1
|
Orsenigo F, Stewart A, Hammer CP, Clarke E, Simpkin D, Attia H, Rockall T, Gordon S, Martinez FO. Unifying considerations and evidence of macrophage activation mosaicism through human CSF1R and M1/M2 genes. Cell Rep 2024; 43:114352. [PMID: 38870011 DOI: 10.1016/j.celrep.2024.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Addressing the mononuclear phagocyte system (MPS) and macrophage M1/M2 activation is important in diagnosing hematological disorders and inflammatory pathologies and designing therapeutic tools. CSF1R is a reliable marker to identify all circulating MPS cells and tissue macrophages in humans using a single surface protein. CSF1R permits the quantification and isolation of monocyte and dendritic cell (DC) subsets in conjunction with CD14, CD16, and CD1c and is stable across the lifespan and sexes in the absence of overt pathology. Beyond cell detection, measuring M1/M2 activation in humans poses challenges due to response heterogeneity, transient signaling, and multiple regulation steps for transcripts and proteins. MPS cells respond in a conserved manner to M1/M2 pathways such as interleukin-4 (IL-4), steroids, interferon-γ (IFNγ), and lipopolysaccharide (LPS), for which we propose an ad hoc modular gene expression tool. Signature analysis highlights macrophage activation mosaicism in experimental samples, an emerging concept that points to mixed macrophage activation states in pathology.
Collapse
Affiliation(s)
- Federica Orsenigo
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| | - Alexander Stewart
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK; Virology Department, Animal and Plant Health Agency, APHA-Weybridge, KT15 3NB Addlestone, UK
| | - Clare P Hammer
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK; Royal Surrey County Hospital NHS Foundation Trust, GU2 7XX Guildford, UK
| | - Emma Clarke
- Royal Surrey County Hospital NHS Foundation Trust, GU2 7XX Guildford, UK
| | - Daniel Simpkin
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK
| | - Hossameldin Attia
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK; Royal Surrey County Hospital NHS Foundation Trust, GU2 7XX Guildford, UK
| | - Timothy Rockall
- Royal Surrey County Hospital NHS Foundation Trust, GU2 7XX Guildford, UK
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan; Sir William Dunn School of Pathology, University of Oxford, OX13RE Oxford, UK
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, UK.
| |
Collapse
|
2
|
Rodriguez-Sevilla JJ, Colla S. T-cell dysfunctions in myelodysplastic syndromes. Blood 2024; 143:1329-1343. [PMID: 38237139 DOI: 10.1182/blood.2023023166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell- and antibody-based adoptive therapies that hold promise to improve the outcome of patients with MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
3
|
Franken A, Bila M, Mechels A, Kint S, Van Dessel J, Pomella V, Vanuytven S, Philips G, Bricard O, Xiong J, Boeckx B, Hatse S, Van Brussel T, Schepers R, Van Aerde C, Geurs S, Vandecaveye V, Hauben E, Vander Poorten V, Verbandt S, Vandereyken K, Qian J, Tejpar S, Voet T, Clement PM, Lambrechts D. CD4 + T cell activation distinguishes response to anti-PD-L1+anti-CTLA4 therapy from anti-PD-L1 monotherapy. Immunity 2024; 57:541-558.e7. [PMID: 38442708 DOI: 10.1016/j.immuni.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Cancer patients often receive a combination of antibodies targeting programmed death-ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA4). We conducted a window-of-opportunity study in head and neck squamous cell carcinoma (HNSCC) to examine the contribution of anti-CTLA4 to anti-PD-L1 therapy. Single-cell profiling of on- versus pre-treatment biopsies identified T cell expansion as an early response marker. In tumors, anti-PD-L1 triggered the expansion of mostly CD8+ T cells, whereas combination therapy expanded both CD4+ and CD8+ T cells. Such CD4+ T cells exhibited an activated T helper 1 (Th1) phenotype. CD4+ and CD8+ T cells co-localized with and were surrounded by dendritic cells expressing T cell homing factors or antibody-producing plasma cells. T cell receptor tracing suggests that anti-CTLA4, but not anti-PD-L1, triggers the trafficking of CD4+ naive/central-memory T cells from tumor-draining lymph nodes (tdLNs), via blood, to the tumor wherein T cells acquire a Th1 phenotype. Thus, CD4+ T cell activation and recruitment from tdLNs are hallmarks of early response to anti-PD-L1 plus anti-CTLA4 in HNSCC.
