1
|
Naamneh Elzenaty R, Kouri C, Martinez de Lapiscina I, Sauter KS, Moreno F, Camats-Tarruella N, Flück CE. NR5A1/SF-1 Collaborates with Inhibin α and the Androgen Receptor. Int J Mol Sci 2024; 25:10109. [PMID: 39337600 PMCID: PMC11432463 DOI: 10.3390/ijms251810109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Steroidogenic factor 1 (SF-1) is a nuclear receptor that regulates steroidogenesis and reproductive development. NR5A1/SF-1 variants are associated with a broad spectrum of phenotypes across individuals with disorders of sex development (DSDs). Oligogenic inheritance has been suggested as an explanation. SF-1 interacts with numerous partners. Here, we investigated a constellation of gene variants identified in a 46,XY severely undervirilized individual carrying an ACMG-categorized 'pathogenic' NR5A1/SF-1 variant in comparison to the healthy carrier father. Candidate genes were revealed by whole exome sequencing, and pathogenicity was predicted by different in silico tools. We found variants in NR1H2 and INHA associated with steroidogenesis, sex development, and reproduction. The identified variants were tested in cell models. Novel SF-1 and NR1H2 binding sites in the AR and INHA gene promoters were found. Transactivation studies showed that wild-type NR5A1/SF-1 regulates INHA and AR gene expression, while the NR5A1/SF-1 variant had decreased transcriptional activity. NR1H2 was found to regulate AR gene transcription; however, the NR1H2 variant showed normal activity. This study expands the NR5A1/SF-1 network of interacting partners, while not solving the exact interplay of different variants that might be involved in revealing the observed DSD phenotype. It also illustrates that understanding complex genetics in DSDs is challenging.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Biobizkaia Health Research Institute, Cruces University Hospital, University of the Basque, 48903 Barakaldo, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Endo-ERN, 1081 HV Amsterdam, The Netherlands
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Francisca Moreno
- Department of Pediatrics, Hospital Infantil La Fe, 46026 Valencia, Spain;
| | - Núria Camats-Tarruella
- Growth and Development Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Christa E. Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (R.N.E.); (C.K.); (I.M.d.L.); (K.-S.S.)
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
2
|
Boonsawat P, Asadollahi R, Niedrist D, Steindl K, Begemann A, Joset P, Bhoj EJ, Li D, Zackai E, Vetro A, Barba C, Guerrini R, Whalen S, Keren B, Khan A, Jing D, Palomares Bralo M, Rikeros Orozco E, Hao Q, Schlott Kristiansen B, Zheng B, Donnelly D, Clowes V, Zweier M, Papik M, Siegel G, Sabatino V, Mocera M, Horn AHC, Sticht H, Rauch A. Deleterious ZNRF3 germline variants cause neurodevelopmental disorders with mirror brain phenotypes via domain-specific effects on Wnt/β-catenin signaling. Am J Hum Genet 2024; 111:1994-2011. [PMID: 39168120 PMCID: PMC11393693 DOI: 10.1016/j.ajhg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/β-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/β-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/β-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/β-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/β-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.
