1
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Laphanuwat P, Gomes DCO, Akbar AN. Senescent T cells: Beneficial and detrimental roles. Immunol Rev 2023; 316:160-175. [PMID: 37098109 PMCID: PMC10952287 DOI: 10.1111/imr.13206] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 04/27/2023]
Abstract
As the thymus involutes during aging, the T-cell pool has to be maintained by the periodic expansion of preexisting T cells during adulthood. A conundrum is that repeated episodes of activation and proliferation drive the differentiation of T cells toward replicative senescence, due to telomere erosion. This review discusses mechanisms that regulate the end-stage differentiation (senescence) of T cells. Although these cells, within both CD4 and CD8 compartments, lose proliferative activity after antigen-specific challenge, they acquire innate-like immune function. While this may confer broad immune protection during aging, these senescent T cells may also cause immunopathology, especially in the context of excessive inflammation in tissue microenvironments.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of PharmacologyFaculty of Medicine, Khon Kaen UniversityKhon KaenThailand
| | - Daniel Claudio Oliveira Gomes
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
- Núcleo de BiotecnologiaUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
3
|
Cronk JM, Dziewulska KH, Puchalski P, Crittenden RB, Hammarskjöld ML, Brown MG. Altered-Self MHC Class I Sensing via Functionally Disparate Paired NK Cell Receptors Counters Murine Cytomegalovirus gp34-Mediated Immune Evasion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1545-1554. [PMID: 36165178 PMCID: PMC9529956 DOI: 10.4049/jimmunol.2200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
The murine CMV (MCMV) immunoevasin m04/gp34 escorts MHC class I (MHC I) molecules to the surface of infected cells where these complexes bind Ly49 inhibitory receptors (IRs) and prevent NK cell attack. Nonetheless, certain self-MHC I-binding Ly49 activating and inhibitory receptors are able to promote robust NK cell expansion and antiviral immunity during MCMV infection. A basis for MHC I-dependent NK cell sensing of MCMV-infected targets and control of MCMV infection however remains unclear. In this study, we discovered that the Ly49R activation receptor is selectively triggered during MCMV infection on antiviral NK cells licensed by the Ly49G2 IR. Ly49R activating receptor recognition of MCMV-infected targets is dependent on MHC I Dk and MCMV gp34 expression. Remarkably, although Ly49R is critical for Ly49G2-dependent antiviral immunity, blockade of the activation receptor in Ly49G2-deficient mice has no impact on virus control, suggesting that paired Ly49G2 MCMV sensing might enable Ly49R+ NK cells to better engage viral targets. Indeed, MCMV gp34 facilitates Ly49G2 binding to infected cells, and the IR is required to counter gp34-mediated immune evasion. A specific requirement for Ly49G2 in antiviral immunity is further explained by its capacity to license cytokine receptor signaling pathways and enhance Ly49R+ NK cell proliferation during infection. These findings advance our understanding of the molecular basis for functionally disparate self-receptor enhancement of antiviral NK cell immunity.
Collapse
Affiliation(s)
- John M Cronk
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Karolina H Dziewulska
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Patryk Puchalski
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Rowena B Crittenden
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
| | - Marie-Louise Hammarskjöld
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA
| | - Michael G Brown
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA;
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA; and
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
4
|
Licensing Natural Killers for Antiviral Immunity. Pathogens 2021; 10:pathogens10070908. [PMID: 34358058 PMCID: PMC8308748 DOI: 10.3390/pathogens10070908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors (IRs) enable discrimination between self- and non-self molecules on the surface of host target cells. In this regard, they have a vital role in self-tolerance through binding and activating intracellular tyrosine phosphatases which can inhibit cellular activation. Yet, self-MHC class I (MHC I)-specific IRs are versatile in that they can also positively impact lymphocyte functionality, as exemplified by their role in natural killer (NK) cell education, often referred to as ’licensing‘. Recent discoveries using defined mouse models of cytomegalovirus (CMV) infection have revealed that select self-MHC I IRs can increase NK cell antiviral defenses as well, whereas other licensing IRs cannot, or instead impede virus-specific NK responses for reasons that remain poorly understood. This review highlights a role for self-MHC I ‘licensing’ IRs in antiviral immunity, especially in the context of CMV infection, their impact on virus-specific NK cells during acute infection, and their potential to affect viral pathogenesis and disease.
Collapse
|
5
|
Duygu B, Olieslagers TI, Groeneweg M, Voorter CEM, Wieten L. HLA Class I Molecules as Immune Checkpoints for NK Cell Alloreactivity and Anti-Viral Immunity in Kidney Transplantation. Front Immunol 2021; 12:680480. [PMID: 34295330 PMCID: PMC8290519 DOI: 10.3389/fimmu.2021.680480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can kill diseased- or virally-infected cells, mediate antibody dependent cytotoxicity and produce type I immune-associated cytokines upon activation. NK cells also contribute to the allo-immune response upon kidney transplantation either by promoting allograft rejection through lysis of cells of the transplanted organ or by promoting alloreactive T cells. In addition, they protect against viral infections upon transplantation which may be especially relevant in patients receiving high dose immune suppression. NK cell activation is tightly regulated through the integrated balance of signaling via inhibitory- and activating receptors. HLA class I molecules are critical regulators of NK cell activation through the interaction with inhibitory- as well as activating NK cell receptors, hence, HLA molecules act as critical immune checkpoints for NK cells. In the current review, we evaluate how NK cell alloreactivity and anti-viral immunity are regulated by NK cell receptors belonging to the KIR family and interacting with classical HLA class I molecules, or by NKG2A/C and LILRB1/KIR2DL4 engaging non-classical HLA-E or -G. In addition, we provide an overview of the methods to determine genetic variation in these receptors and their HLA ligands.
