1
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Yero A, Shi T, Routy JP, Tremblay C, Durand M, Costiniuk CT, Jenabian MA. FoxP3+ CD8 T-cells in acute HIV infection and following early antiretroviral therapy initiation. Front Immunol 2022; 13:962912. [PMID: 35967314 PMCID: PMC9372390 DOI: 10.3389/fimmu.2022.962912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
ObjectivesBesides CD4 regulatory T-cells (Tregs), immunosuppressor FoxP3+ CD8 T-cells are emerging as an important subset of Tregs, which contribute to immune dysfunction and disease progression in HIV infection. However, FoxP3+ CD8 T-cell dynamics in acute HIV infection and following early antiretroviral therapy (ART) initiation remain understudied.MethodsSubsets of FoxP3+ CD8 T-cells were characterized both prospectively and cross-sectionally in PBMCs from untreated acute (n=26) and chronic (n=10) HIV-infected individuals, early ART-treated in acute infection (n=10, median of ART initiation: 5.5 months post-infection), ART-treated in chronic infection (n=10), elite controllers (n=18), and HIV-uninfected controls (n=21).ResultsAcute and chronic infection were associated with increased total, effector memory, and terminally differentiated FoxP3+ CD8 T-cells, while early ART normalized only the frequencies of total FoxP3+ CD8 T-cells. We observed an increase in FoxP3+ CD8 T-cell immune activation (HLADR+/CD38+), senescence (CD57+/CD28-), and PD-1 expression during acute and chronic infection, which were not normalized by early ART. FoxP3+ CD8 T-cells in untreated participants expressed higher levels of immunosuppressive LAP(TGF-β1) and CD39 than uninfected controls, whereas early ART did not affect their expression. The expression of gut-homing markers CCR9 and Integrin-β7 by total FoxP3+ CD8 T-cells and CD39+ and LAP(TGF-β1)+ FoxP3+ CD8 T-cells increased in untreated individuals and remained higher than in uninfected controls despite early ART. Elite controllers share most of the FoxP3+ CD8 T-cell characteristics in uninfected individuals.ConclusionsAlthough early ART normalized total FoxP3+ CD8 T-cells frequencies, it did not affect the persistent elevation of the gut-homing potential of CD39+ and LAP(TGF-β1)+ FoxP3+ CD8 T-cell, which may contribute to immune dysfunction.
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Centre hospitalier de l'Université de Montréal (CHUM) Research Centre, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Mohammad-Ali Jenabian,
| |
Collapse
|
3
|
Impact of Early ARV Initiation on Relative Proportions of Effector and Regulatory CD8 T Cell in Mesenteric Lymph Nodes and Peripheral Blood During Acute SIV Infection of Rhesus Macaques. J Virol 2022; 96:e0025522. [PMID: 35311550 PMCID: PMC9006892 DOI: 10.1128/jvi.00255-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CD8 T cells are key players in the clearance of human immunodeficiency virus (HIV)-infected cells, such that CD8 T-cell dysfunction contributes to viral persistence despite antiretroviral (ARV) therapy. Mesenteric lymph nodes (MLNs) are major sites of gut mucosal immunity. While different CD8 T cell subsets such as CD8 alpha-alpha (CD8αα), CD8 alpha-beta (CD8αβ), CD8 regulatory T cells (Treg), and mucosa-associated invariant T cells (MAIT) are present in the gut and exhibit distinct functions, their dynamics remain poorly understood due to the lack of accessibility to these tissues in humans. We thus assessed CD8 T cells in MLNs versus peripheral blood in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) following early ARV therapy initiation. SIV infection was associated with an increase over time of both CD8αβ and CD8αα T cells in the blood and MLNs, whereas early ARV initiation significantly decreased the frequencies of CD8αα but not CD8αβ T cells in MLNs. A significant decrease in the expression of chemokine receptors CCR6 and CXCR3 by CD8 T cells, which are essential for T-cell trafficking to the inflammatory sites, was observed in chronically SIV-infected RMs. Surprisingly, while MAIT cells are increased in ARV-treated RMs, their frequencies in MLN are extremely low and were not impacted by ARV. The acute infection resulted in an early CD39+FoxP3+ CD8 Tregs increase in both compartments, which was normalized after early ARV. Frequencies of CD8 Treg cells were positively correlated with frequencies of CD4 Tregs and accordingly negatively correlated with the Th17/Treg ratio in the blood but not in MLNs. Overall, our results underscore the difference in CD8 T-cell subset dynamics in the blood and MLNs. IMPORTANCE Changes in CD8 T-cell subsets during acute SIV/HIV infections and following early ARV initiation in gut lymphoid tissues are poorly understood. Using an acute SIV infection model in rhesus macaques, we assessed the impact of early ARV, initiated 4 days postinfection, on relative proportions of CD8 T-cell subsets in MLNs compared to blood. We found that acute SIV infection and early ARV initiation differentially affect the distribution of effector CD8 T cells, CD8 MAIT cells, and CD8 Tregs in MLNs compared to blood. Overall, early ARV initiation maintains the frequency of effector CD8 T cells while reducing immunosuppressive CD39+ CD8 Tregs. Our study provides deeper insight into the dynamics of the CD8 T-cell compartment in gut mucosal immune surveillance during acute SIV infection and following early ARV initiation.
