1
|
Stanwood SR, Chong LC, Steidl C, Jefferies WA. Distinct Gene Expression Patterns of Calcium Channels and Related Signaling Pathways Discovered in Lymphomas. Front Pharmacol 2022; 13:795176. [PMID: 35685639 PMCID: PMC9172636 DOI: 10.3389/fphar.2022.795176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/24/2022] [Indexed: 01/14/2023] Open
Abstract
Cell surface calcium (Ca2+) channels permit Ca2+ ion influx, with Ca2+ taking part in cellular functions such as proliferation, survival, and activation. The expression of voltage-dependent Ca2+ (CaV) channels may modulate the growth of hematologic cancers. Profile analysis of Ca2+ channels, with a focus on the Ca2+ release-activated Ca2+ (CRAC) and L-type CaV channels, was performed on RNA sequencing data from lymphoma cell lines and samples derived from patients with diffuse large B cell lymphoma (DLBCL). CaV1.2 expression was found to be elevated in classical Hodgkin lymphoma (CHL) cell lines when compared to other B cell lymphoma cell lines. In contrast, CHL exhibited reduced expression of ORAI2 and STIM2. In our differential expression analysis comparing activated B cell-like DLBCL (ABC-DLBCL) and germinal centre B cell-like DLBCL (GCB-DLBCL) patient samples, ABC-DLBCL revealed stronger expression of CaV1.3, whereas CaV1.1, CaV1.2, and CaV1.4 showed greater expression levels in GCB-DLBCL. Interestingly, no differences in ORAI/STIM expression were noted in the patient samples. As Ca2+ is known to bind to calmodulin, leading to calcineurin activation and the passage of nuclear factor of activated T cells (NFAT) to the cell nucleus, pathways for calcineurin, calmodulin, NFAT, and Ca2+ signaling were also analyzed by gene set enrichment analysis. The NFAT and Ca2+ signaling pathways were found to be upregulated in the CHL cell lines relative to other B cell lymphoma cell lines. Furthermore, the calmodulin and Ca2+ signaling pathways were shown to be downregulated in the ABC-DLBCL patient samples. The findings of this study suggest that L-type CaV channels and Ca2+-related pathways could serve as differentiating components for biologic therapies in targeted lymphoma treatments.
Collapse
Affiliation(s)
- Shawna R. Stanwood
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Lauren C. Chong
- Centre for Lymphoid Cancer, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Christian Steidl
- Lymphoid Cancer Research, British Columbia Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Wilfred A. Jefferies,
| |
Collapse
|
2
|
Dong Z, Yao X. Insight of the role of mitochondrial calcium homeostasis in hepatic insulin resistance. Mitochondrion 2021; 62:128-138. [PMID: 34856389 DOI: 10.1016/j.mito.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/06/2022]
Abstract
Due to the rapid rise in the prevalence of chronic metabolic disease, more and more clinicians and basic medical researchers focus their eyesight on insulin resistance (IR), an early and central event of metabolic diseases. The occurrence and development of IR are primarily caused by excessive energy intake and reduced energy consumption. Liver is the central organ that controls glucose homeostasis, playing a considerable role in systemic IR. Decreased capacity of oxidative metabolism and mitochondrial dysfunction are being blamed as the direct reason for the development of IR. Mitochondrial Ca2+ plays a fundamental role in maintaining proper mitochondrial function and redox stability. The maintaining of mitochondrial Ca2+ homeostasis requires the cooperation of ion channels in the inner and outer membrane of mitochondria, such as mitochondrial calcium uniporter complex (MCUC) and voltage-dependent anion channels (VDACs). In addition, the crosstalk between the endoplasmic reticulum (ER), lysosome and plasma membrane with mitochondria is also significant for mitochondrial calcium homeostasis, which is responsible for an efficient network of cellular Ca2+ signaling. Here, we review the recent progression in the research about the regulation factors for mitochondrial Ca2+ and how the dysregulation of mitochondrial Ca2+ homeostasis is involved in the pathogenesis of hepatic IR, providing a new perspective for further exploring the role of ion in the onset and development of IR.