Collapse
Affiliation(s)
- Burcu Duygu
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Mathijs Groeneweg
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Christina E M Voorter
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Zaghi E, Calvi M, Di Vito C, Mavilio D. Innate Immune Responses in the Outcome of Haploidentical Hematopoietic Stem Cell Transplantation to Cure Hematologic Malignancies. Front Immunol 2019; 10:2794. [PMID: 31849972 PMCID: PMC6892976 DOI: 10.3389/fimmu.2019.02794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/30/2022] Open
Abstract
In the context of allogeneic transplant platforms, human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) represents one of the latest and most promising curative strategies for patients affected by high-risk hematologic malignancies. Indeed, this platform ensures a suitable stem cell source immediately available for virtually any patents in need. Moreover, the establishment in recipients of a state of immunologic tolerance toward grafted hematopoietic stem cells (HSCs) remarkably improves the clinical outcome of this transplant procedure in terms of overall and disease free survival. However, the HLA-mismatch between donors and recipients has not been yet fully exploited in order to optimize the Graft vs. Leukemia effect. Furthermore, the efficacy of haplo-HSCT is currently hampered by several life-threatening side effects including the onset of Graft vs. Host Disease (GvHD) and the occurrence of opportunistic viral infections. In this context, the quality and the kinetic of the immune cell reconstitution (IR) certainly play a major role and several experimental efforts have been greatly endorsed to better understand and accelerate the post-transplant recovery of a fully competent immune system in haplo-HSCT. In particular, the IR of innate immune system is receiving a growing interest, as it recovers much earlier than T and B cells and it is able to rapidly exert protective effects against both tumor relapses, GvHD and the onset of life-threatening opportunistic infections. Herein, we review our current knowledge in regard to the kinetic and clinical impact of Natural Killer (NK), γδ and Innate lymphoid cells (ILCs) IRs in both allogeneic and haplo-HSCT. The present paper also provides an overview of those new therapeutic strategies currently being implemented to boost the alloreactivity of the above-mentioned innate immune effectors in order to ameliorate the prognosis of patients affected by hematologic malignancies and undergone transplant procedures.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
7
|
Frutoso M, Mortier E. NK Cell Hyporesponsiveness: More Is Not Always Better. Int J Mol Sci 2019; 20:ijms20184514. [PMID: 31547251 PMCID: PMC6770168 DOI: 10.3390/ijms20184514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells are a type of cytotoxic lymphocytes that play an important role in the innate immune system. They are of particular interest for their role in elimination of intracellular pathogens, viral infection and tumor cells. As such, numerous strategies are being investigated in order to potentiate their functions. One of these techniques aims at promoting the function of their activating receptors. However, different observations have revealed that providing activation signals could actually be counterproductive and lead to NK cells’ hyporesponsiveness. This phenomenon can occur during the NK cell education process, under pathological conditions, but also after treatment with different agents, including cytokines, that are promising tools to boost NK cell function. In this review, we aim to highlight the different circumstances where NK cells become hyporesponsive and the methods that could be used to restore their functionality.
Collapse
Affiliation(s)
- Marie Frutoso
- CRCINA, CNRS, Inserm, University of Nantes, F-44200 Nantes, France.
- LabEX IGO, Immuno-Onco-Greffe, Nantes, France.
| | - Erwan Mortier
- CRCINA, CNRS, Inserm, University of Nantes, F-44200 Nantes, France.
- LabEX IGO, Immuno-Onco-Greffe, Nantes, France.
| |
Collapse
|
8
|
Picarda G, Benedict CA. Cytomegalovirus: Shape-Shifting the Immune System. THE JOURNAL OF IMMUNOLOGY 2019; 200:3881-3889. [PMID: 29866770 DOI: 10.4049/jimmunol.1800171] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
Abstract
Systems-based based approaches have begun to shed light on extrinsic factors that contribute to immune system variation. Among these, CMV (HHV-5, a β-herpesvirus) imposes a surprisingly profound impact. Most of the world's population is CMV+, and the virus goes through three distinct infection phases en route to establishing lifelong détente with its host. Immune control of CMV in each phase recruits unique arms of host defense, and in turn the virus employs multiple immune-modulatory strategies that help facilitate the establishment of lifelong persistence. In this review, we explain how CMV shapes immunity and discuss the impact it may have on overall health.
