1
|
Shirey KA, Lai W, Sunday ME, Cuttitta F, Blanco JCG, Vogel SN. Novel neuroendocrine role of γ-aminobutyric acid and gastrin-releasing peptide in the host response to influenza infection. Mucosal Immunol 2023; 16:302-311. [PMID: 36965691 PMCID: PMC10330014 DOI: 10.1016/j.mucimm.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Gastrin-releasing peptide (GRP), an evolutionarily conserved neuropeptide, significantly contributes to influenza-induced lethality and inflammation in rodent models. Because GRP is produced by pulmonary neuroendocrine cells (PNECs) in response to γ-aminobutyric acid (GABA), we hypothesized that influenza infection promotes GABA release from PNECs that activate GABAB receptors on PNECs to secrete GRP. Oxidative stress was increased in the lungs of influenza A/PR/8/34 (PR8)-infected mice, as well as serum glutamate decarboxylase 1, the enzyme that converts L-glutamic acid into GABA. The therapeutic administration of saclofen, a GABAB receptor antagonist, protected PR8-infected mice, reduced lung proinflammatory gene expression of C-C chemokine receptor type 2 (Ccr2), cluster of differentiation 68 (Cd68), and Toll like receptor 4 (Tlr4) and decreased the levels of GRP and high-mobility group box 1 (HMGB1) in sera. Conversely, baclofen, a GABAB receptor agonist, significantly increased the lethality and inflammatory responses. The GRP antagonist, NSC77427, as well as the GABAB antagonist, saclofen, blunted the PR8-induced monocyte infiltration into the lung. Together, these data provide the first report of neuroregulatory control of influenza-induced disease.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | - Wendy Lai
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Mary E Sunday
- Duke University Medical Center, Durham, North Carolina, USA
| | - Frank Cuttitta
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Long-Acting Thioredoxin Ameliorates Doxorubicin-Induced Cardiomyopathy via Its Anti-Oxidative and Anti-Inflammatory Action. Pharmaceutics 2022; 14:pharmaceutics14030562. [PMID: 35335938 PMCID: PMC8953310 DOI: 10.3390/pharmaceutics14030562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Although the number of patients with heart failure is increasing, a sufficient treatment agent has not been established. Oxidative stress and inflammation play important roles in the development of myocardial remodeling. When thioredoxin (Trx), an endogenous anti-oxidative and inflammatory modulator with a molecular weight of 12 kDa, is exogenously administered, it disappears rapidly from the blood circulation. In this study, we prepared a long-acting Trx, by fusing human Trx (HSA-Trx) with human serum albumin (HSA) and evaluated its efficacy in treating drug-induced heart failure. Drug-induced cardiomyopathy was created by intraperitoneally administering doxorubicin (Dox) to mice three times per week. A decrease in heart weight, increased myocardial fibrosis and markers for myocardial damage that were observed in the Dox group were suppressed by HSA-Trx administration. HSA-Trx also suppressed the expression of atrogin-1 and myostatin, myocardial atrophy factors in addition to suppressing oxidative stress and inflammation. In the Dox group, a decreased expression of endogenous Trx in cardiac tissue and an increased expression of macrophage migration inhibitory factor were observed, but these changes were restored to normal levels by HSA-Trx administration. These findings suggest that HSA-Trx improves the pathological condition associated with Dox-induced cardiomyopathy by its anti-oxidative/anti-inflammatory and myocardial atrophy inhibitory action.