Collapse
|
4
|
Wang H, Li P, Zhang M, Bi J, He Y, Li F, Yu R, Gao F, Kong W, Yu B, Chen L, Yu X. Vaccine with bacterium-like particles displaying HIV-1 gp120 trimer elicits specific mucosal responses and neutralizing antibodies in rhesus macaques. Microb Biotechnol 2022; 15:2022-2039. [PMID: 35290714 PMCID: PMC9249329 DOI: 10.1111/1751-7915.14022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/06/2022] [Indexed: 11/27/2022] Open
Abstract
Preclinical studies have shown that the induction of secretory IgA (sIgA) in mucosa and neutralizing antibodies (NAbs) in sera is essential for designing vaccines that can effectively block the transmission of HIV-1. We previously showed that a vaccine consisting of bacterium-like particles (BLPs) displaying Protan-gp120AE-MTQ (PAM) could induce mucosal immune responses through intranasal (IN) immunization in mice and NAbs through intramuscular (IM) immunization in guinea pigs. Here, we evaluated the ability of this vaccine BLP-PAM to elicit HIV-1-specific mucosal and systemic immune responses through IN and IM immunization combination strategies in rhesus macaques. First, the morphology, antigenicity and epitope accessibility of the vaccine were analysed by transmission electron microscopy, bio-layer interferometry and ELISA. In BLP-PAM-immunized macaques, HIV-1-specific sIgA were rapidly induced through IN immunization in situ and distant mucosal sites, although the immune responses are relatively weak. Furthermore, the HIV-1-specific IgG and IgA antibody levels in mucosal secretions were enhanced and maintained, while production of serum NAbs against heterologous HIV-1 tier 1 and 2 pseudoviruses was elicited after IM boost. Additionally, situ mucosal responses and systemic T cell immune responses were improved by rAd2-gp120AE boost immunization via the IN and IM routes. These results suggested that BLP-based delivery in combination with the IN and IM immunization approach represents a potential vaccine strategy against HIV-1.
Collapse
Affiliation(s)
- Huaiyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mo Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yizi He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Rongzhen Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Andrieu JM, Lu W. Evidence of a tolerogenic vaccine against AIDS in the Chinese macaque prefigures a potential human vaccine. Arch Virol 2021; 166:1273-1282. [PMID: 33507389 PMCID: PMC8036203 DOI: 10.1007/s00705-020-04935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022]
Abstract
In 2006 we discovered a new type of mucosal vaccine against simian immunodeficiency virus (SIV) in Chinese macaques. Here, we review 15 years of our published work on this vaccine, which consists of inactivated SIVmac239 particles adjuvanted with Bacillus Calmette-Guérin, Lactobacillus plantarum, or Lactobacillus rhamnosus. Without adjuvant, the vaccine administered by the intragastric route induced the usual SIV-specific humoral and cellular immune responses but provided no protection against intrarectal challenge with SIVmac239. In contrast, out of 24 macaques immunized with the adjuvanted vaccine and challenged intrarectally with SIVmac239 or SIVB670, 23 were sterilely protected for up to five years, while all control macaques were infected. This protection was confirmed by an independent group from the Pasteur Institute. During the past 15 years, we have identified the mechanism of action of the vaccine and discovered that the vaccinated macaques produced a previously unrecognized class of MHC-Ib/E-restricted CD8+ T cells (which we refer to as tolerogenic CD8+ T cells) that suppressed the activation of SIV-RNA-infected CD4+ T cells and thereby inhibited the (activation-dependent) reverse transcription of the virus, which in turn prevented the establishment of SIV infection. Importantly, we discovered also that the tolerogenic CD8+ T cell subset observed in vaccinated Chinese macaques could also be found in human elite controllers, a small group of HIV-infected patients in whom these tolerogenic CD8+ T cells were shown to naturally suppress viral replication. Given that SIV and HIV require activated immune cells in which to replicate, the specific prevention of activation of SIV-RNA-containing CD4+ T cells by a tolerogenic vaccine approach offers an exciting new avenue in HIV vaccine research.