Collapse
Affiliation(s)
- Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and .,Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
9
|
Brown MG, Gamache A, Nash WT, Cronk J. Natural selection for killer receptors and their MHC class I ligands: In pursuit of gene pairs that fit well in tandem. J Leukoc Biol 2018; 105:489-495. [PMID: 30500089 DOI: 10.1002/jlb.2ri0818-315r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/13/2018] [Accepted: 09/13/2018] [Indexed: 11/11/2022] Open
Abstract
Our understanding of the genetic basis of host resistance to viral infection and disease has progressed significantly over the last century. Numerous genes coding for modifiers of immune functions have been identified, which impact a variety of critical cellular processes, including signaling via lymphocyte receptors and their ligands, signal transduction, cytokine signaling, production and release of cytotoxic effectors, transcriptional regulation, and proliferation. Genome-wide association studies implicate an important role for both highly polymorphic NK cell receptors and their MHC class I ligands in modifying host resistance. These findings indicate NK cells are critical mediators of viral control with considerable potential to affect morbidity and mortality outcomes. They further suggest that both stimulatory and inhibitory NK receptor polymorphisms alter NK cell sensing of MHC I ligands on viral targets, which influences how NK cells respond to infection. In many cases, however, the underlying causes associated with host outcomes remain elusive. Herein, we discuss several modes of NK cell sensing of MHC I and MHC I-like molecules on viral targets, and the role of genetic diversity in this evolutionarily dynamic process. We further suggest that natural selection for paired NK receptors with opposing function, but shared MHC I ligands may give rise to rare, but highly effective MHC I-dependent modes of NK cell sensing of viral targets.
Collapse
Affiliation(s)
- Michael G Brown
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Awndre Gamache
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William T Nash
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - John Cronk
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Boudreau JE, Hsu KC. Natural killer cell education in human health and disease. Curr Opin Immunol 2018; 50:102-111. [PMID: 29413815 DOI: 10.1016/j.coi.2017.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells maintain immune homeostasis by detecting and eliminating damaged cells. Simultaneous activating and inhibitory input are integrated by NK cells, with the net signal prompting cytotoxicity and cytokine production, or inhibition. Chief among the inhibitory ligands for NK cells are 'self' human leukocyte antigen (HLA) molecules, which are sensed by killer immunoglobulin-like receptors (KIR). Through a process called 'education', the functional capabilities of each NK cell are counterbalanced by their sensitivity for inhibition by co-inherited 'self' HLA. HLA and their ligands, the killer immunoglobulin-like receptors (KIR), are encoded by polymorphic, polygenic gene loci that segregate independently, therefore, NK education and function differ even between related individuals. In this review, we describe how variation in NK education, reactivity and sensitivity for inhibition impacts reproductive success, infection, cancer, inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jeanette E Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada; Department of Pathology, Dalhousie University, Halifax, Canada
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
11
|
Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol 2017; 48:50-65. [PMID: 28960320 DOI: 10.1002/eji.201646762] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Stipan Jonjić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Vanda Juranić Lisnić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
12
|
Abstract
Classically, natural killer (NK) cells have been defined by nonspecific innate killing of virus-infected and tumor cells. However, burgeoning evidence suggests that the functional repertoire of NK cells is far more diverse than has been previously appreciated, thus raising the possibility that there may be unexpected functional specialization and even adaptive capabilities among NK cell subpopulations. Some of the first evidence that NK cells respond in an antigen-specific fashion came from experiments revealing that subpopulations of murine NK cells were able to respond to a specific murine cytomegalovirus (MCMV) protein and that in the absence of T and B cells, murine NK cells also mediated adaptive immune responses to a secondary challenge with specific haptens. These data have been followed by demonstrations of NK cell memory of viruses and viral antigens in mice and primates. Herein, we discuss different forms of NK cell antigen specificity and how these responses may be tuned to specific viral pathogens, and we provide assessment of the current literature that may explain molecular mechanisms of the novel phenomenon of NK cell memory.
Collapse
|
13
|
Genome-Wide Exome Analysis of Cmv5-Disparate Mouse Strains that Differ in Host Resistance to Murine Cytomegalovirus Infection. G3-GENES GENOMES GENETICS 2017; 7:1979-1984. [PMID: 28450376 PMCID: PMC5473773 DOI: 10.1534/g3.117.042531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Host resistance to murine cytomegalovirus (MCMV) varies in different strains of laboratory mice due to differences in expression of determinants that control and clear viral infection. The major histocompatibility complex class I Dk molecule is one such determinant that controls MCMV through the action of natural killer (NK) cells. However, the extent of NK cell–mediated Dk-dependent resistance to infection varies in different mouse strains. The molecular genetic basis of this variation remains unclear. Previous work to examine the Dk effect on MCMV resistance in MA/My × C57L offspring discovered multiple quantitative trait loci (QTL) that may serve to modify NK cells or their capacity to respond during MCMV infection. One QTL in particular, Cmv5, was found to regulate the frequency of NK cells and secondary lymphoid organ structure in spleen during MCMV infection. Cmv5 alleles, however, have not been identified. We therefore sequenced and analyzed genome-wide exome (GWE) variants, including those aligned to the critical genetic interval, in Cmv5-disparate mouse strains. Their GWE variant profiles were compared to assess strain-specific sequence data integrity and to analyze mouse strain relatedness across the genome. GWE content was further compared against data from the Mouse Genomes Project. This approach was developed as a platform for using GWE variants to define genomic regions of divergence and similarity in different mouse strains while also validating the overall quality of GWE sequence data. Moreover, the analysis provides a framework for the selection of novel QTL candidate sequences, including at the Cmv5 critical region.
