1
|
Li X, Xiong C, Wang S, Ren Z, Jin Q, Yu J, Chen Y, Gan P, Xu Q, Wang Y, Liao H. Identification and verification of the optimal feature genes of ferroptosis in thyroid-associated orbitopathy. Front Immunol 2024; 15:1422497. [PMID: 39735537 PMCID: PMC11671519 DOI: 10.3389/fimmu.2024.1422497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Background Thyroid-associated orbitopathy (TAO) is an autoimmune inflammatory disorder of the orbital adipose tissue, primarily causing oxidative stress injury and tissue remodeling in the orbital connective tissue. Ferroptosis is a form of programmed cell death driven by the accumulation of reactive oxygen species (ROS), iron metabolism disorder, and lipid peroxidation. This study aims to identify and validate the optimal feature genes (OFGs) of ferroptosis with diagnostic and therapeutic potential in TAO orbital adipose tissue through bioinformatics analysis and to assess their correlation with disease-related immune cell infiltration. Methods Search of the Gene Expression Omnibus database for TAO-related gene datasets led to the selection of GSE58331 for differential gene expression analysis. WGCNA was employed to identify key disease modules and hub genes. The intersection of DEGs, hub genes and ferroptosis-related gene yielded key genes of ferroptosis. Machine learning algorithms identified OFGs of ferroptosis. Meanwhile, by comparing the expression of FRGs in the orbital adipose tissue and the orbital fibroblasts (OFs) of healthy controls and TAO patients, as well as co-culturing macrophages and OFs in vitro, the influence of macrophages on FRGs in OFs was explored. CIBERSORT analyzed immune cell infiltration to determine proportions of immune cell types in each sample, and Spearman correlation analysis explored relationships between OFGs and infiltrating immune cells. Finally, GSEA determined the function of each key biomarker based on the median expression of OFGs. Results Three TAO FRGs (ACO1, MMD, and HCAR1) were screened in the dataset. The ROC results of ACO1 showed that the AUC value was greater than 0.8 in all the datasets, which was the strongest for disease specificity and diagnostic ability. Validation results showed that, in addition to MMD, the expression of ACO1 and HCAR1 in orbital adipose tissue of TAO patients was significantly down-regulated, while M2-type macrophages might be involved in regulating the expression of ACO1 in orbital adipose-derived OFs. CIBERSORT immune cell infiltration analysis showed that in orbital adipose tissue of TAO patients, memory B-lymphocytes, T regulatory cells, NK-cells, M0-type macrophages, M1-type macrophages, resting dendritic cells, activated mast cells, and neutrophils infiltration levels were significantly elevated. Conclusion Through bioinformatics analysis, this study identified and validated two OFGs of ferroptosis with diagnostic and therapeutic potential in TAO orbital adipose tissue, suggesting that the downregulation of ACO1 and HCAR1 may be potential molecular targets in the pathogenesis of TAO.
Collapse
Affiliation(s)
- Xuemei Li
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Chao Xiong
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Siyi Wang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
| | - Zhangjun Ren
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
| | - Qi Jin
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
| | - Jinhai Yu
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yunxiu Chen
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
| | - Puying Gan
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Qihua Xu
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yaohua Wang
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Hongfei Liao
- School of Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Ophthalmology, The Affiliated Eye Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Ma C, Li H, Lu S, Li X. Thyroid-associated ophthalmopathy and ferroptosis: a review of pathological mechanisms and therapeutic strategies. Front Immunol 2024; 15:1475923. [PMID: 39712031 PMCID: PMC11659143 DOI: 10.3389/fimmu.2024.1475923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is an inflammatory orbital disease associated with autoimmune thyroid disorders. Owing to the ambiguous nature of the pathogenesis, contemporary pharmacological treatment strategies predominantly involve the use of glucocorticoids and immunosuppressants. However, the adverse effects associated with these agents in clinical practice necessitate further investigation into the disease's pathogenesis and the identification of novel therapeutic targets and pharmacological interventions. Recent studies suggest that ferroptosis, a novel form of regulated cell death, may play a role in TAO pathogenesis. This review aims to explore the involvement of ferroptosis in TAO and evaluate its potential as a therapeutic target. Key topics include the epidemiology, clinical manifestations, and pathophysiology of TAO, along with the molecular mechanisms of ferroptosis. Evidence supporting ferroptosis in TAO and the therapeutic implications of targeting this pathway are also discussed, alongside challenges and future directions in this emerging research area.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, China