Collapse
Affiliation(s)
- Zhanchen Dong
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, PR China.
| |
Collapse
|
3
|
Fenninger F, Han J, Stanwood SR, Nohara LL, Arora H, Choi KB, Munro L, Pfeifer CG, Shanina I, Horwitz MS, Jefferies WA. Mutation of an L-Type Calcium Channel Gene Leads to T Lymphocyte Dysfunction. Front Immunol 2019; 10:2473. [PMID: 31736943 PMCID: PMC6833481 DOI: 10.3389/fimmu.2019.02473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
Calcium (Ca2+) is a vital secondary messenger in T lymphocytes regulating a vast array of important events including maturation, homeostasis, activation, and apoptosis and can enter the cell through CRAC, TRP, and CaV channels. Here we describe a mutation in the L-type Ca2+ channel CaV1.4 leading to T lymphocyte dysfunction, including several hallmarks of immunological exhaustion. CaV1.4-deficient mice exhibited an expansion of central and effector memory T lymphocytes, and an upregulation of inhibitory receptors on several T cell subsets. Moreover, the sustained elevated levels of activation markers on B lymphocytes suggest that they are in a chronic state of activation. Functionally, T lymphocytes exhibited a reduced store-operated Ca2+ flux compared to wild-type controls. Finally, modifying environmental conditions by herpes virus infection exacerbated the dysfunctional immune phenotype of the CaV1.4-deficient mice. This is the first example where the mutation of a CaV channel leads to T lymphocyte dysfunction, including the upregulation of several inhibitory receptors, hallmarks of T cell exhaustion, and establishes the physiological importance of CaV channel signaling in maintaining a nimble immune system.
Collapse
Affiliation(s)
- Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey Han
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Shawna R Stanwood
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lilian L Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Hitesh Arora
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kyung Bok Choi
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Fenninger F, Jefferies WA. What's Bred in the Bone: Calcium Channels in Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1021-1030. [PMID: 30718290 DOI: 10.4049/jimmunol.1800837] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
Calcium (Ca2+) is an important second messenger in lymphocytes and is essential in regulating various intracellular pathways that control critical cell functions. Ca2+ channels are located in the plasma membrane and intracellular membranes, facilitating Ca2+ entry into the cytoplasm. Upon Ag receptor stimulation, Ca2+ can enter the lymphocyte via the Ca2+ release-activated Ca2+ channel found in the plasma membrane. The increase of cytosolic Ca2+ modulates signaling pathways, resulting in the transcription of target genes implicated in differentiation, activation, proliferation, survival, and apoptosis of lymphocytes. Along with Ca2+ release-activated Ca2+ channels, several other channels have been found in the membranes of T and B lymphocytes contributing to key cellular events. Among them are the transient receptor potential channels, the P2X receptors, voltage-dependent Ca2+ channels, and the inositol 1,4,5-trisphosphate receptor as well as the N-methyl-d-aspartate receptors. In this article, we review the contributions of these channels to mediating Ca2+ currents that drive specific lymphocyte functions.