Collapse
|
14
|
Nash WT, Gillespie AL, Brown MG. Murine Cytomegalovirus Disrupts Splenic Dendritic Cell Subsets via Type I Interferon-Dependent and -Independent Mechanisms. Front Immunol 2017; 8:251. [PMID: 28337202 PMCID: PMC5343017 DOI: 10.3389/fimmu.2017.00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells (DC) are well-known modulators of immunity. This heterogeneous population is composed of defined subsets that exhibit functional specialization and are critical in initiating responses to pathogens. As such, many infectious agents employ strategies to disrupt DC functioning in attempts to evade the immune system. In some instances, this manifests as an outright loss of these cells. Previous work has suggested that, in the absence of an efficient natural killer (NK) cell response, murine cytomegalovirus (MCMV) induces large amounts of interferon (IFN)-I. This heightened IFN-I response is thought to contribute to conventional DC (cDC) loss and delayed development of T cell immunity. However, the precise role of IFN-I in such cDC loss remains unclear. We investigated the effects of licensed NK cells and IFN-I signaling on splenic cDC subsets during MCMV infection and found that a licensed NK cell response partially protects cDC numbers, but does not prevent increases in serum IFN-I. This suggested that high residual IFN-I could contribute to cDC loss. Therefore, we used multiple strategies to modulate IFN-I signaling during MCMV infection including plasmacytoid DC depletion, IFN-I receptor (IFNAR) blockade, and genetic ablation of IFNAR expression. Interestingly, restriction of IFN-I signals did not substantially preserve either CD8+ or CD4+ DC total numbers, but resulted in significant retention and/or accumulation of the splenic CD8− CD4− [double negative (DN)] subset. However, the DN DC effect manifested in a DC-extrinsic manner since IFNAR-deficient cells were not preferentially retained over their IFNAR wild-type counterparts in a mixed-chimera setting. Our results show that IFN-I signaling is not responsible for overt cDC toxicity in the setting of acute MCMV infection and emphasize that additional mechanisms contribute to DC loss and require exploration.
Collapse
Affiliation(s)
- William T Nash
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Alyssa L Gillespie
- Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA; Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, VA, USA; Division of Nephrology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Juárez-Vega G, Rangel-Ramírez V, Monsiváis-Urenda A, Niño-Moreno P, Garcia-Sepúlveda C, Noyola DE, González-Amaro R. Comparative analysis of NK cell receptor repertoire in adults and very elderly subjects with cytomegalovirus infection. Hum Immunol 2017; 78:274-280. [PMID: 28093266 DOI: 10.1016/j.humimm.2017.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 11/28/2022]
Abstract
Human cytomegalovirus (HCMV) infection in children and young adults has been associated with changes in the innate immune system. We herein analyzed the possible effect of very long term HCMV infection on the expression of several NK cell receptors. Ninety HCMV-seropositive individuals were included and classified as young adults (n=30), elderly (n=30) and very elderly subjects (n=30). A peripheral blood sample was obtained and the expression of NK cell receptors (NKG2A, NKG2C, ILT2, CD161, KIR2DL1, KIR3DL1, and KIR3DL2) by NK and other lymphocyte subsets was assessed by flow cytometry. In addition, the frequency of the sixteen KIR genes was analyzed by polymerase chain reaction. We found a significant increase in the number of NKG2C+ NK and T cells in elderly individuals compared to young adults accompanied by an opposite trend in the number of NKG2A+ lymphocytes, and ILT2+ cells were also increased in elderly individuals. A significant increase in the levels of CD3-CD56+NKG2C+CD57+ cells was also detected in the elderly groups. Finally, KIR gene analysis revealed that the KIR genotype 2 was significantly less frequent in the elderly individuals. Our results support that long-term infection by HCMV exerts a significant progressive effect on the innate immune system.
