These findings led to the search for a calorie restriction mimetic, which revealed the compound resveratrol; (3, 5, 4'-trihydroxy-trans-stilbene) belonging to the stilbenoids group of polyphenols. Following this finding, resveratrol and other sirtuin-activating compounds have been extensively studied for their ability to affect health and lifespan in a variety of species, including humans via clinical studies.
Collapse
Affiliation(s)
- Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- Institute for Systems Genomics, Farmington, CT, United States
| | - Heidi A. Tissenbaum
- Department of Molecular, Cell and Cancer Biology UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
5
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Ofori-Attah E, Hashimoto M, Oki M, Kadowaki D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int J Mol Sci 2024; 25:2849. [PMID: 38474096 PMCID: PMC10932067 DOI: 10.3390/ijms25052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mayu Oki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan
| |
Collapse
|
7
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Antiaging Strategies and Remedies: A Landscape of Research Progress and Promise. ACS Chem Neurosci 2024; 15:408-446. [PMID: 38214973 PMCID: PMC10853939 DOI: 10.1021/acschemneuro.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Aging is typified by a gradual loss of physiological fitness and accumulation of cellular damage, leading to deteriorated functions and enhanced vulnerability to diseases. Antiaging research has a long history throughout civilization, with many efforts put forth to understand and prevent the effects of aging. Multiple strategies aiming to promote healthy aging and extend the lifespan have been developed including lifestyle adjustments, medical treatments, and social programs. A multitude of antiaging medicines and remedies have also been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent research related to antiaging strategies and treatments. We review the recent advances and delineate trends in research headway of antiaging knowledge and practice across time, geography, and development pipelines. We further assess the state-of-the-art antiaging approaches and explore their correlations with age-related diseases. The landscape of antiaging drugs has been outlined and explored. Well-recognized and novel, currently evaluated antiaging agents have also been summarized. Finally, we review clinical applications of antiaging products with their development pipelines. The objective of this review is to summarize current knowledge on preventive strategies and treatment remedies in the field of aging, to outline challenges and evaluate growth opportunities, in order to further efforts to solve the problems that remain.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American
Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
8
|
Davin A, Ferrari RR, Pansarasa O. Mitochondria: between aging, frailty and sarcopenia. Aging (Albany NY) 2023; 15:7863-7865. [PMID: 37610713 PMCID: PMC10496998 DOI: 10.18632/aging.204998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/09/2023] [Indexed: 08/24/2023]
Affiliation(s)
- Annalisa Davin
- Laboratory of Neurobiology and Neurogenetics, Golgi-Cenci Foundation, Abbiategrasso, Italy
| | - Riccardo Rocco Ferrari
- Laboratory of Neurobiology and Neurogenetics, Golgi-Cenci Foundation, Abbiategrasso, Italy
| | | |
Collapse
|
9
|
Gao L, Liu X, Luo X, Lou X, Li P, Li X, Liu X. Antiaging effects of dietary supplements and natural products. Front Pharmacol 2023; 14:1192714. [PMID: 37441528 PMCID: PMC10333707 DOI: 10.3389/fphar.2023.1192714] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Aging is an inevitable process influenced by genetics, lifestyles, and environments. With the rapid social and economic development in recent decades, the proportion of the elderly has increased rapidly worldwide, and many aging-related diseases have shown an upward trend, including nervous system diseases, cardiovascular diseases, metabolic diseases, and cancer. The rising burden of aging-related diseases has become an urgent global health challenge and requires immediate attention and solutions. Natural products have been used for a long time to treat various human diseases. The primary cellular pathways that mediate the longevity-extending effects of natural products involve nutrient-sensing pathways. Among them, the sirtuin, AMP-activated protein kinase, mammalian target of rapamycin, p53, and insulin/insulin-like growth factor-1 signaling pathways are most widely studied. Several studies have reviewed the effects of individual natural compounds on aging and aging-related diseases along with the underlying mechanisms. Natural products from food sources, such as polyphenols, saponins, alkaloids, and polysaccharides, are classified as antiaging compounds that promote health and prolong life via various mechanisms. In this article, we have reviewed several recently identified natural products with potential antiaging properties and have highlighted their cellular and molecular mechanisms. The discovery and use of dietary supplements and natural products that can prevent and treat multiple aging-related diseases in humans will be beneficial. Thus, this review provides theoretical background for existing dietary supplements and natural products as potential antiaging agents.