Collapse
Affiliation(s)
- Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; .,Department of Microbiology and Immunology, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver V6H 3Z6, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada; and.,Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
5
|
Bhandage AK, Jin Z, Korol SV, Tafreshiha AS, Gohel P, Hellgren C, Espes D, Carlsson PO, Sundström-Poromaa I, Birnir B. Expression of calcium release-activated and voltage-gated calcium channels genes in peripheral blood mononuclear cells is altered in pregnancy and in type 1 diabetes. PLoS One 2018; 13:e0208981. [PMID: 30543678 PMCID: PMC6292698 DOI: 10.1371/journal.pone.0208981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Calcium (Ca2+) is an important ion in physiology and is found both outside and inside cells. The intracellular concentration of Ca2+ is tightly regulated as it is an intracellular signal molecule and can affect a variety of cellular processes. In immune cells Ca2+ has been shown to regulate e.g. gene transcription, cytokine secretion, proliferation and migration. Ca2+ can enter the cytoplasm either from intracellular stores or from outside the cells when Ca2+ permeable ion channels in the plasma membrane open. The Ca2+ release-activated (CRAC) channel is the most prominent Ca2+ ion channel in the plasma membrane. It is formed by ORAI1-3 and the channel is opened by the endoplasmic reticulum Ca2+ sensor proteins stromal interaction molecules (STIM) 1 and 2. Another group of Ca2+ channels in the plasma membrane are the voltage-gated Ca2+ (CaV) channels. We examined if a change in immunological tolerance is accompanied by altered ORAI, STIM and CaV gene expression in peripheral blood mononuclear cells (PBMCs) in pregnant women and in type 1 diabetic individuals. Our results show that in pregnancy and type 1 diabetes ORAI1-3 are up-regulated whereas STIM1 and 2 are down-regulated in pregnancy but only STIM2 in type 1 diabetes. Expression of L-, P/Q-, R- and T-type voltage-gated Ca2+ channels was detected in the PBMCs where the CaV2.3 gene was up-regulated in pregnancy and type 1 diabetes whereas the CaV 2.1 and CaV3.2 genes were up-regulated only in pregnancy and the CaV1.3 gene in type 1 diabetes. The results are consistent with that expression of ORAI, STIM and CaV genes correlate with a shift in immunological status of the individual in health, as during pregnancy, and in the autoimmune disease type 1 diabetes. Whether the changes are in general protective or in type 1 diabetes include some pathogenic components remains to be clarified.
Collapse
Affiliation(s)
- Amol K Bhandage
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Priya Gohel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Charlotte Hellgren
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Bryndis Birnir
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Satta N, Pagano S, Montecucco F, Gencer B, Mach F, Kaiser L, Calmy A, Vuilleumier N. Anti-apolipoprotein A-1 autoantibodies are associated with immunodeficiency and systemic inflammation in HIV patients. J Infect 2017; 76:186-195. [PMID: 29198606 DOI: 10.1016/j.jinf.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To determine the existence of autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) in HIV patients and explore their association with biological features of HIV infection and different inflammatory biomarkers. We also evaluated their impact on CD4+ lymphocytes survival. METHODS Anti-apoA-1 IgG plasma levels were assessed by ELISA in 237 HIV positive patients from a national prospective cohort with no current lipid-lowering therapy. RESULTS 58% of patients were found positive for anti-apoA-1 IgG and were associated with lower CD4+ counts, but higher viremia and systemic inflammation. Logistic regression analyses indicated that high anti-apoA-1 IgG levels were associated with a 16-fold increased risk of displaying low CD4+ levels, independent of HIV RNA levels and treatment (adjusted Odds ratio [OR]:16.1, 95% Confidence Interval [95%CI]:1.80-143.6; p = 0.01), and a 6-fold increased risk of having a detectable viremia, independent of antiretroviral treatment (OR:5.47; 95% CI:1.63-18.36; p = 0.006). In vitro, anti-apoA-1 IgG induced dose and time-dependent CD4+ apoptosis that was increased by exposure to HIV RNA. CONCLUSIONS In HIV patients, anti-apoA-1 IgG levels are associated with low CD4+ counts, high viremia and a pro-inflammatory systemic profile. Anti-apoA-1 IgG can promote CD4+ lymphocyte apoptosis via undefined pathways.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland; Clinical Chemistry and Proteomic Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland.
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland; Clinical Chemistry and Proteomic Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Fabrizio Montecucco
- First Medical Clinic, Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV 16132 Genoa, Italy; IRCCS AOU San Martino - IST, Genova, largo Benzi 10 16143 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Baris Gencer
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | | | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases and of Laboratory Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases and of Laboratory Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland; Clinical Chemistry and Proteomic Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Desdín-Micó G, Soto-Heredero G, Mittelbrunn M. Mitochondrial activity in T cells. Mitochondrion 2017; 41:51-57. [PMID: 29032101 DOI: 10.1016/j.mito.2017.10.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Mitochondria fulfill important and diverse roles during the different stages of T cell adaptive responses. Here we discuss the role of the mitochondria in T cells from the initial steps of activation at the immune synapse to their participation in memory response and T cell exhaustion. Mitochondria are relocated to the immune synapse in order to supply local ATP and to aid calcium signaling. During expansion and proliferation, mitochondrial reactive oxygen species drive proliferation. Aerobic glycolysis, glutaminolysis and fatty acid oxidation regulate the program of differentiation into effector or regulatory T cell subsets, and mitochondrial remodeling proteins are required for the long-lasting phenotype of memory cells.