Collapse
Affiliation(s)
- Amelie Franken
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Michel Bila
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, 3000 Leuven, Belgium; Department of Oral and Maxillofacial Surgery, UZ Leuven, Leuven 3000, Belgium
| | - Aurelie Mechels
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Sam Kint
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium
| | - Jeroen Van Dessel
- Department of Oral and Maxillofacial Surgery, UZ Leuven, Leuven 3000, Belgium
| | | | - Sebastiaan Vanuytven
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium
| | - Gino Philips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Orian Bricard
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Jieyi Xiong
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, 3000 Leuven, Belgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Rogier Schepers
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Cedric Van Aerde
- Department of Imaging and Pathology, KU Leuven, UZ Leuven, Leuven 3000, Belgium
| | - Sarah Geurs
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium; Department of Biomolecular Medicine, UZ Ghent, Ghent 9052, Belgium
| | | | - Esther Hauben
- Otorhinolaryngology, Head and Neck Surgery, Leuven 3000, Belgium
| | - Vincent Vander Poorten
- Otorhinolaryngology, Head and Neck Surgery, Leuven 3000, Belgium; Department of Oncology, Section Head and Neck Oncology, Leuven 3000, Belgium
| | - Sara Verbandt
- Digestive Oncology, KU Leuven, UZ Leuven, Leuven 3000, Belgium
| | - Katy Vandereyken
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sabine Tejpar
- Digestive Oncology, KU Leuven, UZ Leuven, Leuven 3000, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium
| | - Paul M Clement
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, 3000 Leuven, Belgium.
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium.
| |
Collapse
|
4
|
abiff M, Alshebremi M, Bonner M, Myers JT, Kim BG, Tomchuck SL, Santin A, Kingsley D, Choi SH, Huang AY. Piezo1 facilitates optimal T cell activation during tumor challenge. Oncoimmunology 2023; 12:2281179. [PMID: 38126029 PMCID: PMC10732680 DOI: 10.1080/2162402x.2023.2281179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Functional effector T cells in the tumor microenvironment (TME) are critical for successful anti-tumor responses. T cell anti-tumor function is dependent on their ability to differentiate from a naïve state, infiltrate into the tumor site, and exert cytotoxic functions. The factors dictating whether a particular T cell can successfully undergo these processes during tumor challenge are not yet completely understood. Piezo1 is a mechanosensitive cation channel with high expression on both CD4+ and CD8+ T cells. Previous studies have demonstrated that Piezo1 optimizes T cell activation and restrains the CD4+ regulatory T cell (Treg) pool in vitro and under inflammatory conditions in vivo. However, little is known about the role Piezo1 plays on CD4+ and CD8+ T cells in cancer. We hypothesized that disruption of Piezo1 on T cells impairs anti-tumor immunity in vivo by hindering inflammatory T cell responses. We challenged mice with T cell Piezo1 deletion (P1KO) with tumor models dependent on T cells for immune rejection. P1KO mice had the more aggressive tumors, higher tumor growth rates and were unresponsive to immune-mediated therapeutic interventions. We observed a decreased CD4:CD8 ratio in both the secondary lymphoid organs and TME of P1KO mice that correlated inversely with tumor size. Poor CD4+ helper T cell responses underpinned the immunodeficient phenotype of P1KO mice. Wild type CD8+ T cells are sub-optimally activated in vivo with P1KO CD4+ T cells, taking on a CD25loPD-1hi phenotype. Together, our results suggest that Piezo1 optimizes T cell activation in the context of a tumor response.
Collapse
Affiliation(s)
- muta abiff
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mohammad Alshebremi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Melissa Bonner
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jay T. Myers
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Byung-Gyu Kim
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Suzanne L. Tomchuck
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alicia Santin
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Daniel Kingsley
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Sung Hee Choi
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alex Y. Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Center for Pediatric Immunotherapy, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
5
|
Guo X, He C, Xin S, Gao H, Wang B, Liu X, Zhang S, Gong F, Yu X, Pan L, Sun F, Xu J. Current perspective on biological properties of plasmacytoid dendritic cells and dysfunction in gut. Immun Inflamm Dis 2023; 11:e1005. [PMID: 37773693 PMCID: PMC10510335 DOI: 10.1002/iid3.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.
Collapse
Affiliation(s)
- Xueran Guo
- Department of Clinical Medicine, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Clinical Laboratory, Aerospace Center HospitalPeking UniversityBeijingChina
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Stepanyan A, Fassan M, Spolverato G, Castagliuolo I, Scarpa M, Scarpa M. IMMUNOREACT 0: Biopsy-based immune biomarkers as predictors of response to neoadjuvant therapy for rectal cancer-A systematic review and meta-analysis. Cancer Med 2023; 12:17878-17890. [PMID: 37537787 PMCID: PMC10523971 DOI: 10.1002/cam4.6423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The main therapy for rectal cancer patients is neoadjuvant therapy (NT) followed by surgery. Immune biomarkers are emerging as potential predictors of the response to NT. We performed a meta-analysis to estimate their predictive significance. METHODS A systematic literature search of PubMed, Ovid MEDLINE and EMBASE databases was performed to identify eligible studies. Studies on patients with rectal cancer undergoing NT in which the predictive significance of at least one of the immunological markers of interest was assessed by immunohistochemistry (IHC) in pretreatment biopsies were included. RESULTS Seventeen studies reporting sufficient data met the inclusion criteria for meta-analysis. High levels of total CD3+, CD4+ and CD8+ tumor infiltrating lymphocytes (TILs), as well as stromal and intraepithelial CD8+ compartments, significantly predicted good pathological response to NT. Moreover, high levels of total (tumoral and immune cell expression) PD-L1 resulted associated to a good pathological response. On the contrary, high levels of intraepithelial CD4+ TILs were correlated with poor pathological response. FoxP3+ TILs, tumoral PD-L1 and CTLA-4 were not correlated to the treatment response. CONCLUSION This meta-analysis indicated that high-density TILs might be predictive biomarkers of pathological response in patients that underwent NT for rectal cancer.