Collapse
Affiliation(s)
- Jean-Marie Andrieu
- Laboratory of Autoimmunity and Inflammation, Cochin Institute, Université de Paris, 75013, Paris, France. .,Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du SIDA, Centre Universitaire des Saints Pères, Université de Paris, 75006, Paris, France.
| | - Wei Lu
- Laboratory of Autoimmunity and Inflammation, Cochin Institute, Université de Paris, 75013, Paris, France. .,Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du SIDA, Centre Universitaire des Saints Pères, Université de Paris, 75006, Paris, France. .,Institut de Recherche pour le Développement (IRD), 13000, Marseille, France.
| |
Collapse
|
6
|
Kilpeläinen A, Saubi N, Guitart N, Olvera A, Hanke T, Brander C, Joseph J. Recombinant BCG Expressing HTI Prime and Recombinant ChAdOx1 Boost Is Safe and Elicits HIV-1-Specific T-Cell Responses in BALB/c Mice. Vaccines (Basel) 2019; 7:E78. [PMID: 31382453 PMCID: PMC6789536 DOI: 10.3390/vaccines7030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023] Open
Abstract
Despite the availability of anti-retroviral therapy, HIV-1 infection remains a massive burden on healthcare systems. Bacillus Calmette-Guérin (BCG), the only licensed vaccine against tuberculosis, confers protection against meningitis and miliary tuberculosis in infants. Recombinant BCG has been used as a vaccine vehicle to express both HIV-1 and Simian Immunodeficiemcy Virus (SIV) immunogens. In this study, we constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HTI.int, expressing the HIVACAT T-cell immunogen (HTI). The plasmid was transformed into a lysine auxotrophic Mycobacterium bovis BCG strain (BCGΔLys) to generate the vaccine BCG.HTI2auxo.int. The DNA sequence coding for the HTI immunogen and HTI protein expression were confirmed, and working vaccine stocks were genetically and phenotypically characterized. We demonstrated that the vaccine was stable in vitro for 35 bacterial generations, and that when delivered in combination with chimpanzee adenovirus (ChAd)Ox1.HTI in adult BALB/c mice, it was well tolerated and induced HIV-1-specific T-cell responses. Specifically, priming with BCG.HTI2auxo.int doubled the magnitude of the T-cell response in comparison with ChAdOx1.HTI alone while maintaining its breadth. The use of integrative expression vectors and novel HIV-1 immunogens can aid in improving mycobacterial vaccine stability as well as specific immunogenicity. This vaccine candidate may be a useful tool in the development of an effective vaccine platform for priming protective responses against HIV-1/TB and other prevalent pediatric pathogens.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain
| | - Narcís Saubi
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain
| | - Núria Guitart
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain
| | - Alex Olvera
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - Tomáš Hanke
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
- International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| | - Christian Brander
- Irsicaixa AIDS Research Institute, 08916 Badalona, Catalonia, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
- AELIX Therapeutics, 08028 Barcelona, Catalonia, Spain
| | - Joan Joseph
- Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, 08036 Barcelona, Catalonia, Spain.
- Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
A 30-year journey of trial and error towards a tolerogenic AIDS vaccine. Arch Virol 2018; 163:2025-2031. [PMID: 30043201 PMCID: PMC6096718 DOI: 10.1007/s00705-018-3936-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
Abstract
Since 1985, we have tested several immunological approaches to suppressing HIV replication in HIV-infected patients and to prevent HIV acquisition in uninfected people. Here, after briefly reviewing our studies on immunosuppressive treatments and therapeutic dendritic cell-based therapies, we examine in more detail our work on the tolerogenic vaccines we developed against AIDS in Chinese macaques. The vaccine consisted of inactivated SIVmac239 particles adjuvanted with the Bacillus of Calmette and Guerin (BCG), Lactobacillus plantarum (LP), or Lactobacillus rhamnosus (LR). Without adjuvant, the vaccine administered by the intragastric route induced the usual simian immunodeficiency virus (SIV)-specific humoral immune responses but no post-challenge protection. In contrast, out of 24 macaques that were immunized with the adjuvanted vaccine and challenged intrarectally with SIVmac239 or SIVB670, 23 were sterilely protected for up to 5 years, while all control macaques were infected. On the other hand, all macaques of Indian origin that were immunized with the same adjuvanted vaccine were not protected. We then discovered that vaccinated Chinese macaques developed a previously unrecognized class of non-cytolytic MHC-Ib/E-restricted CD8+ T cells (or CD8+ T-Regs) that suppressed the activation of SIV RNA-infected CD4+ T cells and thereby inhibited the (activation-dependent) reverse transcription of the virus and prevented the establishment of SIV infection. Finally, we found a similar population of HLA-E-restricted CD8+ T-Regs in human elite controllers (a small group of HIV-infected patients whose viral replication is naturally inhibited). Ex vivo, their CD8+ T-Regs suppressed viral replication in the same manner as those of vaccinated Chinese macaques. It is noteworthy that all of these elite controllers had a homo- or heterozygous HLA-Bw4-80I genotype. Taking into account the longevity and the high percentage of vaccine-protected Chinese macaques together with the concomitant identification of a robust ex vivo correlate of protection and the discovery of similar CD8+ T-Regs in human elite controllers, preventive and therapeutic HIV vaccines should be envisaged in humans.