Collapse
Affiliation(s)
- Gabriela Desdín-Micó
- Instituto de Investigación del Hospital Universitario 12 de Octubre (i+12), Avenida de Córdoba s/n, Madrid 28041, Spain; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera, 1, Madrid 28049, Spain
| | - Gonzalo Soto-Heredero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera, 1, Madrid 28049, Spain
| | - María Mittelbrunn
- Instituto de Investigación del Hospital Universitario 12 de Octubre (i+12), Avenida de Córdoba s/n, Madrid 28041, Spain; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera, 1, Madrid 28049, Spain.
| |
Collapse
|
8
|
Effects of α-conotoxin ImI on TNF-α, IL-8 and TGF-β expression by human macrophage-like cells derived from THP-1 pre-monocytic leukemic cells. Sci Rep 2017; 7:12742. [PMID: 28986583 PMCID: PMC5630575 DOI: 10.1038/s41598-017-11586-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are ubiquitous in the nervous system and ensure important neurophysiological functionality for many processes. However, they are also found in cells of the immune system, where their role has been less studied. Here we report the pro-inflammatory effect of ImI, a well characterized conotoxin that inhibits α7 nAChRs, on differentiated THP-1 pre-monocyte macrophages (MDM) obtained by phorbol 12-myristate 13 acetate (PMA) treatment. Enzyme-linked immunosorbent assay (ELISA) performed on supernatant fluids of LPS challenged MDM showed ImI-mediated upregulation of pro-inflammatory cytokine TNF-α in an ImI concentration-dependent manner from 0.5 to 5.0 µmol/L and for IL-8 up to 1.0 µmol/L. Levels of anti-inflammatory cytokine TGF-β remained practically unaffected in ImI treated MDMs. Nicotine at 10 µmol/L significantly downregulated the release of TNF-α, but showed a lesser effect on IL-8 secretion and no effect on TGF-β. Fluorescent competitive assays involving ImI, α-bungarotoxin and nicotine using MDM and the murine macrophage RAW 264.7 suggest a common binding site in the α7 receptor. This work extends the application of conotoxins as molecular probes to non-excitatory cells, such as macrophages and supports the involvement of the α7 nAChR in regulating the inflammatory response via the cholinergic anti-inflammatory pathway (CAP).
Collapse
|
9
|
Joshi RN, Binai NA, Marabita F, Sui Z, Altman A, Heck AJR, Tegnér J, Schmidt A. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells. Front Immunol 2017; 8:1163. [PMID: 28993769 PMCID: PMC5622166 DOI: 10.3389/fimmu.2017.01163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4+CD25− T cells (Tcons) independently of IP3 levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP3 receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer.
Collapse
Affiliation(s)
- Rubin N Joshi
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nadine A Binai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Francesco Marabita
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Zhenhua Sui
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Ehling P, Meuth P, Eichinger P, Herrmann AM, Bittner S, Pawlowski M, Pankratz S, Herty M, Budde T, Meuth SG. Human T cells in silico: Modelling their electrophysiological behaviour in health and disease. J Theor Biol 2016; 404:236-250. [PMID: 27288542 DOI: 10.1016/j.jtbi.2016.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 01/27/2023]
Abstract
Although various types of ion channels are known to have an impact on human T cell effector functions, their exact mechanisms of influence are still poorly understood. The patch clamp technique is a well-established method for the investigation of ion channels in neurons and T cells. However, small cell sizes and limited selectivity of pharmacological blockers restrict the value of this experimental approach. Building a realistic T cell computer model therefore can help to overcome these kinds of limitations as well as reduce the overall experimental effort. The computer model introduced here was fed off ion channel parameters from literature and new experimental data. It is capable of simulating the electrophysiological behaviour of resting and activated human CD4(+) T cells under basal conditions and during extracellular acidification. The latter allows for the very first time to assess the electrophysiological consequences of tissue acidosis accompanying most forms of inflammation.