Collapse
Affiliation(s)
- Astghik Stepanyan
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| | - Matteo Fassan
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
- Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Gaya Spolverato
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| | | | - Melania Scarpa
- Immunology and Molecular Oncology Diagnostics UnitVeneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Marco Scarpa
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| |
Collapse
|
7
|
Lyu L, Jiang Y, Ma W, Li H, Liu X, Li L, Shen A, Yu Y, Jiang S, Li H, Zhou P, Yin S. Single-cell sequencing of PIT1-positive pituitary adenoma highlights the pro-tumour microenvironment mediated by IFN-γ-induced tumour-associated fibroblasts remodelling. Br J Cancer 2023; 128:1117-1133. [PMID: 36631635 PMCID: PMC10006201 DOI: 10.1038/s41416-022-02126-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND PIT1-positive pituitary adenoma (PIT1-PA) is one of the most important lineages of pituitary adenoma (PA), which causes systematic endocrine disorders and a worse prognosis. Tumour-associated fibroblast (TAF) is a crucial stroma cell type in the tumour microenvironment (TME). However, cellular and functional heterogeneity of TAF and immune cells in PIT1-PA have not been fully investigated. METHODS By single-cell RNA sequencing of four PIT1-PAs and further analyses, we characterised the molecular and functional profiles of 28 different cell subtypes. RESULTS PA stem cells in PIT1/SF1-positve PA were in a hybrid epithelial/mesenchymal state, and differentiated along the PIT1- and SF- dependent branches. C1Q was overwhelmingly expressed in tumour-associated macrophages, indicating its pro-tumoral functionality. PIT1-PA progression was characterised by lower cell-cell communication strength and higher cell adhesion-associated signals, indicating the immunosuppressive but pro-invasive microenvironment. IFN-γ signal repressed functional remodelling of myofibroblastic TAF (mTAF) towards inflammatory TAF/antigen-presenting TAF. IFN-γ inhibited mTAF phenotypes and N-cadherin expression through STAT3 signal axis. CDH2 knockdown in TAFs abrogated their pro-tumour function in PAs. CONCLUSIONS Our study builds up a cellular landscape of PIT1-PA TME and highlights anti-tumour function of IFN-γ mediated TAF remodelling, which benefits clinical treatments and drug development.
Collapse
Affiliation(s)
- Liang Lyu
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| | - Yong Jiang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Weichao Ma
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Haiyan Li
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China
| | - Xiaoling Liu
- Departments of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ao Shen
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yang Yu
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shu Jiang
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huihui Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, China.
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Peizhi Zhou
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Senlin Yin
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Girsch JH, Mejia Plazas MC, Olivier A, Farah M, Littlefield D, Behl S, Punia S, Sakemura R, Hemsath JR, Norgan A, Enninga EAL, Johnson EL, Chakraborty R. Host-Viral Interactions at the Maternal-Fetal Interface. What We Know and What We Need to Know. FRONTIERS-A JOURNAL OF WOMEN STUDIES 2022; 2:833106. [PMID: 36742289 PMCID: PMC9894500 DOI: 10.3389/fviro.2022.833106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In humans, the hemochorial placenta is a unique temporary organ that forms during pregnancy to support fetal development, gaseous exchange, delivery of nutrition, removal of waste products, and provides immune protection, while maintaining tolerance to the HLA-haploidentical fetus. In this review, we characterize decidual and placental immunity during maternal viral (co)-infection with HIV-1, human cytomegalovirus (HCMV), and Zika virus. We discuss placental immunology, clinical presentation, and epidemiology, before characterizing host susceptibility and cellular tropism, and how the three viruses gain access into specific placental target cells. We describe current knowledge on host-viral interactions with decidual and stromal human placental macrophages or Hofbauer cells, trophoblasts including extra villous trophoblasts, T cells, and decidual natural killer (dNK) cells. These clinically significant viral infections elicit both innate and adaptive immune responses to control replication. However, the three viruses either during mono- or co-infection (HIV-1 and HCMV) escape detection to initiate placental inflammation associated with viral transmission to the developing fetus. Aside from congenital or perinatal infection, other adverse pregnancy outcomes include preterm labor and spontaneous abortion. In addition, maternal HIV-1 and HCMV co-infection are associated with impaired fetal and infant immunity in postnatal life and poor clinical outcomes during childhood in exposed infants, even in the absence of vertical transmission of HIV-1. Given the rapidly expanding numbers of HIV-1-exposed uninfected infants and children globally, further research is urgently needed on neonatal immune programming during maternal mono-and co-infection. This review therefore includes sections on current knowledge gaps that may prompt future research directions. These gaps reflect an emerging but poorly characterized field. Their significance and potential investigation is underscored by the fact that although viral infections result in adverse consequences in both mother and developing fetus/newborn, antiviral and immunomodulatory therapies can improve clinical outcomes in the dyad.