Collapse
Affiliation(s)
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Faculty of Engineering and Science, University of Greenwich London, Medway Campus, Chatham Maritime ME4 4TB, UK
| | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Pascal Joset
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Sandra Whalen
- Unité Fonctionnelle de Génétique Odellin, Hôpital Armand Trousseau, Paris, France
| | - Boris Keren
- Département de Génétique, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Amjad Khan
- Faculty of Science, Department of Biological Science (Zoology), University of Lakki Marwat, Khyber Pakhtunkhwa 28420, Pakistan
| | - Duan Jing
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - María Palomares Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Unidad de Trastornos Del Neurodesarrollo, Hospital Universitario La Paz, Madrid, Spain
| | - Emi Rikeros Orozco
- Instituto de Genética Médica y Molecular (INGEMM), Unidad de Trastornos Del Neurodesarrollo, Hospital Universitario La Paz, Madrid, Spain
| | - Qin Hao
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Deirdre Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health & Social Care Trust, Belfast, Northern Ireland
| | - Virginia Clowes
- Thames Regional Genetics Service, North West University Healthcare NHS Trust, London, UK
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Gabriele Siegel
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Valeria Sabatino
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Martina Mocera
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Pediatric University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Wankanit S, Zidoune H, Bignon-Topalovic J, Schlick L, Houzelstein D, Fusée L, Boukri A, Nouri N, McElreavey K, Bashamboo A, Elzaiat M. Evidence for NR2F2/COUP-TFII involvement in human testis development. Sci Rep 2024; 14:17869. [PMID: 39090159 PMCID: PMC11294483 DOI: 10.1038/s41598-024-68860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
NR2F2 encodes COUP-TFII, an orphan nuclear receptor required for the development of the steroidogenic lineages of the murine fetal testes and ovaries. Pathogenic variants in human NR2F2 are associated with testis formation in 46,XX individuals, however, the function of COUP-TFII in the human testis is unknown. We report a de novo heterozygous variant in NR2F2 (c.737G > A, p.Arg246His) in a 46,XY under-masculinized boy with primary hypogonadism. The variant, located within the ligand-binding domain, is predicted to be highly damaging. In vitro studies indicated that the mutation does not impact the stability or subcellular localization of the protein. NR5A1, a related nuclear receptor that is a key factor in gonad formation and function, is known to physically interact with COUP-TFII to regulate gene expression. The mutant protein did not affect the physical interaction with NR5A1. However, in-vitro assays demonstrated that the mutant protein significantly loses the inhibitory effect on NR5A1-mediated activation of both the LHB and INSL3 promoters. The data support a role for COUP-TFII in human testis formation. Although mutually antagonistic sets of genes are known to regulate testis and ovarian pathways, we extend the list of genes, that together with NR5A1 and WT1, are associated with both 46,XX and 46,XY DSD.
Collapse
Affiliation(s)
- Somboon Wankanit
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, 25017, Constantine, Algeria
| | | | - Laurène Schlick
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Denis Houzelstein
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Leila Fusée
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
- Metabolic Disease Research Laboratory, Salah Boubnider Constantine 3 University, El Khroub, Algeria
| | - Ken McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France
| | - Maëva Elzaiat
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
4
|
Rohayem J, Alexander EC, Heger S, Nordenström A, Howard SR. Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocr Rev 2024; 45:460-492. [PMID: 38436980 PMCID: PMC11244267 DOI: 10.1210/endrev/bnae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 03/05/2024]
Abstract
There are 3 physiological waves of central hypothalamic-pituitary-gonadal (HPG) axis activity over the lifetime. The first occurs during fetal life, the second-termed "mini-puberty"-in the first months after birth, and the third at puberty. After adolescence, the axis remains active all through adulthood. Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by a deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) secretion or action. In cases of severe CHH, all 3 waves of GnRH pulsatility are absent. The absence of fetal HPG axis activation manifests in around 50% of male newborns with micropenis and/or undescended testes (cryptorchidism). In these boys, the lack of the mini-puberty phase accentuates testicular immaturity. This is characterized by a low number of Sertoli cells, which are important for future reproductive capacity. Thus, absent mini-puberty will have detrimental effects on later fertility in these males. The diagnosis of CHH is often missed in infants, and even if recognized, there is no consensus on optimal therapeutic management. Here we review physiological mini-puberty and consequences of central HPG axis disorders; provide a diagnostic approach to allow for early identification of these conditions; and review current treatment options for replacement of mini-puberty in male infants with CHH. There is evidence from small case series that replacement with gonadotropins to mimic "mini-puberty" in males could have beneficial outcomes not only regarding testis descent, but also normalization of testis and penile sizes. Moreover, such therapeutic replacement regimens in disordered mini-puberty could address both reproductive and nonreproductive implications.