| | - Shuwen Lu
- Department of Ophthalmology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xian Li
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Ding H, Qin J, Li Y, Dai L, Xu F, Liu Z, Shi X, Guan W, Sang J. Lactoferrin alleviates oxidative stress and endoplasmic reticulum stress induced by autoimmune thyroiditis by modulating the mTOR pathway in the thyroid. J Endocrinol Invest 2024. [DOI: 10.1007/s40618-024-02505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/14/2024] [Indexed: 01/05/2025]
|
4
|
Zhu L, Zhang J, Fan W, Su C, Jin Z. Identification of iron metabolism-related genes in coronary heart disease and construction of a diagnostic model. Front Cardiovasc Med 2024; 11:1409605. [PMID: 39610972 PMCID: PMC11602506 DOI: 10.3389/fcvm.2024.1409605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Background Coronary heart disease is a common cardiovascular disease, yferroptosiset its relationship with iron metabolism remains unclear. Methods Gene expression data from peripheral blood samples of patients with coronary heart disease and a healthy control group were utilized for a comprehensive analysis that included differential expression analysis, weighted gene co-expression network analysis, gene enrichment analysis, and the development of a logistic regression model to investigate the associations and differences between the groups. Additionally, the CIBERSORT algorithm was employed to examine the composition of immune cell types within the samples. Results Eight central genes were identified as being both differentially expressed and related to iron metabolism. These central genes are mainly involved in the cellular stress response. A logistic regression model based on the central genes achieved an AUC of 0.64-0.65 in the diagnosis of coronary heart disease. A higher proportion of M0 macrophages was found in patients with coronary heart disease, while a higher proportion of CD8T cells was observed in the normal control group. Conclusion The study identified important genes related to iron metabolism in the pathogenesis of coronary heart disease and constructed a robust diagnostic model. The results suggest that iron metabolism and immune cells may play a significant role in the development of coronary heart disease, providing a basis for further research.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Jin
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Błażewicz A, Kiełbus M, Skórzyńska-Dziduszko K, Grabrucker AM, Jonklaas J, Sosnowski P, Trzpil A, Kozub-Pędrak A, Szmagara A, Wojnicka J, Grywalska E, Almeida A. Application of Human Plasma Targeted Lipidomics and Analysis of Toxic Elements to Capture the Metabolic Complexities of Hypothyroidism. Molecules 2024; 29:5169. [PMID: 39519809 PMCID: PMC11547455 DOI: 10.3390/molecules29215169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hypothyroidism (HT) affects millions worldwide and can lead to various lipid disorders. The metabolic complexity and the influence of toxic elements in autoimmune and non-autoimmune HT subtypes are not fully understood. This study aimed to investigate the relationships between plasma lipidome, toxic elements, and clinical classifications of HT in unexposed individuals. METHODS Samples were collected from 120 adults assigned to a study group with Hashimoto's disease and non-autoimmune HT, and a healthy control group. Quantification of 145 pre-defined lipids was performed by using triple quadrupole tandem mass spectrometry (TQ MS/MS) in multiple reactions monitoring (MRM) mode via positive electrospray ionization (ESI). Levels of toxic elements were determined using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Significant associations between altered levels of several components of the plasma lipidome and Al, Cd, Ni, As, and Pb with HT were found. We show metabolic differences in lysophosphatidylcholines (LPC) and phosphatidylcholines (PC) between HT and controls, with distinct predicted activation patterns for lysolecithin acyltransferase and phospholipase A2. CONCLUSIONS There are significant changes in the lipidome profiles of healthy subjects compared to euthyroid HT patients treated with L-thyroxine, which are related to the type of hypothyroidism and non-occupational exposure to toxic elements.
Collapse
Affiliation(s)
- Anna Błażewicz
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Chair of Biomedical Sciences, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Jacqueline Jonklaas
- Division of Endocrinology, Georgetown University, Washington, DC 20007, USA;
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (P.S.); (A.T.); (A.K.-P.)