Collapse
Affiliation(s)
- James H. Girsch
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States,,Mayo Clinic Graduate School of Biomedical Science, Rochester, MN, United States
| | - Maria C. Mejia Plazas
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Amanda Olivier
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Mohamed Farah
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Dawn Littlefield
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Supriya Behl
- Department of Pediatric Research, Mayo Clinic, Rochester, MN, United States
| | - Sohan Punia
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Reona Sakemura
- Department of Hematology Research, Mayo Clinic, Rochester, MN, United States
| | - Jack R. Hemsath
- Department of Infectious Diseases Research, Mayo Clinic, Rochester, MN, United States
| | - Andrew Norgan
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Elizabeth A. L. Enninga
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Erica L. Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, United States,,Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, MN, United States,Correspondence: Rana Chakraborty
| |
Collapse
|
9
|
Zahran AM, Saad K, Abdallah AEM, Gad EF, Abdel-Raheem YF, Zahran ZAM, Nagiub Abdelsalam EM, Elhoufey A, Alruwaili T, Mahmoud KH, Elsayh KI. Dendritic cells and monocyte subsets in children with Gaucher disease. Pediatr Res 2021; 90:664-669. [PMID: 33469171 DOI: 10.1038/s41390-020-01300-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND There are minimal data on the frequencies of monocyte subsets and dendritic cells (DCs) in children with Gaucher disease (GD), as nearly all previous studies have involved adult patients. Consequently, we aimed to describe the changes in these cell subpopulations in children with GD type 1 who were on regular enzyme replacement therapy (ERT). METHODS This case-control study included 25 children with GD1 and 20 healthy controls. All participants underwent investigations such as complete blood count and flow cytometric assessment of DC and monocyte frequencies and phenotype. RESULTS We found that GD1 children had significantly reduced percentages of both types of DCs, i.e., plasmacytoid DCs and myeloid DCs, compared to the control group. There was also a significant reduction in absolute monocyte numbers and percentage of classical monocyte. Moreover, the GD1 children had higher frequencies of non-classical and intermediate monocytes than the control group. CONCLUSIONS Our results so far indicate that, when compared to the control group, the GD1 children had significantly reduced total and classical monocyte, with significantly decreased frequencies for both types of DCs. These changes can contribute to immunological abnormalities in pediatric patients with GD1. IMPACT Children with Gaucher disease type 1 (GD1) have significantly reduced total and classical monocyte frequencies, with decreasing percentages for both types of dendritic cells. GD1 children had significantly reduced frequencies of myeloid and plasmacytoid dendritic cells as compared to the controls. The GD1 children also had significant changes in monocyte subsets when compared to the controls. Our results show that monocytes and dendritic cells' significant changes could contribute to immunological abnormalities in pediatric patients with GD1.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut, Egypt
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Eman F Gad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | | | | | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, Saudi Arabia
| | - Thamer Alruwaili
- Faculty of Medicine, Jouf University, Jouf, Sakaka, Saudi Arabia
| | | | - Khalid I Elsayh
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Baumgaertner P, Sankar M, Herrera F, Benedetti F, Barras D, Thierry AC, Dangaj D, Kandalaft LE, Coukos G, Xenarios I, Guex N, Harari A. Unsupervised Analysis of Flow Cytometry Data in a Clinical Setting Captures Cell Diversity and Allows Population Discovery. Front Immunol 2021; 12:633910. [PMID: 33995353 PMCID: PMC8119773 DOI: 10.3389/fimmu.2021.633910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Data obtained with cytometry are increasingly complex and their interrogation impacts the type and quality of knowledge gained. Conventional supervised analyses are limited to pre-defined cell populations and do not exploit the full potential of data. Here, in the context of a clinical trial of cancer patients treated with radiotherapy, we performed longitudinal flow cytometry analyses to identify multiple distinct cell populations in circulating whole blood. We cross-compared the results from state-of-the-art recommended supervised analyses with results from MegaClust, a high-performance data-driven clustering algorithm allowing fast and robust identification of cell-type populations. Ten distinct cell populations were accurately identified by supervised analyses, including main T, B, dendritic cell (DC), natural killer (NK) and monocytes subsets. While all ten subsets were also identified with MegaClust, additional cell populations were revealed (e.g. CD4+HLA-DR+ and NKT-like subsets), and DC profiling was enriched by the assignment of additional subset-specific markers. Comparison between transcriptomic profiles of purified DC populations and publicly available datasets confirmed the accuracy of the unsupervised clustering algorithm and demonstrated its potential to identify rare and scarcely described cell subsets. Our observations show that data-driven analyses of cytometry data significantly enrich the amount and quality of knowledge gained, representing an important step in refining the characterization of immune responses.