Collapse
Affiliation(s)
| | - Velia Rangel-Ramírez
- Department of Microbiology, School of Medicine, UASLP, San Luis Potosí, SLP, Mexico
| | - Adriana Monsiváis-Urenda
- Department of Immunology, School of Medicine, UASLP, San Luis Potosí, SLP, Mexico; Research Center for Health Sciences and Biomedicine, UASLP, San Luis Potosí, SLP, Mexico
| | - Perla Niño-Moreno
- Department of Immunology, School of Medicine, UASLP, San Luis Potosí, SLP, Mexico; Research Center for Health Sciences and Biomedicine, UASLP, San Luis Potosí, SLP, Mexico
| | | | - Daniel E Noyola
- Department of Microbiology, School of Medicine, UASLP, San Luis Potosí, SLP, Mexico
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, UASLP, San Luis Potosí, SLP, Mexico; Research Center for Health Sciences and Biomedicine, UASLP, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
16
|
Teoh JJ, Gamache AE, Gillespie AL, Stadnisky MD, Yagita H, Bullock TNJ, Brown MG. Acute Virus Control Mediated by Licensed NK Cells Sets Primary CD8+ T Cell Dependence on CD27 Costimulation. THE JOURNAL OF IMMUNOLOGY 2016; 197:4360-4370. [PMID: 27798162 DOI: 10.4049/jimmunol.1601049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022]
Abstract
NK cells represent a critical first-line of immune defense against a bevy of viral pathogens, and infection can provoke them to mediate supportive and suppressive effects on virus-specific adaptive immunity. In mice expressing MHC class I Dk (Dk), a major murine CMV (MCMV) resistance factor and self-ligand of the inhibitory Ly49G2 (G2) receptor, licensed G2+ NK cells provide essential host resistance against MCMV infection. Additionally G2+ NK cell responses to MCMV increase the rate and extent of dendritic cell (DC) recovery, as well as early priming of CD8+ T cell effectors in response to MCMV. However, relatively little is known about the NK cell effect on costimulatory ligand patterns displayed by DCs or on ensuing effector and memory T cell responses. In this study, we found that CD27-dependent CD8+ T cell priming and differentiation are shaped by the efficiency of NK responses to virus infection. Surprisingly, differences in specific NK responses to MCMV in Dk-disparate mice failed to distinguish early DC costimulatory patterns. Nonetheless, although CD27 deficiency did not impede licensed NK-mediated resistance, CD70 and CD27 were required to efficiently prime and regulate effector CD8+ T cell differentiation in response to MCMV, which eventually resulted in biased memory T cell precursor formation in Dk mice. In contrast, CD8+ T cells accrued more slowly in non-Dk mice and eventually differentiated into terminal effector cells regardless of CD27 stimulation. Disparity in this requirement for CD27 signaling indicates that specific virus control mediated by NK cells can shape DC costimulatory signals needed to prime CD8+ T cells and eventual T cell fate decisions.
Collapse
Affiliation(s)
- Jeffrey J Teoh
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Awndre E Gamache
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Alyssa L Gillespie
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908.,Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Michael D Stadnisky
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908.,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan; and
| | - Timothy N J Bullock
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908.,Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Michael G Brown
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908; .,Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA 22908.,Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
17
|
|
18
|
He X, Simoneau CR, Granoff ME, Lunemann S, Dugast AS, Shao Y, Altfeld M, Körner C. Assessment of the antiviral capacity of primary natural killer cells by optimized in vitro quantification of HIV-1 replication. J Immunol Methods 2016; 434:53-60. [PMID: 27094484 DOI: 10.1016/j.jim.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Despite a growing number of studies investigating the impact of natural killer (NK) cells on HIV-1 pathogenesis, the exact mechanism by which NK cells recognize HIV-1-infected cells and exert immunological pressure on HIV-1 remains unknown. Previously several groups including ours have introduced autologous HIV-1-infected CD4(+) T cells as suitable target cells to study NK-cell function in response to HIV-1 infection in vitro. Here, we re-evaluated and optimized a standardized in vitro assay that allows assessing the antiviral capacity of NK cells. This includes the implementation of HIV-1 RNA copy numbers as readout for NK-cell-mediated inhibition of HIV-1 replication and the investigation of inter-assay variation in comparison to previous methods, such as HIV-1 p24 Gag production and frequency of p24(+) CD4(+) T cells. Furthermore, we investigated the possibility to hasten the duration of the assay and provide concepts for downstream applications. Autologous CD4(+) T cells and NK cells were obtained from peripheral blood of HIV-negative healthy individuals and were separately enriched through negative selection. CD4(+) T cells were infected with the HIV-1 strain JR-CSF at an MOI of 0.01. Infected CD4(+) T cells were then co-cultured with primary NK cells at various effector:target ratios for up to 14days. Supernatants obtained from media exchanged at days 4, 7, 11 and 14 were used for quantification of HIV-1 p24 Gag and HIV-1 RNA copy numbers. In addition, frequency of infected CD4(+) T cells was determined by flow cytometric detection of intracellular p24 Gag. The assay displayed minimal inter-assay variation when utilizing viral RNA quantification or p24 Gag concentration for the assessment of viral replication. Viral RNA quantification was more rigorous to display magnitude and kinetics of NK-cell-mediated inhibition of HIV-1 replication, longitudinally and between tested individuals. The results of this study demonstrate that NK-cell-mediated inhibition of HIV-1 replication can be reliably quantified in vitro, and that viral RNA quantification is comparable to p24 Gag quantification via ELISA, providing a robust measurement for NK-cell-mediated inhibition of viral replication. Overall, the described assay provides an optimized tool to study the antiviral capacity of NK cells against HIV-1 and an additional experimental tool to investigate the molecular determinants of NK-cell recognition of virus-infected cells.
Collapse
Affiliation(s)
- Xuan He
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, People's Republic of China.
| | - Camille R Simoneau
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Mitchell E Granoff
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| | - Anne-Sophie Dugast
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA.