Collapse
Affiliation(s)
- Julia Rohayem
- Department of Pediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
- University of Muenster, 48149 Muenster, Germany
| | - Emma C Alexander
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sabine Heger
- Department of Pediatric Endocrinology, Children's Hospital Auf der Bult, 30173 Hannover, Germany
| | - Anna Nordenström
- Pediatric Endocrinology, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London E1 1FR, UK
| |
Collapse
|
5
|
Jiali C, Huifang P, Yuqing J, Xiantao Z, Hongwei J. Worldwide cohort study of 46, XY differences/disorders of sex development genetic diagnoses: geographic and ethnic differences in variants. Front Genet 2024; 15:1387598. [PMID: 38915825 PMCID: PMC11194351 DOI: 10.3389/fgene.2024.1387598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Differences/disorders of sex development (DSDs) in individuals with a 46, XY karyotype are a group of congenital disorders that manifest as male gonadal hypoplasia or abnormalities of the external genitalia. Approximately 50% of patients with 46, XY DSDs cannot obtain a molecular diagnosis. The aims of this paper were to review the most common causative genes and rare genes in patients with 46, XY DSDs, analyze global molecular diagnostic cohorts for the prevalence and geographic distribution of causative genes, and identify the factors affecting cohort detection results. Although the spectrum of genetic variants varies across regions and the severity of the clinical phenotype varies across patients, next-generation sequencing (NGS), the most commonly used detection method, can still reveal genetic variants and aid in diagnosis. A comparison of the detection rates of various sequencing modalities revealed that whole-exome sequencing (WES) facilitates a greater rate of molecular diagnosis of the disease than panel sequencing. Whole-genome sequencing (WGS), third-generation sequencing, and algorithm advancements will contribute to the improvement of detection efficiency. The most commonly mutated genes associated with androgen synthesis and action are AR, SR5A2, and HSD17B3, and the most commonly mutated genes involved in gonadal formation are NR5A1 and MAP3K1. Detection results are affected by differences in enrollment criteria and sequencing technologies.
Collapse
Affiliation(s)
- Chen Jiali
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Peng Huifang
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiang Yuqing
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zeng Xiantao
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Hongwei
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
6
|
Muranishi Y, Itonaga T, Ihara K, Katoh-Fukui Y, Tamaoka S, Hattori A, Kon M, Shinohara N, Fukami M. PTPN11 and FLNA variants in a boy with ambiguous genitalia, short stature, and non-specific dysmorphic features. Clin Pediatr Endocrinol 2024; 33:169-173. [PMID: 38993717 PMCID: PMC11234187 DOI: 10.1297/cpe.2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/10/2024] [Indexed: 07/13/2024] Open
Abstract
Noonan syndrome is a congenital disorder characterized by distinctive facial appearance, congenital heart defects, short stature, and skeletal dysplasia. Although boys with Noonan syndrome frequently exhibit cryptorchidism, a mild form of 46,XY disorders of sex development (DSD), they barely manifest more severe genital abnormalities. Here, we report a boy with ambiguous genitalia, short stature, and non-specific dysmorphic features. He had no cardiac abnormalities or skeletal dysplasia. His score in the Noonan syndrome diagnostic criteria (36 of 157 points, 23%) was lower than the cutoff for diagnosis (50%). Whole-exome sequencing identified a de novo heterozygous variant (c.922A>G: p.Asn308Asp) in PTPN11 and a maternally inherited hemizygous variant (c.1439C>T: p.Pro480Leu) in FLNA. The PTPN11 variant was a known causative mutation for Noonan syndrome. FLNA is a causative gene for neurodevelopmental and skeletal abnormalities and has also been implicated in 46,XY DSD. The p.Pro480Leu variant of FLNA was assessed as deleterious by in silico analyses. These results provide evidence that whole-exome sequencing is a powerful tool for diagnosing patients with atypical disease manifestations. Furthermore, our data suggest a possible role of digenic mutations as phenotypic modifiers of Noonan syndrome.