Collapse
Affiliation(s)
- Petra Baumgaertner
- Centre of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Martial Sankar
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fernanda Herrera
- Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Fabrizio Benedetti
- Centre of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Barras
- Centre of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Anne-Christine Thierry
- Centre of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Denarda Dangaj
- Centre of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lana E Kandalaft
- Centre of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ioannis Xenarios
- Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Nicolas Guex
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Bioinformatics Competence Center (BICC), University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Centre of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
11
|
Ghosh S, Di Bartolo V, Tubul L, Shimoni E, Kartvelishvily E, Dadosh T, Feigelson SW, Alon R, Alcover A, Haran G. ERM-Dependent Assembly of T Cell Receptor Signaling and Co-stimulatory Molecules on Microvilli prior to Activation. Cell Rep 2021; 30:3434-3447.e6. [PMID: 32160548 DOI: 10.1016/j.celrep.2020.02.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 01/25/2023] Open
Abstract
T cell surfaces are covered with microvilli, actin-rich and flexible protrusions. We use super-resolution microscopy to show that ≥90% of T cell receptor (TCR) complex molecules TCRαβ and TCRζ, as well as the co-receptor CD4 (cluster of differentiation 4) and the co-stimulatory molecule CD2, reside on microvilli of resting human T cells. Furthermore, TCR proximal signaling molecules involved in the initial stages of the immune response, including the protein tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) and the key adaptor LAT (linker for activation of T cells), are also enriched on microvilli. Notably, phosphorylated proteins of the ERM (ezrin, radixin, and moesin) family colocalize with TCRαβ as well as with actin filaments, implying a role for one or more ERMs in linking the TCR complex to the actin cytoskeleton within microvilli. Our results establish microvilli as key signaling hubs, in which the TCR complex and its proximal signaling molecules and adaptors are preassembled prior to activation in an ERM-dependent manner, facilitating initial antigen sensing.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Liron Tubul
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal Shimoni
- Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Kartvelishvily
- Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andres Alcover
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
12
|
Macrophage Tropism in Pathogenic HIV-1 and SIV Infections. Viruses 2020; 12:v12101077. [PMID: 32992787 PMCID: PMC7601331 DOI: 10.3390/v12101077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 01/06/2023] Open
Abstract
Most myeloid lineage cells express the receptor and coreceptors that make them susceptible to infection by primate lentiviruses (SIVs and HIVs). However, macrophages are the only myeloid lineage cell commonly infected by SIVs and/or HIVs. The frequency of infected macrophages varies greatly across specific host and virus combinations as well as disease states, with infection rates being greatest in pathogenic SIV infections of non-natural hosts (i.e., Asian nonhuman primates (Asian NHPs)) and late in untreated HIV-1 infection. In contrast, macrophages from natural SIV hosts (i.e., African NHPs) are largely resistant to infection due to entry and/or post-entry restriction mechanisms. These highly variable rates of macrophage infection may stem from differences in the host immune environment, entry and post-entry restriction mechanisms, the ability of a virus to adapt to efficiently infect macrophages, and the pleiotropic effects of macrophage-tropism including the ability to infect cells lacking CD4 and increased neutralization sensitivity. Questions remain about the relationship between rates of macrophage infection and viral pathogenesis, with some evidence suggesting that elevated levels of macrophage infection may contribute to greater pathogenesis in non-natural SIV hosts. Alternatively, extensive infection of macrophages may only emerge in the context of high viral loads and immunodeficiency, making it a symptom of highly pathogenic infections, not a primary driver of pathogenesis.