Collapse
|
3
|
Rabbani G, Ahn SN. Review: Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. Int J Biol Macromol 2021; 193:948-955. [PMID: 34673106 PMCID: PMC8520831 DOI: 10.1016/j.ijbiomac.2021.10.095] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) keeps on destroying normal social integrity worldwide, bringing about extraordinary medical services, cultural and financial interruption. Individuals with diabetes have been demonstrated to be at higher risk of complications and even death when exposed to SARS-CoV-2. Regardless of pandemic scale infection, there is presently limited comprehension on the potential impact of SARS-CoV-2 on individuals with diabetes. Human serum albumin (HSA) is the most abundant circulating plasma protein in human serum and attracted more interest from researchers because most susceptible to non-enzymatic glycation reactions. Albumin down-regulates the expression of ACE2 that is the target receptor of COVID-19. Hypoalbuminemia, coagulopathy, and vascular disease have been connected in COVID-19 and appear to predict outcomes independent of age and morbidity. This review discusses the most recent evidence that the ACE/ACE2 ratio could influence by human serum albumin both the susceptibility of individuals to SARS-CoV-2 infection and the outcome of the COVID-19 disease.
Collapse
Affiliation(s)
- Gulam Rabbani
- Nano Diagnostics & Devices (NDD), B-312 IT-Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea.
| | - Saeyoung Nate Ahn
- Nano Diagnostics & Devices (NDD), B-312 IT-Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea; Fuzbien Technology Institute, 13 Taft Court, Rockville, MD 20850, USA.
| |
Collapse
|
4
|
Nishida K, Watanabe H, Murata R, Tokumaru K, Fujimura R, Oshiro S, Nagasaki T, Miyahisa M, Hiramoto Y, Nosaki H, Imafuku T, Maeda H, Fukagawa M, Maruyama T. Recombinant Long-Acting Thioredoxin Ameliorates AKI to CKD Transition via Modulating Renal Oxidative Stress and Inflammation. Int J Mol Sci 2021; 22:ijms22115600. [PMID: 34070521 PMCID: PMC8199127 DOI: 10.3390/ijms22115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
An effective strategy is highly desirable for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. Thioredoxin-1 (Trx), a redox-active protein that has anti-oxidative and anti-inflammatory properties, would be a candidate for this but its short half-life limits its clinical application. In this study, we examined the renoprotective effect of long-acting Trx that is comprised of human albumin and Trx (HSA-Trx) against AKI to CKD transition. AKI to CKD mice were created by renal ischemia-reperfusion (IR). From day 1 to day 14 after renal IR, the recovery of renal function was accelerated by HSA-Trx administration. On day 14, HSA-Trx reduced renal fibrosis compared with PBS treatment. At the early phase of fibrogenesis (day 7), HSA-Trx treatment suppressed renal oxidative stress, pro-inflammatory cytokine production and macrophage infiltration, thus ameliorating tubular injury and fibrosis. In addition, HSA-Trx treatment inhibited G2/M cell cycle arrest and apoptosis in renal tubular cells. While renal Trx protein levels were decreased after renal IR, the levels were recovered by HSA-Trx treatment. Together, HSA-Trx has potential for use in the treatment of AKI to CKD transition via its effects of modulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
- Correspondence: (H.W.); (T.M.); Tel.: +81-96-371-4855 (H.W.); +81-96-371-4150 (T.M.); Fax: +81-96-371-4855 (H.W.); +81-96-371-4153 (T.M.)
| | - Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Kai Tokumaru
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Yuto Hiramoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara 259-1193, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (K.N.); (R.M.); (K.T.); (R.F.); (S.O.); (T.N.); (M.M.); (Y.H.); (H.N.); (T.I.); (H.M.)
- Correspondence: (H.W.); (T.M.); Tel.: +81-96-371-4855 (H.W.); +81-96-371-4150 (T.M.); Fax: +81-96-371-4855 (H.W.); +81-96-371-4153 (T.M.)