Collapse
|
8
|
Carnathan DG, Mackel JJ, Sweat SL, Enemuo CA, Gebru EH, Dhadvai P, Gangadhara S, Hicks S, Vanderford TH, Amara RR, Esparza J, Lu W, Andrieu JM, Silvestri G. Intragastric Administration of Lactobacillus plantarum and 2,2'-Dithiodipyridine-Inactivated Simian Immunodeficiency Virus (SIV) Does Not Protect Indian Rhesus Macaques from Intrarectal SIV Challenge or Reduce Virus Replication after Transmission. J Virol 2018; 92:e02030-17. [PMID: 29491157 PMCID: PMC5923080 DOI: 10.1128/jvi.02030-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/15/2018] [Indexed: 01/12/2023] Open
Abstract
A major obstacle to development of an effective AIDS vaccine is that along with the intended beneficial responses, the immunization regimen may activate CD4+ T cells that can facilitate acquisition of human immunodeficiency virus (HIV) by serving as target cells for the virus. Lu et al. (W. Lu et al., Cell Rep 2:1736-1746, 2012, https://doi.org/10.1016/j.celrep.2012.11.016) reported that intragastric administration of chemically inactivated simian immunodeficiency virus SIVmac239 and Lactobacillus plantarum (iSIV-L. plantarum) protected 15/16 Chinese-origin rhesus macaques (RMs) from high-dose intrarectal SIVmac239 challenge at 3 months postimmunization. They attributed the observed protection to induction of immune tolerance, mediated by "MHC-Ib/E-restricted CD8+ regulatory T cells that suppressed SIV-harboring CD4+ T cell activation and ex vivo SIV replication in 15/16 animals without inducing SIV-specific antibodies or cytotoxic T." J.-M. Andrieu et al. (Front Immunol 5:297, 2014, https://doi.org/10.3389/fimmu.2014.00297) subsequently reported protection from infection in 23/24 RMs immunized intragastrically or intravaginally with iSIV and Mycobacterium bovis BCG, L. plantarum, or Lactobacillus rhamnosus, which they ascribed to the same tolerogenic mechanism. Using vaccine materials obtained from our coauthors, we conducted an immunization and challenge experiment with 54 Indian RMs and included control groups receiving iSIV only or L. plantarum only as well as unvaccinated animals. Intrarectal challenge with SIVmac239 resulted in rapid infection in all groups of vaccinated RMs as well as unvaccinated controls. iSIV-L. plantarum-vaccinated animals that became SIV infected showed viral loads similar to those observed in animals receiving iSIV only or L. plantarum only or in unvaccinated controls. The protection from SIV transmission conferred by intragastric iSIV-L. plantarum administration reported previously for Chinese-origin RMs was not observed when the same experiment was conducted in a larger cohort of Indian-origin animals.IMPORTANCE Despite an increased understanding of immune responses against HIV, a safe and effective AIDS vaccine is not yet available. One obstacle is that immunization may activate CD4+ T cells that may act as target cells for acquisition of HIV. An alternative strategy may involve induction of a tolerance-inducing response that limits the availability of activated CD4+ T cells, thus limiting the ability of virus to establish infection. In this regard, exciting results were obtained for Chinese-origin rhesus macaques by using a "tolerogenic" vaccine, consisting of intragastric administration of Lactobacillus plantarum and 2,2'-dithiodipyridine-inactivated SIV, which showed highly significant protection from virus transmission. In the present study, we administered iSIV-L. plantarum to Indian-origin rhesus macaques and failed to observe any protective effect on virus acquisition in this experimental setting. This work is important because it contributes to the overall assessment of the clinical potential of a new candidate AIDS vaccine platform based on iSIV-L. plantarum.