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (P.S.); (A.T.); (A.K.-P.)
| | - Anna Kozub-Pędrak
- Department of Bioanalytics, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (P.S.); (A.T.); (A.K.-P.)
| | - Agnieszka Szmagara
- Department of Chemistry, Faculty of Medicine, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland;
| | - Julia Wojnicka
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Chair of Biomedical Sciences, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Agostinho Almeida
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 50-313 Porto, Portugal
| |
Collapse
|
6
|
Chen G, Li S, Lu J, Liang A, Gao P, Ou F, Wang Y, Li Y, Pan B. LncRNA ZFHX4-AS1 as a novel biomarker in adrenocortical carcinoma. Transl Androl Urol 2024; 13:1188-1205. [PMID: 39100837 PMCID: PMC11291411 DOI: 10.21037/tau-23-649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/28/2024] [Indexed: 08/06/2024] Open
Abstract
Background Adrenocortical carcinoma (ACC) is a rare and highly aggressive malignant tumor. Currently, there is a lack of reliable prognostic markers in clinical practice. Extensive research has shown that long non-coding RNA (lncRNA) are critical factors in the initiation and progression of cancer, closely associated with early diagnosis and prognosis. Previous studies have identified that ZFHX4 antisense RNA 1 (ZFHX4-AS1) is aberrantly expressed in various cancers and is associated with poor outcomes. This study investigates whether ZFHX4-AS1 affects the prognosis of ACC patients and, if so, the potential mechanisms involved. Methods In this study, utilizing four multi-center cohorts from The Cancer Genome Atlas (TCGA) program and Gene Expression Omnibus (GEO), we validated the prognostic capability of ZFHX4-AS1 in ACC patients through Kaplan-Meier survival analysis, cox regression models, and nomograms. Then, we explored the biological functions of ZFHX4-AS1 using gene set enrichment analysis (GSEA), competing endogenous RNA (ceRNA) networks, and analyses of somatic mutations and copy number variation (CNV). Finally, in vitro experiments were conducted to further validate the impact of ZFHX4-AS1 on proliferation and migration capabilities of ACC cell lines. Results Survival analysis indicated that patients in the high ZFHX4-AS1 expression group of ACC had worse prognosis. Cox regression analyses suggested that ZFHX4-AS1 levels were independent risk factors for prognosis. Subsequently, we constructed nomograms based on clinical features and ZFHX4-AS1 levels, demonstrating good predictive performance under the time-dependent receiver operating characteristic (ROC) curve. Analysis based on somatic mutations and CNV revealed that CTNNB1 and 9p21.3-Del drove the expression of ZFHX4-AS1. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays confirmed that knockdown of ZFHX4-AS1 inhibited proliferation and migration of ACC cells. Conclusions This study demonstrates that ZFHX4-AS1 has a reliable predictive value for the prognosis of ACC patients and is a promising biomarker.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Songbo Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jianming Lu
- Department of Andrology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Anyun Liang
- Department of Andrology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ping Gao
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Fengmeng Ou
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yutong Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Tong X, Shen Q. Identification of immune-related regulatory networks and diagnostic biomarkers in thyroid eye disease. Int Ophthalmol 2024; 44:38. [PMID: 38332455 DOI: 10.1007/s10792-024-03017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Thyroid eye disease (TED) is an orbit-associated autoimmune inflammatory disorder intricately linked to immune dysregulation. Complete pathogenesis of TED remains elusive. This work aimed to mine pathogenesis of TED from immunological perspective and identify diagnostic genes. METHODS Gene expression microarray data for TED patients were downloaded from Gene Expression Omnibus, immune-related genes (IRGs) were from ImmPort database, and TED-related transcription factors (TFs) were from Cirtrome Cancer database. Differential analysis, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Regulatory networks of TFs and IRGs were constructed with Cytoscape. Diagnostic biomarkers in TED were identified through LASSO. Immune cell infiltration analysis was performed using CIBERSORT. RESULTS Twenty-three immune-related DEmRNAs were revealed and were primarily enriched in humoral immune response, positive regulation of inflammatory response, IL-17, and TNF pathways. Co-expression regulatory network included four TFs and 16 immune-related DEmRNAs. Seven diagnostic genes were identified, with Area Under the Curve (AUC) of 0.993 for training set and AUC value of 0.836 for validation set. TED patients exhibited elevated infiltration levels by macrophages M2, mast cells, and CD8 T cells among 22 immune cell types, whereas macrophages M2 and mast cells resting were significantly lower than normal group. CONCLUSIONS The seven feature genes had high diagnostic value for TED patients. Our work explored regulatory network and diagnostic biomarkers, laying theoretical basis for TED diagnosis and treatment.