Collapse
Affiliation(s)
- Petra Ehling
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany.
| | - Patrick Meuth
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Paul Eichinger
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany; Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Alexander M Herrmann
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Matthias Pawlowski
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany; Wellcome Trust and MRC Cambridge Stem Cell Institute, and Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, West Forvie Building, Forvie Site, Robinson Way, Cambridge, UK
| | - Susann Pankratz
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| | - Michael Herty
- RWTH Aachen University, Mathematics (Continuous optimization), Templergraben 55, 52056 Aachen, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany
| | - Sven G Meuth
- Department of Neurology, and Institute of Translational Neurology, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A1, 48149 Münster, Germany
| |
Collapse
|
11
|
Wang H, Zhang X, Xue L, Xing J, Jouvin MH, Putney JW, Anderson MP, Trebak M, Kinet JP. Low-Voltage-Activated CaV3.1 Calcium Channels Shape T Helper Cell Cytokine Profiles. Immunity 2016; 44:782-94. [PMID: 27037192 PMCID: PMC6771933 DOI: 10.1016/j.immuni.2016.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 12/30/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022]
Abstract
Activation of T cells is mediated by the engagement of T cell receptors (TCRs) followed by calcium entry via store-operated calcium channels. Here we have shown an additional route for calcium entry into T cells-through the low-voltage-activated T-type CaV3.1 calcium channel. CaV3.1 mediated a substantial current at resting membrane potentials, and its deficiency had no effect on TCR-initiated calcium entry. Mice deficient for CaV3.1 were resistant to the induction of experimental autoimmune encephalomyelitis and had reduced productions of the granulocyte-macrophage colony-stimulating factor (GM-CSF) by central nervous system (CNS)-infiltrating T helper 1 (Th1) and Th17 cells. CaV3.1 deficiency led to decreased secretion of GM-CSF from in vitro polarized Th1 and Th17 cells. Nuclear translocation of the nuclear factor of activated T cell (NFAT) was also reduced in CaV3.1-deficient T cells. These data provide evidence for T-type channels in immune cells and their potential role in shaping the autoimmune response.
Collapse
Affiliation(s)
- Huiyun Wang
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Li Xue
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Juan Xing
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Marie-Hélène Jouvin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - James W Putney
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew P Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
XU JINMEI, ZHOU YAN, GAO LONG, ZHOU SHUXIAN, LIU WEIHUA, LI XIAOAN. Stromal interaction molecule 1 plays an important role in gastric cancer progression. Oncol Rep 2016; 35:3496-504. [DOI: 10.3892/or.2016.4704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/27/2015] [Indexed: 11/05/2022] Open
|
13
|
Jha A, Singh AK, Weissgerber P, Freichel M, Flockerzi V, Flavell RA, Jha MK. Essential roles for Cavβ2 and Cav1 channels in thymocyte development and T cell homeostasis. Sci Signal 2015; 8:ra103. [DOI: 10.1126/scisignal.aac7538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Wu W, Yan C, Shi X, Li L, Liu W, Xu C. Lipid in T-cell receptor transmembrane signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:130-8. [DOI: 10.1016/j.pbiomolbio.2015.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
|
15
|
Davenport B, Li Y, Heizer JW, Schmitz C, Perraud AL. Signature Channels of Excitability no More: L-Type Channels in Immune Cells. Front Immunol 2015; 6:375. [PMID: 26257741 PMCID: PMC4512153 DOI: 10.3389/fimmu.2015.00375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/09/2015] [Indexed: 12/16/2022] Open
Abstract
Although the concept of Ca(2+) as a universal messenger is well established, it was assumed that the regulatory mechanisms of Ca(2+)-signaling were divided along the line of electric excitability. Recent advances in molecular biology and genomics have, however, provided evidence that non-excitable cells such as immunocytes also express a wide and diverse pool of ion channels that does not differ as significantly from that of excitable cells as originally assumed. Ion channels and transporters are involved in virtually all aspects of immune response regulation, from cell differentiation and development to activation, and effector functions such as migration, antibody-secretion, phagosomal maturation, or vesicular delivery of bactericidal agents. This comprises TRP channel family members, voltage- and Ca(2+)-gated K(+)- and Na(+)-channels, as well as unexpectedly, components of the CaV1-subfamily of voltage-gated L-type Ca(2+)-channels, originally thought to be signature molecules of excitability. This article provides an overview of recent observations made in the field of CaV1 L-type channel function in the immune context, as well as presents results we obtained studying these channels in B-lymphocytes.