Collapse
Affiliation(s)
- Diane G Carnathan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Joseph J Mackel
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Shelby L Sweat
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Chiamaka A Enemuo
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Etse H Gebru
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Pallavi Dhadvai
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sakeenah Hicks
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Thomas H Vanderford
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Rama R Amara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - José Esparza
- Institute for Human Virology, University of Maryland, Baltimore, Maryland, USA
| | - Wei Lu
- Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du SIDA, Université de Paris Descartes, Paris, France
| | - Jean-Marie Andrieu
- Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du SIDA, Université de Paris Descartes, Paris, France
| | - Guido Silvestri
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Killian MS, Teque F, Sudhagoni R. Analysis of the CD8 + T cell anti-HIV activity in heterologous cell co-cultures reveals the benefit of multiple HLA class I matches. Immunogenetics 2017; 70:99-113. [PMID: 28735348 DOI: 10.1007/s00251-017-1021-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 01/15/2023]
Abstract
CD8+ T lymphocytes can reduce the production of human immunodeficiency virus 1 (HIV-1) by CD4+ T cells by cytotoxic and non-cytotoxic mechanisms. To investigate the involvement of human leukocyte antigen (HLA) class I compatibility in anti-HIV responses, we co-cultured primary CD8+ T cells, isolated from the peripheral blood of HIV-1-infected individuals, with panels of autologous and heterologous acutely HIV-1-infected primary CD4+ T cells. Altogether, CD8+ T cell anti-HIV activity was evaluated in more than 200 co-cultures. Marked heterogeneity in HIV-1 replication levels was observed among the co-cultures sharing a common CD8+ T cell source. The co-cultures that exhibited greater than 50% reduction in HIV production were found to have significantly increased numbers of matching HLA class I alleles (Yates chi-square = 54.21; p < 0.001). With CD8+ T cells from HIV controllers and asymptomatic viremic individuals, matching HLA-B and/or HLA-C alleles were more predictive of strong anti-HIV activity than matching HLA-A alleles. Overall, HLA class I genotype matches were more closely associated with CD8+ T cell anti-HIV activity than supertype pairings. Antibodies against HLA class I and CD3 reduced the CD8+ T cell anti-HIV activity. Stimulated CD8+ T cells exhibited increased anti-HIV activity and reduced dependency on HLA compatibility. These findings provide evidence that the maximal suppression of HIV replication by CD8+ T cells requires the recognition of multiple epitopes. These studies provide insight for HIV vaccine development, and the analytic approach can be useful for the functional characterization of HLA class I alleles and tentative HLA class I supertypes.
Collapse
Affiliation(s)
- M Scott Killian
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St, Vermillion, SD, 57069, USA. .,Department of Public Health, School of Health Sciences, University of South Dakota, Vermillion, SD, 57069, USA.
| | - Fernando Teque
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ramu Sudhagoni
- Department of Public Health, School of Health Sciences, University of South Dakota, Vermillion, SD, 57069, USA
| |
Collapse
|
10
|
Dalli SS, Uprety BK, Rakshit SK. Industrial Production of Active Probiotics for Food Enrichment. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-6595-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Girard MP, Le-Grand R, Picot V, Longuet C, Nabel GJ. Report of the Cent Gardes HIV Vaccines Conference, Part 2: The cellular immune response. Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25–27 October 2015. Vaccine 2016; 34:5470-5473. [DOI: 10.1016/j.vaccine.2016.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
|
12
|
Lu W, Chen S, Lai C, Lai M, Fang H, Dao H, Kang J, Fan J, Guo W, Fu L, Andrieu JM. Suppression of HIV Replication by CD8(+) Regulatory T-Cells in Elite Controllers. Front Immunol 2016; 7:134. [PMID: 27148256 PMCID: PMC4834299 DOI: 10.3389/fimmu.2016.00134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/24/2016] [Indexed: 12/25/2022] Open
Abstract
We previously demonstrated in the Chinese macaque model that an oral vaccine made of inactivated SIV and Lactobacillus plantarum induced CD8(+) regulatory T-cells, which suppressed the activation of SIV(+)CD4(+) T-cells, prevented SIV replication, and protected macaques from SIV challenges. Here, we sought whether a similar population of CD8(+) T-regs would induce the suppression of HIV replication in elite controllers (ECs), a small population (3‰) of HIV-infected patients with undetectable HIV replication. For that purpose, we investigated the in vitro antiviral activity of fresh CD8(+) T-cells on HIV-infected CD4(+) T-cells taken from 10 ECs. The 10 ECs had a classical genomic profile: all of them carried the KIR3DL1 gene and 9 carried at least 1 allele of HLA-B:Bw4-80Ile (i.e., with an isoleucine residue at position 80). In the nine HLA-B:Bw4-80Ile-positive patients, we demonstrated a strong viral suppression by KIR3DL1-expressing CD8(+) T-cells that required cell-to-cell contact to switch off the activation signals in infected CD4(+) T-cells. KIR3DL1-expressing CD8(+) T-cells withdrawal and KIR3DL1 neutralization by a specific anti-killer cell immunoglobulin-like receptor (KIR) antibody inhibited the suppression of viral replication. Our findings provide the first evidence for an instrumental role of KIR-expressing CD8(+) regulatory T-cells in the natural control of HIV-1 infection.