Collapse
|
10
|
Novel Approach to the Treatment of Neuropathic Pain Using a Combination with Palmitoylethanolamide and Equisetum arvense L. in an In Vitro Study. Int J Mol Sci 2023; 24:ijms24065503. [PMID: 36982577 PMCID: PMC10053612 DOI: 10.3390/ijms24065503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Neuropathic pain is a typical patient disorder resulting from damage and dysfunction of the peripheral neuraxis. Injury to peripheral nerves in the upper extremities can result in a lifelong reduction in quality of life and a devastating loss of sensory and motor function. Since some standard pharmaceutical therapies can cause dependence or intolerance, nonpharmacological treatments have gained great interest in recent years. In this context, the beneficial effects of a new combination of palmitoylethanolamide and Equisetum arvense L. are evaluated in the present study. The bioavailability of the combination was initially analyzed in a 3D intestinal barrier simulating oral intake to analyze its absorption/biodistribution and exclude cytotoxicity. In a further step, a 3D nerve tissue model was performed to study the biological effects of the combination during the key mechanisms leading to peripheral neuropathy. Our results demonstrate that the combination successfully crossed the intestinal barrier and reached the target site, modulating the nerve recovery mechanism after Schwann cell injury and offering the initial response of relieving pain. This work supported the efficacy of palmitoylethanolamide and Equisetum arvense L. in reducing neuropathy and modifying the major pain mechanisms, outlining a possible alternative nutraceutical approach.
Collapse
|
11
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
12
|
Shaikh S, Ali S, Lim JH, Chun HJ, Ahmad K, Ahmad SS, Hwang YC, Han KS, Kim NR, Lee EJ, Choi I. Dipeptidyl peptidase-4 inhibitory potentials of Glycyrrhiza uralensis and its bioactive compounds licochalcone A and licochalcone B: An in silico and in vitro study. Front Mol Biosci 2022; 9:1024764. [PMID: 36250007 PMCID: PMC9564220 DOI: 10.3389/fmolb.2022.1024764] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a growing global public health issue, and dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target in T2DM. Several synthetic anti-DPP-4 medications can be used to treat T2DM. However, because of adverse effects, there is an unmet demand for the development of safe and effective medications. Natural medicines are receiving greater interest due to the inherent safety of natural compounds. Glycyrrhiza uralensis (licorice) is widely consumed and used as medicine. In this study, we investigated the abilities of a crude water extract (CWE) of G. uralensis and two of its constituents (licochalcone A (LicA) and licochalcone B (LicB)) to inhibit the enzymatic activity of DPP-4 in silico and in vitro. In silico studies showed that LicA and LicB bind tightly to the catalytic site of DPP-4 and have 11 amino acid residue interactions in common with the control inhibitor sitagliptin. Protein-protein interactions studies of LicA-DPP4 and LicB-DPP4 complexes with GLP1 and GIP reduced the DPP-4 to GLP1 and GIP interactions, indicated that these constituents might reduce the degradations of GLP1 and GIP. In addition, molecular dynamics simulations revealed that LicA and LicB stably bound to DPP-4 enzyme. Furthermore, DPP-4 enzyme assay showed the CWE of G. uralensis, LicA, and LicB concentration-dependently inhibited DPP-4; LicA and LicB had an estimated IC50 values of 347.93 and 797.84 μM, respectively. LicA and LicB inhibited DPP-4 at high concentrations, suggesting that these compounds could be used as functional food ingredients to manage T2DM.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ki Soo Han
- Neo Cremar Co., Ltd., Seoul, South Korea
| | - Na Ri Kim
- Neo Cremar Co., Ltd., Seoul, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|