Collapse
Affiliation(s)
- Bennett Davenport
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA ; Department of Immunology and Microbiology, University of Colorado Denver , Denver, CO , USA
| | - Yuan Li
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA ; Department of Immunology and Microbiology, University of Colorado Denver , Denver, CO , USA
| | - Justin W Heizer
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA ; Department of Immunology and Microbiology, University of Colorado Denver , Denver, CO , USA
| | - Carsten Schmitz
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA ; Department of Immunology and Microbiology, University of Colorado Denver , Denver, CO , USA
| | - Anne-Laure Perraud
- Department of Biomedical Research, National Jewish Health , Denver, CO , USA ; Department of Immunology and Microbiology, University of Colorado Denver , Denver, CO , USA
| |
Collapse
|
16
|
Bertin S, de Jong PR, Jefferies WA, Raz E. Novel immune function for the TRPV1 channel in T lymphocytes. Channels (Austin) 2015; 8:479-80. [PMID: 25530461 DOI: 10.4161/19336950.2014.991640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Nohara LL, Stanwood SR, Omilusik KD, Jefferies WA. Tweeters, Woofers and Horns: The Complex Orchestration of Calcium Currents in T Lymphocytes. Front Immunol 2015; 6:234. [PMID: 26052328 PMCID: PMC4440397 DOI: 10.3389/fimmu.2015.00234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/30/2015] [Indexed: 11/28/2022] Open
Abstract
Elevation of intracellular calcium ion (Ca2+) levels is a vital event that regulates T lymphocyte homeostasis, activation, proliferation, differentiation, and apoptosis. The mechanisms that regulate intracellular Ca2+ signaling in lymphocytes involve tightly controlled concinnity of multiple ion channels, membrane receptors, and signaling molecules. T cell receptor (TCR) engagement results in depletion of endoplasmic reticulum (ER) Ca2+ stores and subsequent sustained influx of extracellular Ca2+ through Ca2+ release-activated Ca2+ (CRAC) channels in the plasma membrane. This process termed store-operated Ca2+ entry (SOCE) involves the ER Ca2+ sensing molecule, STIM1, and a pore-forming plasma membrane protein, ORAI1. However, several other important Ca2+ channels that are instrumental in T cell function also exist. In this review, we discuss the role of additional Ca2+ channel families expressed on the plasma membrane of T cells that likely contribute to Ca2+ influx following TCR engagement, which include the TRP channels, the NMDA receptors, the P2X receptors, and the IP3 receptors, with a focus on the voltage-dependent Ca2+ (CaV) channels.
Collapse
Affiliation(s)
- Lilian L Nohara
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada ; Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada
| | - Shawna R Stanwood
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada ; Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada
| | - Kyla D Omilusik
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada ; Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia , Vancouver, BC , Canada ; Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC , Canada ; Centre for Blood Research, University of British Columbia , Vancouver, BC , Canada ; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia , Vancouver, BC , Canada ; Department of Medical Genetics, University of British Columbia , Vancouver, BC , Canada ; Department of Zoology, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
18
|
He L, Kniss A, San-Miguel A, Rouse T, Kemp ML, Lu H. An automated programmable platform enabling multiplex dynamic stimuli delivery and cellular response monitoring for high-throughput suspension single-cell signaling studies. LAB ON A CHIP 2015; 15:1497-507. [PMID: 25609410 PMCID: PMC4362087 DOI: 10.1039/c4lc01070a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell signaling events are orchestrated by dynamic external biochemical cues. By rapidly perturbing cells with dynamic inputs and examining the output from these systems, one could study the structure and dynamic properties of a cellular signaling network. Conventional experimental techniques limit the implementation of these systematic approaches due to the lack of sophistication in manipulating individual cells and the fluid microenvironment around them; existing microfluidic technologies thus far are mainly targeting adherent cells. In this paper we present an automated platform to interrogate suspension cells with dynamic stimuli while simultaneously monitoring cellular responses in a high-throughput manner at single-cell resolution. We demonstrate the use of this platform in an experiment to measure Jurkat T cells in response to distinct dynamic patterns of stimuli; we find cells exhibit highly heterogeneous responses under each stimulation condition. More interestingly, these cells act as low-pass filters, only entrained to the low frequency stimulus signals. We also demonstrate that this platform can be easily programmed to actively generate arbitrary dynamic signals. We envision our platform to be useful in other contexts to study cellular signaling dynamics, which may be difficult using conventional experimental methods.