Collapse
Affiliation(s)
- Wei Lu
- Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du Sida, Université de Paris Descartes, Paris, France; Sino-French Collaborative Laboratory, Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Chen
- Sino-French Collaborative Laboratory, Tropical Medicine Institute, Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Chunhui Lai
- Sino-French Collaborative Laboratory, Tropical Medicine Institute, Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Mingyue Lai
- Xishuangbanna Center for Disease Control and Prevention , Jinghong , China
| | - Hua Fang
- Xishuangbanna Center for Disease Control and Prevention , Jinghong , China
| | - Hong Dao
- Xishuangbanna Center for Disease Control and Prevention , Jinghong , China
| | - Jun Kang
- Xishuangbanna Center for Disease Control and Prevention , Jinghong , China
| | - Jianhua Fan
- Xishuangbanna Center for Disease Control and Prevention , Jinghong , China
| | - Weizhong Guo
- Sino-French Collaborative Laboratory, Tropical Medicine Institute, Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Linchun Fu
- Sino-French Collaborative Laboratory, Tropical Medicine Institute, Guangzhou University of Chinese Medicine , Guangzhou , China
| | - Jean-Marie Andrieu
- Institut de Recherche sur les Vaccins et l'Immunothérapie des Cancers et du Sida, Université de Paris Descartes , Paris , France
| |
Collapse
|
13
|
Williamson AL, Rybicki EP. Justification for the inclusion of Gag in HIV vaccine candidates. Expert Rev Vaccines 2015; 15:585-98. [PMID: 26645951 DOI: 10.1586/14760584.2016.1129904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is widely accepted that effective human immunodeficiency virus (HIV) vaccines need to elicit a range of responses, including neutralising antibodies and T-cells. In natural HIV infections, immune responses to Gag are associated with lower viral load in infected individuals, and these responses can be measured against infected cells before the replication of HIV. Priming immune responses to Gag with DNA or recombinant Bacillus Calmette-Guérin (BCG) vaccines, and boosting with Gag virus-like particles as subunit vaccines or Gag produced in vivo by other vaccine vectors, elicits high-magnitude, broad polyfunctional responses, with memory T-cell responses appropriate for virus control. This review provides justification for the inclusion of HIV Gag in vaccine regimens, either as a transgene expressing protein that may assemble to form budded particles, or as purified virus-like particles. Possible benefits would include early control via CD8(+) T-cells at the site of infection, control of spread from the entry portal, and control of viraemia if infection is established.
Collapse
Affiliation(s)
- Anna-Lise Williamson
- a Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,b National Health Laboratory Service, Groote Schuur Hospital, Cape Town and Department of Pathology , University of Cape Town , Cape Town , South Africa
| | - Edward P Rybicki
- a Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Cape Town , South Africa.,c Biopharming Research Unit, Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| |
Collapse
|
14
|
Automatic Generation of Validated Specific Epitope Sets. J Immunol Res 2015; 2015:763461. [PMID: 26568965 PMCID: PMC4629045 DOI: 10.1155/2015/763461] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/02/2015] [Indexed: 12/02/2022] Open
Abstract
Accurate measurement of B and T cell responses is a valuable tool to study autoimmunity, allergies, immunity to pathogens, and host-pathogen interactions and assist in the design and evaluation of T cell vaccines and immunotherapies. In this context, it is desirable to elucidate a method to select validated reference sets of epitopes to allow detection of T and B cells. However, the ever-growing information contained in the Immune Epitope Database (IEDB) and the differences in quality and subjects studied between epitope assays make this task complicated. In this study, we develop a novel method to automatically select reference epitope sets according to a categorization system employed by the IEDB. From the sets generated, three epitope sets (EBV, mycobacteria and dengue) were experimentally validated by detection of T cell reactivity ex vivo from human donors. Furthermore, a web application that will potentially be implemented in the IEDB was created to allow users the capacity to generate customized epitope sets.