Collapse
Affiliation(s)
- Yuki Muranishi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoyo Itonaga
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu, Japan
| | - Kenji Ihara
- Department of Pediatrics, Oita University Faculty of Medicine, Yufu, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoshi Tamaoka
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masafumi Kon
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Kouri C, Sommer G, Martinez de Lapiscina I, Elzenaty RN, Tack LJW, Cools M, Ahmed SF, Flück CE. Clinical and genetic characteristics of a large international cohort of individuals with rare NR5A1/SF-1 variants of sex development. EBioMedicine 2024; 99:104941. [PMID: 38168586 PMCID: PMC10797150 DOI: 10.1016/j.ebiom.2023.104941] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Steroidogenic factor 1 (SF-1/NR5A1) is essential for human sex development. Heterozygous NR5A1/SF-1 variants manifest with a broad range of phenotypes of differences of sex development (DSD), which remain unexplained. METHODS We conducted a retrospective analysis on the so far largest international cohort of individuals with NR5A1/SF-1 variants, identified through the I-DSD registry and a research network. FINDINGS Among 197 individuals with NR5A1/SF-1 variants, we confirmed diverse phenotypes. Over 70% of 46, XY individuals had a severe DSD phenotype, while 90% of 46, XX individuals had female-typical sex development. Close to 100 different novel and known NR5A1/SF-1 variants were identified, without specific hot spots. Additionally, likely disease-associated variants in other genes were reported in 32 individuals out of 128 tested (25%), particularly in those with severe or opposite sex DSD phenotypes. Interestingly, 48% of these variants were found in known DSD or SF-1 interacting genes, but no frequent gene-clusters were identified. Sex registration at birth varied, with <10% undergoing reassignment. Gonadectomy was performed in 30% and genital surgery in 58%. Associated organ anomalies were observed in 27% of individuals with a DSD, mainly concerning the spleen. Intrafamilial phenotypes also varied considerably. INTERPRETATION The observed phenotypic variability in individuals and families with NR5A1/SF-1 variants is large and remains unpredictable. It may often not be solely explained by the monogenic pathogenicity of the NR5A1/SF-1 variants but is likely influenced by additional genetic variants and as-yet-unknown factors. FUNDING Swiss National Science Foundation (320030-197725) and Boveri Foundation Zürich, Switzerland.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Grit Sommer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Institute of Social and Preventive Medicine, University of Bern, Switzerland, University of Bern, Bern 3012, Switzerland
| | - Idoia Martinez de Lapiscina
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Research into the Genetics and Control of Diabetes and Other Endocrine Disorders, Biobizkaia Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain; Endo-ERN, Amsterdam 1081 HV, the Netherlands
| | - Rawda Naamneh Elzenaty
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Lloyd J W Tack
- Department of Paediatric Endocrinology, Department of Paediatrics and Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Martine Cools
- Department of Paediatric Endocrinology, Department of Paediatrics and Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Sick Children, Glasgow G51 4TF, UK
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland; Department for BioMedical Research, University of Bern, Bern 3008, Switzerland.
| |
Collapse
|
8
|
Tang Y, Chen Y, Wang J, Zhang Q, Wang Y, Xu Y, Li X, Wang J, Wang X. Clinical characteristics and genetic expansion of 46,XY disorders of sex development children in a Chinese prospective study. Endocr Connect 2023; 12:e230029. [PMID: 37493574 PMCID: PMC10503230 DOI: 10.1530/ec-23-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
Diagnosis and management strategy of disorders of sex development (DSD) are difficult and various due to heterogeneous phenotype and genotype. Under widespread use of genomic sequencing technologies, multiple genes and mechanisms have been identified and proposed as genetic causes of 46,XY DSD. In this study, 178 46,XY DSD patients were enrolled and underwent gene sequencing (either whole-exome sequencing or targeted panel gene sequencing). Detailed clinical phenotype and genotype information were summarized which showed that the most common clinical manifestations were micropenis (56.74%, 101/178), cryptorchidism (34.27%, 61/178), and hypospadias (17.42%, 31/178). Androgen synthesis/action disorders and idiopathic hypogonadotropic hypogonadism were the most frequent clinical diagnoses, accounting, respectively, for 40.90 and 21.59%. From all next-generation sequencing results, 103 candidate variants distributed across 32 genes were identified in 88 patients. The overall molecular detection rate was 49.44% (88/178), including 35.96% (64/178) pathogenic/likely pathogenic variants and 13.48% (24/178) variants of uncertain significance. Of all, 19.42% (20/103) variants were first reported in 46,XY DSD patients. Mutation c.680G>A (p.R227Q) on SRD5A2 (steroid 5-alpha-reductase 2) (36.67%, 11/30) was a hotspot mutation in the Chinese population. Novel candidate genes related to DSD (GHR (growth hormone receptor) and PHIP (pleckstrin homology domain-interacting protein)) were identified. Overall, this was a large cohort of 46,XY DSD patients with a common clinical classification and phenotype spectrum of Chinese patients. Targeted gene panel sequencing covered most of the genes contributing to DSD, whereas whole-exome sequencing detected more candidate genes.