| |
Collapse
|
5
|
Tanaka KI, Kubota M, Shimoda M, Hayase T, Miyaguchi M, Kobayashi N, Ikeda M, Ishima Y, Kawahara M. Thioredoxin-albumin fusion protein prevents urban aerosol-induced lung injury via suppressing oxidative stress-related neutrophil extracellular trap formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115787. [PMID: 33065363 PMCID: PMC7538875 DOI: 10.1016/j.envpol.2020.115787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 05/22/2023]
Abstract
The number of deaths from air pollution worldwide is estimated at 8.8 million per year, more than the number of deaths from smoking. Air pollutants, such as PM2.5, are known to induce respiratory and cardiovascular diseases by inducing oxidative stress. Thioredoxin (Trx) is a 12-kDa endogenous protein that exerts antioxidant activity by promoting dithiol disulfide exchange reactions. We previously synthesized human serum albumin-fused thioredoxin (HSA-Trx), which has a longer half-life in plasma compared with Trx, and demonstrated its efficacy against various diseases including respiratory diseases. Here, we examined the effect of HSA-Trx on urban aerosol-induced lung injury in mice. Urban aerosols induced lung injury and inflammatory responses in ICR mice, but intravenous administration of HSA-Trx markedly inhibited these responses. We next analyzed reactive oxygen species (ROS) production in murine lungs using an in vivo imaging system. The results show that intratracheal administration of urban aerosols induced ROS production that was inhibited by intravenously administered HSA-Trx. Finally, we found that HSA-Trx inhibited the urban aerosol-induced increase in levels of neutrophilic extracellular trap (NET) indicators (i.e., double-stranded DNA, citrullinated histone H3, and neutrophil elastase) in bronchoalveolar lavage fluid (BALF). Together, these findings suggest that HSA-Trx prevents urban aerosol-induced acute lung injury by suppressing ROS production and neutrophilic inflammation. Thus, HSA-Trx may be a potential candidate drug for preventing the onset or exacerbation of lung injury caused by air pollutants.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan.
| | - Maho Kubota
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan
| | - Mikako Shimoda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan
| | - Tomoko Hayase
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan
| | - Mamika Miyaguchi
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan
| | - Nahoko Kobayashi
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan
| | - Mayumi Ikeda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo, 202-8585, Japan
| |
Collapse
|
6
|
Fernandes IG, de Brito CA, dos Reis VMS, Sato MN, Pereira NZ. SARS-CoV-2 and Other Respiratory Viruses: What Does Oxidative Stress Have to Do with It? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8844280. [PMID: 33381273 PMCID: PMC7757116 DOI: 10.1155/2020/8844280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
The phenomenon of oxidative stress, characterized as an imbalance in the production of reactive oxygen species and antioxidant responses, is a well-known inflammatory mechanism and constitutes an important cellular process. The relationship of viral infections, reactive species production, oxidative stress, and the antiviral response is relevant. Therefore, the aim of this review is to report studies showing how reactive oxygen species may positively or negatively affect the pathophysiology of viral infection. We focus on known respiratory viral infections, especially severe acute respiratory syndrome coronaviruses (SARS-CoVs), in an attempt to provide important information on the challenges posed by the current COVID-19 pandemic. Because antiviral therapies for severe acute respiratory syndrome coronaviruses (e.g., SARS-CoV-2) are rare, knowledge about relevant antioxidant compounds and oxidative pathways may be important for understanding viral pathogenesis and identifying possible therapeutic targets.
Collapse
Affiliation(s)
- Iara Grigoletto Fernandes
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Nishida K, Watanabe H, Miyahisa M, Hiramoto Y, Nosaki H, Fujimura R, Maeda H, Otagiri M, Maruyama T. Systemic and sustained thioredoxin analogue prevents acute kidney injury and its-associated distant organ damage in renal ischemia reperfusion injury mice. Sci Rep 2020; 10:20635. [PMID: 33244034 PMCID: PMC7691343 DOI: 10.1038/s41598-020-75025-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
The mortality of patients with acute kidney injury (AKI) remains high due to AKI associated-lung injury. An effective strategy for preventing both AKI and AKI-associated lung injury is urgently needed. Thioredoxin-1 (Trx) is a redox-active protein that possesses anti-oxidative, anti-apoptotic and anti-inflammatory properties including modulation of macrophage migration inhibitory factor (MIF), but its short half-life limits its clinical application. Therefore, we examined the preventive effect of a long-acting Trx, which is a fusion protein of albumin and Trx (HSA-Trx), against AKI and AKI-associated lung injury. Recombinant HSA-Trx was expressed using a Pichia expression system. AKI-induced lung injury mice were generated by bilateral renal ischemia reperfusion injury (IRI). HSA-Trx administration attenuated renal IRI and its-associated lung injury. Both renal and pulmonary oxidative stress were suppressed by HSA-Trx. Moreover, HSA-Trx inhibited elevations of plasma IL-6 and TNF-α level, and suppressed IL-6-CXCL1/2-mediated neutrophil infiltration into lung and TNF-α-mediated pulmonary apoptosis. Additionally, HSA-Trx suppressed renal IRI-induced MIF expression in kidney and lung. Administration of HSA-Trx resulted in a significant increase in the survival rate of renal IRI mice. Collectively, HSA-Trx could have therapeutic utility in preventing both AKI and AKI-associated lung injury as a consequence of its systemic and sustained multiple biological action.