Collapse
|
15
|
Bodemer W. Immunodeficiency viruses and prion disease. Primate Biol 2015. [DOI: 10.5194/pb-2-65-2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Two threatening human diseases have emerged during the past 35 years. Human immunodeficiency virus (HIV) was transmitted from non-human primates – e.g., the chimpanzee to humans – and then spread into populations all over the world. To date, around 35 million people are infected and no vaccine is available because the virus undergoes rapid mutation, resulting in a swarm of virus strains. At best, therapeutical intervention is possible with antiviral drugs; however because of its capacity to rapidly mutate, resistant virus strains develop. Since non-human primates (NHPs) carry simian immunodeficiency virus (SIV), we could assess infection and immunity by SIV/HIV in rhesus monkeys (M. mulatta) as a model for acquired immunodeficiency syndrome (AIDS). Transmissible spongiform encephalopathy (TSE) emerged in ruminants in the 1980s and shortly thereafter appeared in humans, leading to variant Creutzfeldt–Jakob disease (vCJD). The vCJD is a terminal neurological disorder since it heavily and irreversibly damages the brain. No cure is at hand. The causative agents for TSE are prions. They are unusual pathogens and enigmatic since they lack nucleic acid as inheritable information. On the other hand, prions were suspected as infectious agents for years and suspected to be the etiological agent of scrapie in sheep. Molecular biology and medicine have clearly identified prions in recent years as the responsible agent for bovine spongiform encephalopathy in ruminants (BSE). BSE has been transmitted to humans, resulting in around 225 vCJD cases. Similar to the SIV/HIV model for Acquired Immunodeficiency Syndrome (AIDS), we could establish a prion infection model in rhesus monkeys. HIV/AIDS and vCJD are zoonoses since their original pathogens can be transmitted from animals to humans. Our experimental efforts to understand these intriguing pathogens and their corresponding diseases in rhesus monkeys as a valid model for both human diseases are summarized in this review.
Collapse
|
16
|
Baker CAR, Swainson L, Lin DL, Wong S, Hartigan-O'Connor DJ, Lifson JD, Tarantal AF, McCune JM. Exposure to SIV in utero results in reduced viral loads and altered responsiveness to postnatal challenge. Sci Transl Med 2015; 7:300ra125. [PMID: 26268312 PMCID: PMC5100009 DOI: 10.1126/scitranslmed.aac5547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV disease progression appears to be driven by increased immune activation. Given observations that fetal exposure to infectious pathogens in utero can result in reduced immune responses, or tolerance, to those pathogens postnatally, we hypothesized that fetal exposure to HIV may render the fetus tolerant to the virus, thus reducing damage caused by immune activation during infection later in life. To test this hypothesis, fetal rhesus macaques (Macaca mulatta) were injected with the attenuated virus SIVmac1A11 in utero and challenged with pathogenic SIVmac239 1 year after birth. SIVmac1A11-injected animals had significantly reduced plasma RNA viral loads (P < 0.02) up to 35 weeks after infection. Generalized estimating equations analysis was performed to identify immunologic and clinical measurements associated with plasma RNA viral load. A positive association with plasma RNA viral load was observed with the proportion of CD8(+) T cells expressing the transcription factor, FoxP3, and the proportion of CD4(+) T cells producing the lymphoproliferative cytokine, IL-2. In contrast, an inverse relationship was found with the frequencies of circulating CD4(+) and CD8(+) T cells displaying intermediate expression of the proliferation marker, Ki-67. Animals exposed to simian immunodeficiency virus (SIV) in utero appeared to have enhanced SIV-specific immune responses, a lower proportion of CD8(+) T cells expressing the exhaustion marker PD-1, and more circulating TH17 cells than controls. Although the development of tolerance was not demonstrated, these data suggest that rhesus monkeys exposed to SIVmac1A11 in utero had distinct immune responses associated with the control of viral replication after postnatal challenge.
Collapse
Affiliation(s)
- Chris A R Baker
- Graduate Group in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA. Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Louise Swainson
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Din L Lin
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Samson Wong
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Dennis J Hartigan-O'Connor
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA. California National Primate Research Center, Davis, CA 95616, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702, USA
| | - Alice F Tarantal
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, California National Primate Research Center, Davis, CA 95616, USA. Department of Pediatrics, University of California, Davis, Davis, CA 95616, USA. Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95616, USA
| | - Joseph M McCune
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA.
| |
Collapse
|
17
|
Boer MC, Joosten SA, Ottenhoff THM. Regulatory T-Cells at the Interface between Human Host and Pathogens in Infectious Diseases and Vaccination. Front Immunol 2015; 6:217. [PMID: 26029205 PMCID: PMC4426762 DOI: 10.3389/fimmu.2015.00217] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022] Open
Abstract
Regulatory T-cells (Tregs) act at the interface of host and pathogen interactions in human infectious diseases. Tregs are induced by a wide range of pathogens, but distinct effects of Tregs have been demonstrated for different pathogens and in different stages of infection. Moreover, Tregs that are induced by a specific pathogen may non-specifically suppress immunity against other microbes and parasites. Thus, Treg effects need to be assessed not only in homologous but also in heterologous infections and vaccinations. Though Tregs protect the human host against excessive inflammation, they probably also increase the risk of pathogen persistence and chronic disease, and the possibility of disease reactivation later in life. Mycobacterium leprae and Mycobacterium tuberculosis, causing leprosy and tuberculosis, respectively, are among the most ancient microbes known to mankind, and are master manipulators of the immune system toward tolerance and pathogen persistence. The majority of mycobacterial infections occur in settings co-endemic for viral, parasitic, and (other) bacterial coinfections. In this paper, we discuss recent insights in the activation and activity of Tregs in human infectious diseases, with emphasis on early, late, and non-specific effects in disease, coinfections, and vaccination. We highlight mycobacterial infections as important models of modulation of host responses and vaccine-induced immunity by Tregs.