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing 102206, People's Republic of China.
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| | - Christian Körner
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, MA 02139, USA; Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
19
|
Gillespie AL, Teoh J, Lee H, Prince J, Stadnisky MD, Anderson M, Nash W, Rival C, Wei H, Gamache A, Farber CR, Tung K, Brown MG. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection. PLoS Pathog 2016; 12:e1005419. [PMID: 26845690 PMCID: PMC4742223 DOI: 10.1371/journal.ppat.1005419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
The MHC class I Dk molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds Dk, are required to control viral spread. The extent of Dk-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust Dk-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen. Uncovering the genetic basis of resistance to viral infection and disease is critical to learning about how immune defenses might be adjusted, how to design better vaccines, and how to elicit effectual immune protection in human populations. Prior studies have shown that both MHC and non-MHC genes support host defenses, or endow specialized immune cells with efficient sensing or responsiveness to infection. Many additional resistance genes remain to be identified, including difficult to detect smaller-effect alleles, which might add to or interact with other genetic factors. Our grasp of the complex interaction involving these genetic elements is thus inadequate. We combined genomic and multiparameter phenotypic analyses to map and identify host genes that control immune cells or sensitivity to viral infection. We reasoned that some might also affect viral clearance. Thus we enumerated a range of immune cell traits in mice before and after infection, which permitted genomic analysis of viral immunity, and mapping of genetic modifiers for each trait. Our study demonstrates that distinct loci collectively regulate both NK cells and host resistance, which provides a framework to understand the genetic interactions, and a variety of potential novel targets to adjust NK cell functionality and host resistance to infection.
Collapse
Affiliation(s)
- Alyssa Lundgren Gillespie
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey Teoh
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Heather Lee
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jessica Prince
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael D. Stadnisky
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Monique Anderson
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - William Nash
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Claudia Rival
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hairong Wei
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Awndre Gamache
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Charles R. Farber
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kenneth Tung
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael G. Brown
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
20
|
|
21
|
Jacobs B, Tognarelli S, Poller K, Bader P, Mackensen A, Ullrich E. NK Cell Subgroups, Phenotype, and Functions After Autologous Stem Cell Transplantation. Front Immunol 2015; 6:583. [PMID: 26635797 PMCID: PMC4657185 DOI: 10.3389/fimmu.2015.00583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/02/2015] [Indexed: 01/01/2023] Open
Abstract
High-dose chemotherapy with consecutive autologous stem cell transplantation (autoSCT) is a well-established treatment option for patients suffering from malignant lymphoma or multiple myeloma. Natural killer (NK) cells are an important part of the immune surveillance, and their cell number after autoSCT is predictive for progression-free and overall survival. To improve knowledge about the role of NK cells after autoSCT, we investigated different NK cell subgroups, their phenotype, and their functions in patients treated with autoSCT. Directly after leukocyte regeneration (>1000 leukocytes/μl) following autoSCT, CD56++ NK cells were the major NK cell subset. Surprisingly, these cells showed unusually high surface expression levels of CD57 and killer Ig-like receptors (KIRs) compared to expression levels before or at later time points after autoSCT. Moreover, these NK cells strongly upregulated KIR2DL2/3/S2 and KIR3DL1, whereas KIR2DL1/S1 remained constant, indicating that this cell population arose from more immature NK cells instead of from activated mature ones. Remarkably, NK cells were already able to degranulate and produce IFN-γ and MIP-1β upon tumor interaction early after leukocyte regeneration. In conclusion, we describe an unusual upregulation of CD57 and KIRs on CD56++ NK cells shortly after autoSCT. Importantly, these NK cells were functionally competent upon tumor interaction at this early time point.
Collapse
Affiliation(s)
- Benedikt Jacobs
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospital , Oslo , Norway ; The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo , Oslo , Norway ; Department of Haematology and Oncology, University Hospital Erlangen , Erlangen , Germany
| | - Sara Tognarelli
- Department of Pediatric Stem Cell Transplantation and Immunology, Children's Hospital, Johann Wolfgang Goethe-University , Frankfurt , Germany ; LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe-University , Frankfurt , Germany
| | - Kerstin Poller
- Department of Haematology and Oncology, University Hospital Erlangen , Erlangen , Germany
| | - Peter Bader
- Department of Pediatric Stem Cell Transplantation and Immunology, Children's Hospital, Johann Wolfgang Goethe-University , Frankfurt , Germany ; LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe-University , Frankfurt , Germany
| | - Andreas Mackensen
- Department of Haematology and Oncology, University Hospital Erlangen , Erlangen , Germany
| | - Evelyn Ullrich
- Department of Haematology and Oncology, University Hospital Erlangen , Erlangen , Germany ; Department of Pediatric Stem Cell Transplantation and Immunology, Children's Hospital, Johann Wolfgang Goethe-University , Frankfurt , Germany ; LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe-University , Frankfurt , Germany
| |
Collapse
|
22
|
Abstract
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.