Collapse
Affiliation(s)
- Luye He
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Dr. NW , Atlanta , GA , USA 30332-0100 .
| | - Ariel Kniss
- Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , 313 Ferst Dr. NW , Atlanta , GA , USA 30332-0535
| | - Adriana San-Miguel
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Dr. NW , Atlanta , GA , USA 30332-0100 .
| | - Tel Rouse
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Dr. NW , Atlanta , GA , USA 30332-0100 .
| | - Melissa L. Kemp
- Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , 313 Ferst Dr. NW , Atlanta , GA , USA 30332-0535
| | - Hang Lu
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Dr. NW , Atlanta , GA , USA 30332-0100 .
| |
Collapse
|
19
|
Bertin S, Aoki-Nonaka Y, de Jong PR, Nohara LL, Xu H, Stanwood SR, Srikanth S, Lee J, To K, Abramson L, Yu T, Han T, Touma R, Li X, González-Navajas JM, Herdman S, Corr M, Fu G, Dong H, Gwack Y, Franco A, Jefferies WA, Raz E. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4⁺ T cells. Nat Immunol 2014; 15:1055-1063. [PMID: 25282159 PMCID: PMC4843825 DOI: 10.1038/ni.3009] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022]
Abstract
TRPV1 is a Ca(2+)-permeable channel studied mostly as a pain receptor in sensory neurons. However, its role in other cell types is poorly understood. Here we found that TRPV1 was functionally expressed in CD4(+) T cells, where it acted as a non-store-operated Ca(2+) channel and contributed to T cell antigen receptor (TCR)-induced Ca(2+) influx, TCR signaling and T cell activation. In models of T cell-mediated colitis, TRPV1 promoted colitogenic T cell responses and intestinal inflammation. Furthermore, genetic and pharmacological inhibition of TRPV1 in human CD4(+) T cells recapitulated the phenotype of mouse Trpv1(-/-) CD4(+) T cells. Our findings suggest that inhibition of TRPV1 could represent a new therapeutic strategy for restraining proinflammatory T cell responses.
Collapse
Affiliation(s)
- Samuel Bertin
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yukari Aoki-Nonaka
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, 5274 Gakkocho 2-ban-cho, Chuo-ku, Niigata 951-8514, Japan
| | - Petrus Rudolf de Jong
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lilian L. Nohara
- Michael Smith Laboratories; Centre for Blood Research; The Brain Research Centre; Department of Medical Genetics; Department of Microbiology and Immunology; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Hongjian Xu
- Michael Smith Laboratories; Centre for Blood Research; The Brain Research Centre; Department of Medical Genetics; Department of Microbiology and Immunology; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Shawna R. Stanwood
- Michael Smith Laboratories; Centre for Blood Research; The Brain Research Centre; Department of Medical Genetics; Department of Microbiology and Immunology; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jihyung Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Keith To
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lior Abramson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timothy Yu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tiffany Han
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ranim Touma
- Department of Pediatrics University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiangli Li
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Scott Herdman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guo Fu
- Department of Immunology and Microbial Science, IMM1, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Hui Dong
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alessandra Franco
- Department of Pediatrics University of California, San Diego, La Jolla, CA 92093, USA
| | - Wilfred A. Jefferies
- Michael Smith Laboratories; Centre for Blood Research; The Brain Research Centre; Department of Medical Genetics; Department of Microbiology and Immunology; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Eyal Raz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Toldi G. The regulation of calcium homeostasis in T lymphocytes. Front Immunol 2013; 4:432. [PMID: 24367370 PMCID: PMC3851972 DOI: 10.3389/fimmu.2013.00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Gergely Toldi
- First Department of Pediatrics, Semmelweis University , Budapest , Hungary
| |
Collapse
|
21
|