Collapse
Affiliation(s)
- Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuto Hiramoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
8
|
Ishima Y, Maruyama T, Otagiri M, Ishida T. Drug Delivery System for Refractory Cancer Therapy via an Endogenous Albumin Transport System. Chem Pharm Bull (Tokyo) 2020; 68:583-588. [DOI: 10.1248/cpb.c20-00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
- School of Pharmacy, Monash University Malaysia
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University
- DDS Research Institute, Sojo University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
9
|
Mani Mishra P, Uversky VN, Nandi CK. Serum albumin-mediated strategy for the effective targeting of SARS-CoV-2. Med Hypotheses 2020; 140:109790. [PMID: 32353740 PMCID: PMC7195355 DOI: 10.1016/j.mehy.2020.109790] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Novel coronavirus (NCoV-19), also known as SARS CoV-2, is a pathogen causing an emerging infection that rapidly increases in incidence and geographic range, is associated with the ever-increasing morbidity and mortality rates, and shows sever economic impact worldwide. The WHO declares the NCoV-19 infection disease (COVID-19) a Public Health Emergency of International Concern on 30 January 2020 and subsequently, on March 11, 2020, declared it a Global Pandemic. Although some people infected with SARS CoV-2 have no symptoms, the spectrum of symptomatic infection ranges from mild to critical, with most COVID-19 infections being not severe. The common mild symptoms include body aches, dry cough, fatigue, low-grade fever, nasal congestion, and sore throat. More severe COVID-19 symptoms are typical of pneumonia, and upon progression, the patient's condition can worsen with severe respiratory and cardiac problems. Currently, there is no drug or vaccine for curing patients. It has been observed that people with challenged immunity are highly prone to SARS CoV-2 infection and least likely to recover. Also, older adults and people of any age with serious underlying medical conditions might be at higher risk for severe forms of COVID-19. We are suggesting here a strategy for the COVID-19 treatment that could be effective in curing the patients in the current scenario when no efficient medicine or Vaccine is currently available, and Clinicians solely depend upon the performing trials with drugs with known antiviral activities. Our proposed strategy is based on the compilation of published scientific research and concepts. The different published research indicates the success of a similar strategy in different physiological conditions, and such a strategy is widely studied at the cellular level and in animal models.
Collapse
Affiliation(s)
- Pushpendra Mani Mishra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region 142290, Russia.
| | - Chayan K Nandi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India.
| |
Collapse
|
10
|
Role of Glutathionylation in Infection and Inflammation. Nutrients 2019; 11:nu11081952. [PMID: 31434242 PMCID: PMC6723385 DOI: 10.3390/nu11081952] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by different cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses.
Collapse
|
11
|
Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury. J Immunol Res 2018; 2018:6879183. [PMID: 29675437 PMCID: PMC5838491 DOI: 10.1155/2018/6879183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 01/12/2023] Open
Abstract
The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI.