Collapse
Affiliation(s)
- Mardi C Boer
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
18
|
Esparza J. A New Scientific Paradigm may be Needed to Finally Develop an HIV Vaccine. Front Immunol 2015; 6:124. [PMID: 25852692 PMCID: PMC4364287 DOI: 10.3389/fimmu.2015.00124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
The bulk of current HIV vaccine research is conducted within the infectious disease paradigm that has been very successful in developing vaccines against many other viral diseases. Different HIV vaccine concepts, based on the induction of neutralizing antibodies and/or cell mediated immunity, have been developed and clinically tested over the last 30 years, resulting in a few small successes and many disappointments. As new scientific knowledge is obtained, HIV vaccine concepts are constantly modified with the hope that the newly introduced tweaks (or paradigm drifts) will provide the solution to one of the most difficult challenges that modern biomedical research is confronting. Efficacy trials have been critical in guiding HIV vaccine development. However, from the five phase III efficacy trials conducted to date, only one (RV144) resulted in modest efficacy. The results from RV144 were surprising in many ways, including the identified putative correlates of protection (or risk), which did not include neutralizing antibodies or cytotoxic T-cells. The solution to the HIV vaccine challenge may very well come from approaches based on the current paradigm. However, at the same time, out-of-the-paradigm ideas should be systematically explored to complement the current efforts. New mechanisms are needed to identify and support the innovative research that will hopefully accelerate the development of an urgently needed HIV vaccine.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
John M, Gaudieri S. Influence of HIV and HCV on T cell antigen presentation and challenges in the development of vaccines. Front Microbiol 2014; 5:514. [PMID: 25352836 PMCID: PMC4195390 DOI: 10.3389/fmicb.2014.00514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022] Open
Abstract
Some of the central challenges for developing effective vaccines against HIV and hepatitis C virus (HCV) are similar. Both infections are caused by small, highly mutable, rapidly replicating RNA viruses with the ability to establish long-term chronic pathogenic infection in human hosts. HIV has caused 60 million infections globally and HCV 180 million and both viruses may co-exist among certain populations by virtue of common blood-borne, sexual, or vertical transmission. Persistence of both pathogens is achieved by evasion of intrinsic, innate, and adaptive immune defenses but with some distinct mechanisms reflecting their differences in evolutionary history, replication characteristics, cell tropism, and visibility to mucosal versus systemic and hepatic immune responses. A potent and durable antibody and T cell response is a likely requirement of future HIV and HCV vaccines. Perhaps the single biggest difference between the two vaccine design challenges is that in HCV, a natural model of protective immunity can be found in those who resolve acute infection spontaneously. Such spontaneous resolvers exhibit durable and functional CD4+ and CD8+ T cell responses (Diepolder et al., 1995; Cooper et al., 1999; Thimme et al., 2001; Grakoui et al., 2003; Lauer et al., 2004; Schulze Zur Wiesch et al., 2012). However, frequent re-infection suggests partial or lack of protective immunity against heterologous HCV strains, possibly indicative of the degree of genetic diversity of circulating HCV genotypes and subtypes. There is no natural model of protective immunity in HIV, however, studies of “elite controllers,” or individuals who have durably suppressed levels of plasma HIV RNA without antiretroviral therapy, has provided the strongest evidence for CD8+ T cell responses in controlling viremia and limiting reservoir burden in established infection. Here we compare and contrast the specific mechanisms of immune evasion used by HIV and HCV, which subvert adaptive human leukocyte antigen (HLA)-restricted T cell immunity in natural infection, and the challenges these pose for designing effective preventative or therapeutic vaccines.
Collapse
Affiliation(s)
- Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University Murdoch, WA, Australia ; Department of Clinical Immunology, PathWest Laboratory Medicine WA, Royal Perth Hospital Perth, WA, Australia
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University Murdoch, WA, Australia ; School of Anatomy, Physiology and Human Biology, University of Western Australia Crawley, WA, Australia
| |
Collapse
|
20
|
Esparza J, Van Regenmortel MHV. More Surprises in the Development of an HIV Vaccine. Front Immunol 2014; 5:329. [PMID: 25071786 PMCID: PMC4095567 DOI: 10.3389/fimmu.2014.00329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 06/29/2014] [Indexed: 01/16/2023] Open
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, MD , USA
| | - Marc H V Van Regenmortel
- CNRS, UMR7242-Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg , Illkirch-Graffenstaden , France
| |
Collapse
|