Collapse
Affiliation(s)
- Yijun Tang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yirou Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Ganapathi M, Matsuoka LS, March M, Li D, Brokamp E, Benito-Sanz S, White SM, Lachlan K, Ahimaz P, Sewda A, Bastarache L, Thomas-Wilson A, Stoler JM, Bramswig NC, Baptista J, Stals K, Demurger F, Cogne B, Isidor B, Bedeschi MF, Peron A, Amiel J, Zackai E, Schacht JP, Iglesias AD, Morton J, Schmetz A, Seidel V, Lucia S, Baskin SM, Thiffault I, Cogan JD, Gordon CT, Chung WK, Bowdin S, Bhoj E. Heterozygous rare variants in NR2F2 cause a recognizable multiple congenital anomaly syndrome with developmental delays. Eur J Hum Genet 2023; 31:1117-1124. [PMID: 37500725 PMCID: PMC10545729 DOI: 10.1038/s41431-023-01434-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Nuclear receptor subfamily 2 group F member 2 (NR2F2 or COUP-TF2) encodes a transcription factor which is expressed at high levels during mammalian development. Rare heterozygous Mendelian variants in NR2F2 were initially identified in individuals with congenital heart disease (CHD), then subsequently in cohorts of congenital diaphragmatic hernia (CDH) and 46,XX ovotesticular disorders/differences of sexual development (DSD); however, the phenotypic spectrum associated with pathogenic variants in NR2F2 remains poorly characterized. Currently, less than 40 individuals with heterozygous pathogenic variants in NR2F2 have been reported. Here, we review the clinical and molecular details of 17 previously unreported individuals with rare heterozygous NR2F2 variants, the majority of which were de novo. Clinical features were variable, including intrauterine growth restriction (IUGR), CHD, CDH, genital anomalies, DSD, developmental delays, hypotonia, feeding difficulties, failure to thrive, congenital and acquired microcephaly, dysmorphic facial features, renal failure, hearing loss, strabismus, asplenia, and vascular malformations, thus expanding the phenotypic spectrum associated with NR2F2 variants. The variants seen were predicted loss of function, including a nonsense variant inherited from a mildly affected mosaic mother, missense and a large deletion including the NR2F2 gene. Our study presents evidence for rare, heterozygous NR2F2 variants causing a highly variable syndrome of congenital anomalies, commonly associated with heart defects, developmental delays/intellectual disability, dysmorphic features, feeding difficulties, hypotonia, and genital anomalies. Based on the new and previous cases, we provide clinical recommendations for evaluating individuals diagnosed with an NR2F2-associated disorder.