Collapse
|
23
|
Akar HH, Patiroglu T, Sevinc E, Aslan D, Okdemir D, Kurtoglu S. Contribution of KIR genes, HLA class I ligands, and KIR/HLA class I ligand combinations on the genetic predisposition to celiac disease and coexisting celiac disease and type 1 diabetes mellitus. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2015; 107:547-53. [PMID: 26334461 DOI: 10.17235/reed.2015.3817/2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGOUND AND AIM There are some common genetic features between celiac disease (CD) and diabetes mellitus type 1 (DM). However, the genetic risk factors have not been fully clarified for CD and the co-occurrence of CD and DM. KIR (killer immunoglobulin-like receptor) genes regulate the cytolitic activity of NK-cells and T lymphocytes. The aim of this study is to evaluate the contribution of KIR genes, KIR ligands, and combinations of KIR/ KIR ligands on the genetic predisposition to CD and co-occurrence of CD and DM. MATERIAL AND METHODS Forty six patients with CD (n = 46), 20 patients with CD+DM (n = 20), and 60 healthy controls (n = 60) were included in this study. KIR genes and KIR ligands were investigated with PCR-SSOP and PCR-SSP in all subjects, respectively. RESULTS This study showed that while the telomeric KIR genes (2DS5 and 3DS1), and combinations of 3DS1+HLA-BBw4-Thrand 3DS1+HLA-BBw4-Iso- (p < 0.001, p < 0.001, p < 0.001, and p < 0.001, respectively) were observed more frequently in patients with CD than in controls, the 2DS5, 3DS1 KIR genes, C1 ligand, and combinations of 3DS1+HLA-BBw4-Thr- and 3DS1+HLA-BBw4-Iso- (p = 0.002, p = 0.004, p = 0.036, p < 0.001, and p = 0.007, respectively) were observed more frequently in patients with CD+DM than in controls. CONCLUSIONS The results of this study indicated that some KIR genes, KIR ligands, and KIR/KIR ligand interactions may be responsible for a predisposition to CD and the coexistence of CD and DM. For development of coexisting CD and DM, the 2DS5 and 3DS1 genes, C1 ligand, and combinations of 3DS1+HLA-BBw4-Thr- and 3DS1+HLA-BBw4-Iso- were found to be risk factors.
Collapse
|
24
|
Schuetz C, Markmann JF. Immunogenicity of β-cells for autologous transplantation in type 1 diabetes. Pharmacol Res 2015; 98:60-8. [DOI: 10.1016/j.phrs.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/15/2022]
|
25
|
Carrillo-Bustamante P, Kesmir C, de Boer RJ. Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors? Front Immunol 2015; 6:311. [PMID: 26136746 PMCID: PMC4468891 DOI: 10.3389/fimmu.2015.00311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022] Open
Abstract
Natural killer (NK) cells express inhibiting receptors (iNKRs), which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection). Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses, which are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure.
Collapse
Affiliation(s)
- Paola Carrillo-Bustamante
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University , Utrecht , Netherlands
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University , Utrecht , Netherlands
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
26
|
Markwick LJL, Riva A, Ryan JM, Cooksley H, Palma E, Tranah TH, Manakkat Vijay GK, Vergis N, Thursz M, Evans A, Wright G, Tarff S, O'Grady J, Williams R, Shawcross DL, Chokshi S. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology 2015; 148:590-602.e10. [PMID: 25479137 DOI: 10.1053/j.gastro.2014.11.041] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 10/07/2014] [Accepted: 11/20/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Susceptibility to bacterial infection is a feature of alcohol-related liver disease. Programmed cell death 1 (PD1), the T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3, also known as hepatitis A virus cellular receptor 2), and their respective ligands-CD274 (also known as PD ligand 1 [PDL1]) and galectin-9-are inhibitory receptors that regulate the balance between protective immunity and host immune-mediated damage. However, their sustained hyperexpression promotes immune exhaustion and paralysis. We investigated the role of these immune inhibitory receptors in driving immune impairments in patients with alcoholic liver disease. METHODS In a prospective study, we collected blood samples from 20 patients with acute alcoholic hepatitis (AAH), 16 patients with stable advanced alcohol-related cirrhosis, and 12 healthy individuals (controls). Whole blood or peripheral blood mononuclear cells were assessed for expression of PD1, PDL1, TIM3, galectin-9, and Toll-like receptors on subsets of innate and adaptive immune effector cells. We measured antibacterial immune responses to lipopolysaccharide (endotoxin) using ELISpot assays, and used flow cytometry to quantify cytokine production, phagocytosis, and oxidative burst in the presence or absence of blocking antibodies against PD1 or TIM3. RESULTS Antibacterial innate and adaptive immune responses were greatly reduced in patients with AAH, compared with controls, and patients with alcohol-related cirrhosis had less severe dysfunctions in innate immune effector cells and preserved functional T-cell responses. Fewer T cells from patients with AAH produced interferon gamma in response to lipopolysaccharide, compared with controls. In addition, patients with AAH had greater numbers of interleukin 10-producing T cells, and reduced levels of neutrophil phagocytosis and oxidative burst in response to Escherichia coli stimulation, compared with controls. T cells from patients with AAH, but not alcohol-related cirrhosis, expressed higher levels of PD1 and PDL1, or TIM3 and galectin-9, than T cells from controls. Antibodies against PD1 and TIM3 restored T-cell production of interferon gamma, reduced the numbers of interleukin 10-producing T cells, and increased neutrophil antimicrobial activities. Circulating levels of endotoxin in plasma from patients with AAH caused over expression of immune inhibitory receptors on T cells via Toll-like receptor 4 binding to CD14(+) monocytes. CONCLUSIONS Antibacterial immune responses are impaired in patients with AAH. Lymphocytes from these patients express high levels of immune inhibitory receptors, produce lower levels of interferon gamma, and have increased IL10 production due to chronic endotoxin exposure. These effects can be reversed by blocking PD1 and TIM3, which increase the antimicrobial activities of T cells and neutrophils.