Collapse
|
13
|
Jardine L, Wiscombe S, Reynolds G, McDonald D, Fuller A, Green K, Filby A, Forrest I, Ruchaud-Sparagano MH, Scott J, Collin M, Haniffa M, Simpson AJ. Lipopolysaccharide inhalation recruits monocytes and dendritic cell subsets to the alveolar airspace. Nat Commun 2019; 10:1999. [PMID: 31040289 PMCID: PMC6491485 DOI: 10.1038/s41467-019-09913-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mononuclear phagocytes (MPs) including monocytes, macrophages and dendritic cells (DCs) are critical innate immune effectors and initiators of the adaptive immune response. MPs are present in the alveolar airspace at steady state, however little is known about DC recruitment in acute pulmonary inflammation. Here we use lipopolysaccharide inhalation to induce acute inflammation in healthy volunteers and examine the impact on bronchoalveolar lavage fluid and blood MP repertoire. Classical monocytes and two DC subsets (DC2/3 and DC5) are expanded in bronchoalveolar lavage fluid 8 h after lipopolysaccharide inhalation. Surface phenotyping, gene expression profiling and parallel analysis of blood indicate recruited DCs are blood-derived. Recruited monocytes and DCs rapidly adopt typical airspace-resident MP gene expression profiles. Following lipopolysaccharide inhalation, alveolar macrophages strongly up-regulate cytokines for MP recruitment. Our study defines the characteristics of human DCs and monocytes recruited into bronchoalveolar space immediately following localised acute inflammatory stimulus in vivo. The diversity of human mononuclear phagocyte subsets remains to be characterized in many tissue-specific and functional contexts, including pulmonary inflammation. Here the authors characterize dendritic cell and monocyte subset recruitment to the bronchoalveolar space in a human LPS inhalation model.
Collapse
Affiliation(s)
- Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK.
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Gary Reynolds
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - David McDonald
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Fuller
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andrew Filby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian Forrest
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | | | - Jonathan Scott
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthew Collin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK.
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| |
Collapse
|
14
|
Frank AM, Buchholz CJ. Surface-Engineered Lentiviral Vectors for Selective Gene Transfer into Subtypes of Lymphocytes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:19-31. [PMID: 30417026 PMCID: PMC6216101 DOI: 10.1016/j.omtm.2018.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lymphocytes have always been among the prime targets in gene therapy, even more so since chimeric antigen receptor (CAR) T cells have reached the clinic. However, other gene therapeutic approaches hold great promise as well. The first part of this review provides an overview of current strategies in lymphocyte gene therapy. The second part highlights the importance of precise gene delivery into B and T cells as well as distinct subtypes of lymphocytes. This can be achieved with lentiviral vectors (LVs) pseudotyped with engineered glycoproteins recognizing lymphocyte surface markers as entry receptors. Different strategies for envelope glycoprotein engineering and selection of the targeting ligand are discussed. With a CD8-targeted LV that was recently used to achieve proof of principle for the in vivo reprogramming of CAR T cells, these vectors are becoming a key tool to genetically engineer lymphocytes directly in vivo.
Collapse
Affiliation(s)
- Annika M Frank
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian J Buchholz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, 63225 Langen, Germany.,Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| |
Collapse
|
15
|
Strobel SB, Safferling K, Lahrmann B, Hoffmann JH, Enk AH, Hadaschik EN, Grabe N, Lonsdorf AS. Altered density, composition and microanatomical distribution of infiltrating immune cells in cutaneous squamous cell carcinoma of organ transplant recipients. Br J Dermatol 2018; 179:405-412. [PMID: 29479687 DOI: 10.1111/bjd.16477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The inflammatory tumour microenvironment is crucial for effective tumour control, and long-term immunosuppression has been identified as a major risk factor for skin carcinogenesis. In solid organ transplant recipients (OTRs) undergoing long-term pharmacological immunosuppression, an increased incidence of cutaneous squamous cell carcinoma (SCC) and more aggressive tumour growth compared with immunocompetent patients has been reported. OBJECTIVES To determine the density and phenotype of immune cells infiltrating SCC and surrounding skin in OTRs, and to characterize the microanatomical distribution patterns in comparison with immunocompetent patients. METHODS We analysed immune cell infiltrates within SCC and at defined regions of interest (ROIs) of tumour-surrounding skin in formalin-fixed paraffin-embedded tissue of 20 renal transplant patients and 18 carefully matched immunocompetent patients by high-resolution semiautomated microscopy on complete tissue sections stained for CD4, CD8, CD20 and CD68. RESULTS The overall immune cell density of SCC arising in OTRs was significantly reduced compared with immunocompetent patients. Particularly CD4+ infiltrates at the directly invasive margin and tumour vicinity, intratumoral CD8+ T-cell densities and the overall density of CD20+ tumour-infiltrating B cells were significantly reduced in the tissue of OTRs. CONCLUSIONS Immune cell infiltrates within SCC and at defined ROIs of tumour-surrounding skin in OTRs differ markedly in their composition and microanatomical distribution compared with tumours arising in immunocompetent patients. Our findings substantially broaden the understanding of how long-term systemic immunosuppression modulates the local inflammatory microenvironment in the skin and at the site of invasive SCC.