Collapse
Affiliation(s)
- Mythily Ganapathi
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael March
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elly Brokamp
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Benito-Sanz
- CIBERER, ISCIII. Institute of Medical and Molecular Genetics (INGEMM), Disorder of Sex Development Multidisciplinary Unit, Hospital Universitario La Paz, Madrid, Spain
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Trust, Southampton, UK
- Department of Human Genetics and Genomic Medicine, Southampton University, Southampton, UK
| | - Priyanka Ahimaz
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Anshuman Sewda
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Thomas-Wilson
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joan M Stoler
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nuria C Bramswig
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
- Peninsula Medical School, Faculty of Health, University of Plymouth, PL4 8AA, Plymouth, UK
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | | | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000, Nantes, France
| | - Bertrand Isidor
- Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000, Nantes, France
| | | | - Angela Peron
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Università degli Studi di Milano, Milan, Italy
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Jeanne Amiel
- INSERM UMR1163, Institut Imagine, Université Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Elaine Zackai
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John P Schacht
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandro D Iglesias
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Ariane Schmetz
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Verónica Seidel
- Clinical Genetics, Department of Pediatrics, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Stephanie Lucia
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie M Baskin
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, MO, USA
| | - Joy D Cogan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah Bowdin
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge University Hospitals NHS, Foundation Trust, Cambridge, UK
| | - Elizabeth Bhoj
- Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Faradz SMH, Listyasari N, Utari A, Ariani MD, Juniarto AZ, Santosa A, Ediati A, Rinne TK, Westra D, Claahsen-van der Grinten H, de Jong FH, Drop SLS, Ayers K, Sinclair A. Lessons Learned from 17 Years of Multidisciplinary Care for Differences of Sex Development Patients at a Single Indonesian Center. Sex Dev 2023; 17:170-180. [PMID: 37699373 PMCID: PMC11232949 DOI: 10.1159/000534085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Our multidisciplinary team (MDT) is a large specialized team based in Semarang, Indonesia, that cares for a wide variety of pediatric and adult individuals with differences of sex development (DSD) from across Indonesia. Here, we describe our work over the last 17 years. METHODS We analyzed phenotypic, hormonal, and genetic findings from clinical records for all patients referred to our MDT during the period 2004-2020. RESULTS Among 1,184 DSD patients, 10% had sex chromosome DSD, 67% had 46,XY DSD, and 23% had 46,XX DSD. The most common sex chromosome anomaly was Turner syndrome (45,X) (55 cases). For patients with 46,XY DSD under-masculinization was the most common diagnosis (311 cases), and for 46,XX DSD, a defect of Müllerian development was most common (131 cases) followed by congenital adrenal hyperplasia (CAH) (116 cases). Sanger sequencing, MLPA, and targeted gene sequencing of 257 patients with 46,XY DSD found likely causative variants in 21% (55 cases), with 13 diagnostic genes implicated. The most affected gene codes for the androgen receptor. Molecular analysis identified a diagnosis for 69 of 116 patients with CAH, with 62 carrying variants in CYP21A2 including four novel variants, and 7 patients carrying variants in CYP11B1. In many cases, these genetic diagnoses influenced the clinical management of patients and their families. CONCLUSIONS Our work has highlighted the occurrence of different DSDs in Indonesia. By applying sequencing technologies as part of our clinical care, we have delivered a number of genetic diagnoses and identified novel pathogenic variants in some genes, which may be clinically specific to Indonesia. Genetics can inform many aspects of DSD clinical management, and while many of our patients remain undiagnosed, we hope that future testing may provide answers for even more.
Collapse
Affiliation(s)
- Sultana M H Faradz
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia
- Post Graduate School, Universitas YARSI, Jakarta, Indonesia
| | - Nurin Listyasari
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia,
| | - Agustini Utari
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia
- Department of Pediatrics, Diponegoro National Hospital/Dr. Kariadi Hospital, Semarang, Indonesia
| | - Mahayu Dewi Ariani
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia
| | - Achmad Zulfa Juniarto
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro/Diponegoro National Hospital, Semarang, Indonesia
| | - Ardy Santosa
- Department of Urology, Dr. Kariadi Hospital, Semarang, Indonesia
| | | | - Tuula K Rinne
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dineke Westra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Frank H de Jong
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Stenvert L S Drop
- Division of Endocrinology, Department of Pediatrics, Sophia Children's Hospital/Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Katie Ayers
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Sinclair
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Martinez de Lapiscina I, Kouri C, Aurrekoetxea J, Sanchez M, Naamneh Elzenaty R, Sauter KS, Camats N, Grau G, Rica I, Rodriguez A, Vela A, Cortazar A, Alonso-Cerezo MC, Bahillo P, Bertholt L, Esteva I, Castaño L, Flück CE. Genetic reanalysis of patients with a difference of sex development carrying the NR5A1/SF-1 variant p.Gly146Ala has discovered other likely disease-causing variations. PLoS One 2023; 18:e0287515. [PMID: 37432935 DOI: 10.1371/journal.pone.0287515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