Collapse
Affiliation(s)
- Lee J L Markwick
- Institute of Hepatology, Foundation for Liver Research, London, UK; Institute of Liver Studies, King's College London, King's College Hospital, London, UK
| | - Antonio Riva
- Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Jennifer M Ryan
- Institute of Liver Studies, King's College London, King's College Hospital, London, UK
| | - Helen Cooksley
- Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Elena Palma
- Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Tom H Tranah
- Institute of Liver Studies, King's College London, King's College Hospital, London, UK
| | | | - Nikhil Vergis
- Department of Hepatology, Imperial College London, St Mary's Hospital, London, UK
| | - Mark Thursz
- Department of Hepatology, Imperial College London, St Mary's Hospital, London, UK
| | - Alex Evans
- Department of Gastroenterology, Royal Berkshire Hospital, Reading, UK
| | - Gavin Wright
- Basildon and Thurrock University Hospital, Nethermayne, Basildon, UK
| | - Sarah Tarff
- Basildon and Thurrock University Hospital, Nethermayne, Basildon, UK
| | - John O'Grady
- Institute of Liver Studies, King's College London, King's College Hospital, London, UK
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Debbie L Shawcross
- Institute of Liver Studies, King's College London, King's College Hospital, London, UK
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, UK.
| |
Collapse
|
27
|
Abstract
Dynamic tuning of cellular responsiveness as a result of repeated stimuli improves the ability of cells to distinguish physiologically meaningful signals from each other and from noise. In particular, lymphocyte activation thresholds are subject to tuning, which contributes to maintaining tolerance to self-antigens and persisting foreign antigens, averting autoimmunity and immune pathogenesis, but allowing responses to strong, structured perturbations that are typically associated with acute infection. Such tuning is also implicated in conferring flexibility to positive selection in the thymus, in controlling the magnitude of the immune response, and in generating memory cells. Additional functional properties are dynamically and differentially tuned in parallel via subthreshold contact interactions between developing or mature lymphocytes and self-antigen-presenting cells. These interactions facilitate and regulate lymphocyte viability, maintain their functional integrity, and influence their responses to foreign antigens and accessory signals, qualitatively and quantitatively. Bidirectional tuning of T cells and antigen-presenting cells leads to the definition of homeostatic set points, thus maximizing clonal diversity.
Collapse
Affiliation(s)
- Zvi Grossman
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | | |
Collapse
|
28
|
Wei H, Nash WT, Makrigiannis AP, Brown MG. Impaired NK-cell education diminishes resistance to murine CMV infection. Eur J Immunol 2014; 44:3273-82. [PMID: 25187217 DOI: 10.1002/eji.201444800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/29/2014] [Accepted: 09/01/2014] [Indexed: 11/11/2022]
Abstract
Ly49G2 (G2+) NK cells mediate murine (M)CMV resistance in MHC D(k) -expressing mice. Bone marrow transplantation (BMT) studies revealed that G2+ NK cell-mediated MCMV resistance requires D(k) in both hematopoietic and nonhematopoietic cells. As a Ly49G2 ligand, D(k) in both cell lineages may contribute to lysis of virus-infected cells. Alternatively, cellular differences in self-MHC D(k) may have affected NK-cell education, and consequently NK cell-mediated viral clearance. We investigated the D(k) -licensing effect on BM-derived NK cells in BMT recipients by analyzing cytokines, cytotoxicity and MCMV resistance. In BMT recipients with lineage-restricted D(k) , G2+ NK-cell reactivity and cytotoxicity was diminished in comparison to BMT recipients with self-MHC in all cells. Reduced G2+ NK-mediated MCMV resistance in BMT recipients with lineage-restricted self-MHC indicates that licensing of G2+ NK cells is related to NK-cell reactivity and viral control. Titrating donor BM with self-MHC-bearing hematopoietic cells, as well as adoptive transfer of mature G2+ NK cells into BMT recipients with self-MHC in non-hematopoietic cells only, enhanced NK-cell licensing and rescued MCMV resistance. This disparate self-MHC NK-cell education model would suggest that inadequately licensed NK cells corresponded to inefficient viral sensing and clearance.
Collapse
Affiliation(s)
- Hairong Wei
- Department of Medicine, Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|