Collapse
Affiliation(s)
- S B Strobel
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - K Safferling
- Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases Heidelberg, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - B Lahrmann
- Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases Heidelberg, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - J H Hoffmann
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - A H Enk
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - E N Hadaschik
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany.,Department of Dermatology, University of Essen, Essen, Germany
| | - N Grabe
- Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases Heidelberg, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - A S Lonsdorf
- Department of Dermatology, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154:3-20. [PMID: 29313948 PMCID: PMC5904714 DOI: 10.1111/imm.12888] [Citation(s) in RCA: 845] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| | - Venetia Bigley
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
17
|
Abstract
The maintenance of monocytes, macrophages, and dendritic cells (DCs) involves manifold pathways of ontogeny and homeostasis that have been the subject of intense study in recent years. The concept of a peripheral mononuclear phagocyte system continually renewed by blood-borne monocytes has been modified to include specialized DC pathways of development that do not involve monocytes, and longevity through self-renewal of tissue macrophages. The study of development remains difficult owing to the plasticity of phenotypes and misconceptions about the fundamental structure of hematopoiesis. However, greater clarity has been achieved in distinguishing inflammatory monocyte-derived DCs from DCs arising in the steady state, and new concepts of conjoined lymphomyeloid hematopoiesis more easily accommodate the shared lymphoid and myeloid phenotypes of some DCs. Cross-species comparisons have also yielded coherent systems of nomenclature for all mammalian monocytes, macrophages, and DCs. Finally, the clear relationships between ontogeny and functional specialization offer information about the regulation of immune responses and provide new tools for the therapeutic manipulation of myeloid mononuclear cells in medicine.
Collapse
|
18
|
Abstract
Purpose of review Dendritic cells are specialized antigen-presenting cells which link innate and adaptive immunity, through recognition and presentation of antigen to T cells. Although the importance of dendritic cells has been demonstrated in many animal models, their contribution to human immunity remains relatively unexplored in vivo. Given their central role in infection, autoimmunity, and malignancy, dendritic cell deficiency or dysfunction would be expected to have clinical consequences. Recent findings Human dendritic cell deficiency disorders, related to GATA binding protein 2 (GATA2) and interferon regulatory factor 8 (IRF8) mutations, have highlighted the importance of dendritic cells and monocytes in primary immunodeficiency diseases and begun to shed light on their nonredundant roles in host defense and immune regulation in vivo. The contribution of dendritic cell and monocyte dysfunction to the pathogenesis of primary immunodeficiency disease phenotypes is becoming increasingly apparent. However, dendritic cell analysis is not yet a routine part of primary immunodeficiency disease workup. Summary Widespread uptake of dendritic cell/monocyte screening in clinical practice will facilitate the discovery of novel dendritic cell and monocyte disorders as well as advancing our understanding of human dendritic cell biology in health and disease.
Collapse
|
19
|
Affiliation(s)
- Sakeen W. Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Daniel H. Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
20
|
Abstract
Langerhans cell histiocytosis (LCH) is heterogeneous disease characterized by common histology of inflammatory lesions containing Langerin(+) (CD207) histiocytes. Emerging data support a model in which MAPK activation in self-renewing hematopoietic progenitors may drive disseminated high-risk disease, whereas MAPK activation in more differentiated committed myeloid populations may induce low-risk LCH. The heterogeneous clinical manifestations with shared histology may represent the final common pathway of an acquired defect of differentiation, initiated at more than one point. Implications of this model include re-definition of LCH as a myeloid neoplasia and re-focusing therapeutic strategies on the cells and lineages of origin.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Venetia Bigley
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Kenneth L McClain
- Texas Children's Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Carl E Allen
- Texas Children's Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Vu Manh TP, Bertho N, Hosmalin A, Schwartz-Cornil I, Dalod M. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions. Front Immunol 2015; 6:260. [PMID: 26082777 PMCID: PMC4451681 DOI: 10.3389/fimmu.2015.00260] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and species.
Collapse
Affiliation(s)
- Thien-Phong Vu Manh
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique , Jouy-en-Josas , France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin , Paris , France ; CNRS UMR8104 , Paris , France ; Université Paris Descartes , Paris , France ; Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Cochin , Paris , France
| | - Isabelle Schwartz-Cornil
- Virologie et Immunologie Moléculaires UR892, Institut National de la Recherche Agronomique , Jouy-en-Josas , France
| | - Marc Dalod
- UM2, Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University , Marseille , France ; U1104, Institut National de la Santé et de la Recherche Médicale (INSERM) , Marseille , France ; UMR7280, Centre National de la Recherche Scientifique (CNRS) , Marseille , France
| |
Collapse
|
22
|
Human mononuclear phagocyte system reunited. Semin Cell Dev Biol 2015; 41:59-69. [DOI: 10.1016/j.semcdb.2015.05.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/11/2015] [Indexed: 12/31/2022]
|
23
|
Morel PA, Butterfield LH. Dendritic cell control of immune responses. Front Immunol 2015; 6:42. [PMID: 25699058 PMCID: PMC4318395 DOI: 10.3389/fimmu.2015.00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/22/2015] [Indexed: 12/20/2022] Open
|
24
|
Abstract
Primary immunodeficiencies (PID) are a group of rare inherited disorders that manifest as heightened susceptibility to infection, autoimmunity and/or malignancy. By exploring their genetic and cellular aetiology, we can learn much about the basis of pathogen-specific immunity in humans. This is exemplified by mycobacterial susceptibility, which occurs across several types of PID, either as an isolated problem or as part of a broader pattern of susceptibility to infection. These experiments of nature have contributed to our understanding of the central role of T cells in activating infected macrophages to eliminate phagosomal mycobacteria through mutually activating, cytokine-dependent interactions. In recent years, the discovery of novel forms of PID has emphasised the important role of dendritic cells and monocytes in mycobacterial defence in humans. Here, we provide a brief overview of these new disorders alongside other genetic causes of susceptibility to mycobacterial disease.