NR5A1/SF-1 (Steroidogenic factor-1) variants may cause mild to severe differences of sex development (DSD) or may be found in healthy carriers. The NR5A1/SF-1 c.437G>C/p.Gly146Ala variant is common in individuals with a DSD and has been suggested to act as a susceptibility factor for adrenal disease or cryptorchidism. Since the allele frequency is high in the general population, and the functional testing of the p.Gly146Ala variant revealed inconclusive results, the disease-causing effect of this variant has been questioned. However, a role as a disease modifier is still possible given that oligogenic inheritance has been described in patients with NR5A1/SF-1 variants. Therefore, we performed next generation sequencing (NGS) in 13 DSD individuals harboring the NR5A1/SF-1 p.Gly146Ala variant to search for other DSD-causing variants and clarify the function of this variant for the phenotype of the carriers. Panel and whole-exome sequencing was performed, and data were analyzed with a filtering algorithm for detecting variants in NR5A1- and DSD-related genes. The phenotype of the studied individuals ranged from scrotal hypospadias and ambiguous genitalia in 46,XY DSD to opposite sex in both 46,XY and 46,XX. In nine subjects we identified either a clearly pathogenic DSD gene variant (e.g. in AR) or one to four potentially deleterious variants that likely explain the observed phenotype alone (e.g. in FGFR3, CHD7). Our study shows that most individuals carrying the NR5A1/SF-1 p.Gly146Ala variant, harbor at least one other deleterious gene variant which can explain the DSD phenotype. This finding confirms that the NR5A1/SF-1 p.Gly146Ala variant may not contribute to the pathogenesis of DSD and qualifies as a benign polymorphism. Thus, individuals, in whom the NR5A1/SF-1 p.Gly146Ala gene variant has been identified as the underlying genetic cause for their DSD in the past, should be re-evaluated with a NGS method to reveal the real genetic diagnosis.
Collapse
Affiliation(s)
- Idoia Martinez de Lapiscina
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
| | - Chrysanthi Kouri
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Josu Aurrekoetxea
- Biocruces Bizkaia Health Research Institute, Research Group of Medical Oncology, Cruces University Hospital, Barakaldo, Spain
- University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Mirian Sanchez
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
| | - Rawda Naamneh Elzenaty
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kay-Sara Sauter
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Núria Camats
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Vall d'Hebron Research Institute (VHIR), Growth and Development group, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gema Grau
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Itxaso Rica
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Amaia Rodriguez
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Amaia Vela
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Alicia Cortazar
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Endocrinology Department, Cruces University Hospital, Barakaldo, Spain
| | | | - Pilar Bahillo
- Department of Pediatrics, Pediatric Endocrinology Unit, x Clinic University Hospital of Valladolid, Valladolid, Spain
| | - Laura Bertholt
- Pediatric Endocrinology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Isabel Esteva
- Endocrinology Section, Gender Identity Unit, Regional University Hospital of Malaga, Malaga, Spain
| | - Luis Castaño
- Biocruces Bizkaia Health Research Institute, Research into the Genetics and Control of Diabetes and other Endocrine Disorders, Cruces University Hospital, Barakaldo, Spain
- Instituto de Salud Carlos III, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Salud Carlos III, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- Endo-ERN, Amsterdam, The Netherlands
- University of the Basque Country (UPV-EHU), Leioa, Spain
- Department of Pediatric Endocrinology, Cruces University Hospital, Barakaldo Spain
| | - Christa E Flück
- Department of Pediatrics, Inselspital, Pediatric Endocrinology, Diabetology and Metabolism, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Hattori A, Fukami M. Nuclear Receptor Gene Variants Underlying Disorders/Differences of Sex Development through Abnormal Testicular Development. Biomolecules 2023; 13:691. [PMID: 37189438 PMCID: PMC10135730 DOI: 10.3390/biom13040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Gonadal development is the first step in human reproduction. Aberrant gonadal development during the fetal period is a major cause of disorders/differences of sex development (DSD). To date, pathogenic variants of three nuclear receptor genes (NR5A1, NR0B1, and NR2F2) have been reported to cause DSD via atypical testicular development. In this review article, we describe the clinical significance of the NR5A1 variants as the cause of DSD and introduce novel findings from recent studies. NR5A1 variants are associated with 46,XY DSD and 46,XX testicular/ovotesticular DSD. Notably, both 46,XX DSD and 46,XY DSD caused by the NR5A1 variants show remarkable phenotypic variability, to which digenic/oligogenic inheritances potentially contribute. Additionally, we discuss the roles of NR0B1 and NR2F2 in the etiology of DSD. NR0B1 acts as an anti-testicular gene. Duplications containing NR0B1 result in 46,XY DSD, whereas deletions encompassing NR0B1 can underlie 46,XX testicular/ovotesticular DSD. NR2F2 has recently been reported as a causative gene for 46,XX testicular/ovotesticular DSD and possibly for 46,XY DSD, although the role of NR2F2 in gonadal development is unclear. The knowledge about these three nuclear receptors provides novel insights into the molecular networks involved in the gonadal development in human fetuses.