Collapse
Affiliation(s)
- Xiangmei Tong
- The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310002, China
- Department of General Surgery, The First People's Hospital of Tonglu County, Tonglu, 311500, China
| | - Qianyun Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, 310002, China.
| |
Collapse
|
8
|
Hu H, Zhou J, Fang W, Chen HH, Jiang WH, Pu XY, Xu XQ, Gu WH, Wu FY. Increased brain iron in patients with thyroid-associated ophthalmopathy: a whole-brain analysis. Front Endocrinol (Lausanne) 2023; 14:1268279. [PMID: 38034014 PMCID: PMC10687634 DOI: 10.3389/fendo.2023.1268279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Background To investigate the whole-brain iron deposition alternations in patients with thyroid-associated ophthalmopathy (TAO) using quantitative susceptibility mapping (QSM). Methods Forty-eight patients with TAO and 33 healthy controls (HCs) were enrolled. All participants underwent brain magnetic resonance imaging scans and clinical scale assessments. QSM values were calculated and compared between TAO and HCs groups using a voxel-based analysis. A support vector machine (SVM) analysis was performed to evaluate the performance of QSM values in differentiating patients with TAO from HCs. Results Compared with HCs, patients with TAO showed significantly increased QSM values in the bilateral caudate nucleus (CN), left thalamus (TH), left cuneus, left precuneus, right insula and right middle frontal gyrus. In TAO group, QSM values in left TH were positively correlated with Hamilton Depression Rating Scale (HDRS) scores (r = 0.414, p = 0.005). The QSM values in right CN were negatively correlated with Montreal Cognitive Assessment (MoCA) scores (r = -0.342, p = 0.021). Besides that, a nearly negative correlation was found between QSM values in left CN and MoCA scores (r = -0.286, p = 0.057). The SVM model showed a good performance in distinguishing patients with TAO from the HCs (area under the curve, 0.958; average accuracy, 90.1%). Conclusion Patients with TAO had significantly increased iron deposition in brain regions corresponding to known visual, emotional and cognitive deficits. QSM values could serve as potential neuroimaging markers of TAO.
Collapse
Affiliation(s)
- Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Fang
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, Taicang, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiong-Ying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Hao Gu
- Department of Radiology, Taicang Affiliated Hospital of Soochow University, The First People’s Hospital of Taicang, Taicang, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Xiong C, Wang Y, Li Y, Yu J, Wu S, Wu L, Zhang B, Chen Y, Gan P, Liao H. Identification of optimal feature genes in patients with thyroid associated ophthalmopathy and their relationship with immune infiltration: a bioinformatics analysis. Front Endocrinol (Lausanne) 2023; 14:1203120. [PMID: 37900130 PMCID: PMC10611488 DOI: 10.3389/fendo.2023.1203120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background Thyroid associated ophthalmopathy (TAO) is an organ-specific autoimmune disease that has a significant impact on individuals and society. The etiology of TAO is complicated and poorly understood. Thus, the goal of this study was to use bioinformatics to look into the pathogenesis of TAO and to identify the optimum feature genes (OFGs) and immune infiltration patterns of TAO. Methods Firstly, the GSE58331 microarray data set was utilized to find 366 differentially expressed genes (DEGs). To find important modular genes, the dataset was evaluated using weighted gene coexpression network analysis (WGCNA). Then, the overlap genes of major module genes and DEGs were further assessed by applying three machine learning techniques to find the OFGs. The CIBERSORT approach was utilized to examine immune cell infiltration in normal and TAO samples, as well as the link between optimum characteristic genes and immune cells. Finally, the related pathways of the OFGs were predicted using single gene set enrichment analysis (ssGSEA). Results KLB, TBC1D2B, LINC01140, SGCG, TMEM37, and LINC01697 were the six best feature genes that were employed to create a nomogram with high predictive performance. The immune cell infiltration investigation revealed that the development of TAO may include memory B cells, T cell follicular helper cells, resting NK cells, macrophages of type M0, macrophages of type M1, resting dendritic cells, active mast cells, and neutrophils. In addition, ssGSEA results found that these characteristic genes were closely associated with lipid metabolism pathways. Conclusion In this research, we found that KLB, TBC1D2B, LINC01140, SGCG, TMEM37, and LINC01697 are intimately associated with the development and progression of TAO, as well as with lipid metabolism pathways.
Collapse
Affiliation(s)
- Chao Xiong
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yaohua Wang
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yue Li
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Jinhai Yu
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Sha Wu
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Lili Wu
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Boyuan Zhang
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Yunxiu Chen
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Puying Gan
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| | - Hongfei Liao
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi, China
- Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi, China
| |
Collapse
|