Collapse
Affiliation(s)
- Christopher J A Duncan
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK, and Great North Children's Hospital, Newcastle-upon-Tyne, UK
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK, and Department of Infection and Tropical Medicine Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| |
Collapse
|
25
|
Martinez FO, Gordon S. The evolution of our understanding of macrophages and translation of findings toward the clinic. Expert Rev Clin Immunol 2014; 11:5-13. [PMID: 25434688 DOI: 10.1586/1744666x.2015.985658] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
'There is at bottom only one genuinely scientific treatment for all diseases, and that is to stimulate the phagocytes,' so declaimed Sir Ralph Bloomfield Bonington in The Doctor's Dilemma, Act 1, by George Bernard Shaw (1906). More often nowadays, the need is to calm the phagocytes, given their role in inflammation and tissue damage. In spite of the growth of cellular and molecular information gained from studies in macrophage cell culture, mouse models and, to a lesser extent, human investigations, and the importance of macrophages in pathogenesis in a wide range of chronic disease processes, there is still a substantial shortfall in terms of clinical applications. In this review, we summarize concepts derived from macrophage studies and suggest possible properties suitable for diagnosis, prognosis and selective targeting of macrophage pathogenic functions.
Collapse
Affiliation(s)
- Fernando O Martinez
- Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | | |
Collapse
|
26
|
McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E, Green K, Dickinson R, Wang XN, Low D, Best K, Covins S, Milne P, Pagan S, Aljefri K, Windebank M, Miranda-Saavedra D, Larbi A, Wasan PS, Duan K, Poidinger M, Bigley V, Ginhoux F, Collin M, Haniffa M. Human dermal CD14⁺ cells are a transient population of monocyte-derived macrophages. Immunity 2014; 41:465-477. [PMID: 25200712 PMCID: PMC4175180 DOI: 10.1016/j.immuni.2014.08.006] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/14/2014] [Indexed: 01/16/2023]
Abstract
Dendritic cells (DCs), monocytes, and macrophages are leukocytes with critical roles in immunity and tolerance. The DC network is evolutionarily conserved; the homologs of human tissue CD141hiXCR1+CLEC9A+ DCs and CD1c+ DCs are murine CD103+ DCs and CD64−CD11b+ DCs. In addition, human tissues also contain CD14+ cells, currently designated as DCs, with an as-yet unknown murine counterpart. Here we have demonstrated that human dermal CD14+ cells are a tissue-resident population of monocyte-derived macrophages with a short half-life of <6 days. The decline and reconstitution kinetics of human blood CD14+ monocytes and dermal CD14+ cells in vivo supported their precursor-progeny relationship. The murine homologs of human dermal CD14+ cells are CD11b+CD64+ monocyte-derived macrophages. Human and mouse monocytes and macrophages were defined by highly conserved gene transcripts, which were distinct from DCs. The demonstration of monocyte-derived macrophages in the steady state in human tissue supports a conserved organization of human and mouse mononuclear phagocyte system. Human dermal CD14+ cells are a transient population of macrophages Dermal CD14+ cells are derived from circulating blood monocytes Human CD14+ cells are homologous to murine CD11b+CD64+ monocyte-derived macrophages Human and mouse mononuclear phagocyte network organization is conserved
Collapse
Affiliation(s)
- Naomi McGovern
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; Singapore Immunology Network, Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore 138648
| | - Andreas Schlitzer
- Singapore Immunology Network, Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore 138648
| | - Merry Gunawan
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Laura Jardine
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Amanda Shin
- Singapore Immunology Network, Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore 138648
| | - Elizabeth Poyner
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Kile Green
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Rachel Dickinson
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Xiao-Nong Wang
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Donovan Low
- Singapore Immunology Network, Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore 138648
| | - Katie Best
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Samuel Covins
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Paul Milne
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Sarah Pagan
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Khadija Aljefri
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Windebank
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Diego Miranda-Saavedra
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore 138648
| | - Pavandip Singh Wasan
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore 138648
| | - Michael Poidinger
- Singapore Immunology Network, Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore 138648; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Venetia Bigley
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science Technology and Research (A-Star), 8A Biomedical Grove, Immunos, Singapore 138648
| | - Matthew Collin
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|