Saul S, Stanisz H, Backes CS, Schwarz EC, Hoth M. How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin. Eur J Pharmacol 2013; 739:49-59. [PMID: 24291108 DOI: 10.1016/j.ejphar.2013.10.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 11/16/2022]
Abstract
Four types of Ca(2+) selective ion channels are known, ten voltage gated Ca(2+) (CaV) channels, four CatSper channels, three store operated CRAC channels (ORAI channels) and at least two members of the TRPV subfamily (TRPV5, TRPV6). Some of the other TRP channels also show some Ca(2+) selectivity like certain splice variants of TRPM3. In addition to Ca(2+) selective channels, various cation channels play an important role for Ca(2+) entry and furthermore, they may also regulate Ca(2+) entry through other channels by modulating the membrane potential or other means as outlined in this review. Of the different types of cation channels, TRP channels form one of the most prominent families of non-selective cation channels with functional relevance in electrically non-excitable and electrically excitable cell types. Among these, the seven channels of the TRPC subfamily are rather non-selective with very modest Ca(2+) selectivity, whereas in the other subfamilies, cation selectivity ranges from monovalent selectivity (i.e. TRPM4, TRPM5) to divalent selectivity (i.e. TRPM6, TRPM7) or Ca(2+) selectivity (i.e. TRPV5, TRPV6). Rather than discussing the heavily reviewed individual functions of ORAI or TRP channels, we summarize data and present models how TRP and ORAI may functionally interact to guide cellular functions. We focus on T lymphocytes representing a more ORAI-dominated tissue and skin as model system in which both ORAI and TRP channel have been reported to control relevant functions. We present several interaction models how ORAI and TRP may interfere with each other's function.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Hedwig Stanisz
- Department of Dermatology, School of Medicine, Saarland University, Homburg, Germany
| | - Christian S Backes
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
22
|
Salles A, Billaudeau C, Sergé A, Bernard AM, Phélipot MC, Bertaux N, Fallet M, Grenot P, Marguet D, He HT, Hamon Y. Barcoding T cell calcium response diversity with methods for automated and accurate analysis of cell signals (MAAACS). PLoS Comput Biol 2013; 9:e1003245. [PMID: 24086124 PMCID: PMC3784497 DOI: 10.1371/journal.pcbi.1003245] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/15/2013] [Indexed: 01/24/2023] Open
Abstract
We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. The adaptive immune response to pathogen invasion requires the stimulation of lymphocytes by antigen-presenting cells. We hypothesized that investigating the dynamics of the T lymphocyte activation by monitoring intracellular calcium fluctuations might help explain the high specificity and selectivity of this phenomenon. However, the quantitative and exhaustive analysis of calcium fluctuations by video microscopy in the context of cell-to-cell contact is a tough challenge. To tackle this, we developed a complete solution named MAAACS (Methods for Automated and Accurate Analysis of Cell Signals), in order to automate the detection, cell tracking, raw data ordering and analysis of calcium signals. Our algorithm revealed that, when in contact with antigen-presenting cells, T lymphocytes generate oscillating calcium signals and not a massive and sustained calcium response as was originally thought. We anticipate our approach providing many more new insights into the molecular mechanisms triggering adaptive immunity.
Collapse
Affiliation(s)
- Audrey Salles
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Cyrille Billaudeau
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Arnauld Sergé
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
- * E-mail: (AS); (YH)
| | - Anne-Marie Bernard
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Marie-Claire Phélipot
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Nicolas Bertaux
- Institut Fresnel, Centre National de la Recherche Scientifique (CNRS) UMR7249, Marseille, France
- École Centrale Marseille, Technopôle de Château-Gombert, Marseille, France
| | - Mathieu Fallet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Pierre Grenot
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Didier Marguet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Yannick Hamon
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
- * E-mail: (AS); (YH)
| |
Collapse
|