Collapse
Affiliation(s)
- Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
13
|
Rjiba K, Mougou-Zerelli S, Hamida IH, Saad G, Khadija B, Jelloul A, Slimani W, Hasni Y, Dimassi S, Khelifa HB, Sallem A, Kammoun M, Abdallah HH, Gribaa M, Bignon-Topalovic J, Chelly S, Khairi H, Bibi M, Kacem M, Saad A, Bashamboo A, McElreavey K. Additional evidence for the role of chromosomal imbalances and SOX8, ZNRF3 and HHAT gene variants in early human testis development. Reprod Biol Endocrinol 2023; 21:2. [PMID: 36631813 PMCID: PMC9990451 DOI: 10.1186/s12958-022-01045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Forty-six ,XY Differences/Disorders of Sex Development (DSD) are characterized by a broad phenotypic spectrum ranging from typical female to male with undervirilized external genitalia, or more rarely testicular regression with a typical male phenotype. Despite progress in the genetic diagnosis of DSD, most 46,XY DSD cases remain idiopathic. METHODS To determine the genetic causes of 46,XY DSD, we studied 165 patients of Tunisian ancestry, who presented a wide range of DSD phenotypes. Karyotyping, candidate gene sequencing, and whole-exome sequencing (WES) were performed. RESULTS Cytogenetic abnormalities, including a high frequency of sex chromosomal anomalies (85.4%), explained the phenotype in 30.9% (51/165) of the cohort. Sanger sequencing of candidate genes identified a novel pathogenic variant in the SRY gene in a patient with 46,XY gonadal dysgenesis. An exome screen of a sub-group of 44 patients with 46,XY DSD revealed pathogenic or likely pathogenic variants in 38.6% (17/44) of patients. CONCLUSION Rare or novel pathogenic variants were identified in the AR, SRD5A2, ZNRF3, SOX8, SOX9 and HHAT genes. Overall our data indicate a genetic diagnosis rate of 41.2% (68/165) in the group of 46,XY DSD.
Collapse
Affiliation(s)
- Khouloud Rjiba
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
- Higher Institute of Biotechnology Monastir, University of Monastir, Monastir, Tunisia
- Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Soumaya Mougou-Zerelli
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
- Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Imen Hadj Hamida
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Ghada Saad
- Department of Endocrinology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Bochra Khadija
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
- Higher Institute of Biotechnology Monastir, University of Monastir, Monastir, Tunisia
- Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Afef Jelloul
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Wafa Slimani
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
- Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Yosra Hasni
- Department of Endocrinology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Sarra Dimassi
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
- Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Hela Ben Khelifa
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Amira Sallem
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
- Laboratory of Human Cytogenetics and Biology of Reproduction, Fattouma Bourguiba University Teaching Hospital, Monastir, Tunisia
| | - Molka Kammoun
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Hamza Hadj Abdallah
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Moez Gribaa
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | | | - Sami Chelly
- Private Gynecologist Sousse, Sousse, Tunisia
| | - Hédi Khairi
- Department of Gynecology and Obstetrics, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Mohamed Bibi
- Department of Gynecology and Obstetrics, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Maha Kacem
- Department of Endocrinology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetics, Molecular Genetics and Biology of Human Reproduction, Farhat Hached University Teaching Hospital, Sousse, Tunisia
- Unité de Services Communs en Génétique Humaine, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Kenneth McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France.
| |
Collapse
|