Collapse
|
12
|
Liu JX, Zhang Y, Hu QP, Li JQ, Liu YT, Wu QG, Wu JG, Lai XP, Zhang ZD, Li X, Li G. Anti-inflammatory effects of rosmarinic acid-4-O-β-D-glucoside in reducing acute lung injury in mice infected with influenza virus. Antiviral Res 2017; 144:34-43. [PMID: 28461072 DOI: 10.1016/j.antiviral.2017.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
Rosmarinic acid-4-O-β-D-glucoside (RAG) is a dicaffeoyl phenolic compound isolated from Sarcandra glabra (Thunb.) Nakai. Preliminary studies show that RAG has significant anti-inflammatory properties and can alleviate ear swelling in mice and the paw swelling in rats. Here, the anti-influenza effects of RAG were investigated in mice infected with A/FM/1/47 H1N1 virus. The survival rate and body weight were observed, the lung edema, virus copies, inflammatory cytokines (including IL-4, IL-5, TNF-α and IFN-γ) and oxidative damage indexes (including SOD, MDA, NO, and CAT) were measured. Moreover, immune cell recruitment in alveoli was measured with white blood cells and differential counts. Therapeutic RAG concentrations substantially improve the symptoms, mitigate body weight loss and alleviate lung edema induced by virus, thus improve survival protection effects. Furthermore, RAG was shown to regulate influenza virus-induced inflammatory cytokine expression, specifically by downregulating the Th1 cell cytokines IFN-γ, TNF-α and upregulating the Th2 cell cytokines IL-4, IL-5. Cell migration and infiltration were also diminished after RAG administration.
Collapse
Affiliation(s)
- Jian-Xing Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiu-Ping Hu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji-Qiang Li
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yun-Tao Liu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Qing-Guang Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jian-Guo Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-Ping Lai
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Dongguan, 523808, China
| | - Zhong-de Zhang
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Xiong Li
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Geng Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Anti-influenza Activity of a Bacillus subtilis Probiotic Strain. Antimicrob Agents Chemother 2017; 61:AAC.00539-17. [PMID: 28416546 DOI: 10.1128/aac.00539-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/10/2017] [Indexed: 01/01/2023] Open
Abstract
Among Bacillus bacteria, B. subtilis is the species that produces the most antimicrobial compounds. In this study, we analyzed the activity of probiotic strain B. subtilis 3 against the influenza virus. The antiviral effect of this strain has been demonstrated in vitro and in vivo A new peptide, P18, produced by the probiotic strain was isolated, purified, chemically synthesized, and characterized. Cytotoxicity studies demonstrated no toxic effect of P18 on Madin-Darby canine kidney (MDCK) cells, even at the highest concentration tested (100 μg/ml). Complete inhibition of the influenza virus in vitro was observed at concentrations of 12.5 to 100 μg/ml. The protective effect of P18 in mice was comparable to that of oseltamivir phosphate (Tamiflu). Further study will assess the potential of peptide P18 as an antiviral compound and as a promising candidate for the development of new antiviral vaccines.
Collapse
|
14
|
Zhuang L, Chen LF, Zhang YB, Liu Z, Xiao XH, Tang W, Wang GC, Song WJ, Li YL, Li MM. Watsonianone A from Rhodomyrtus tomentosa Fruit Attenuates Respiratory-Syncytial-Virus-Induced Inflammation In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3481-3489. [PMID: 28436225 DOI: 10.1021/acs.jafc.7b00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Respiratory syncytial virus (RSV) is one of the most common respiratory pathogens. Immoderate inflammation plays a great role in causing RSV-induced diseases. In the present study, watsonianone A, isolated from the fruit of Rhodomyrtus tomentosa (Ait.) Hassk, was found to show a good inhibitory effect on RSV-induced NO production, with a half-maximal inhibitory concentration of 37.2 ± 1.6 μM. Enzyme-linked immunosorbent assay and fluorescence quantitative polymerase chain reaction analyses indicated that watsonianone A markedly reduced both mRNA and protein levels of tumor necrosis factor α, interleukin 6, and monocyte chemoattractant protein 1 in RSV-infected RAW264.7 cells. Mechanistically, watsonianone A inhibited nuclear factor κB (NF-κB) activation by suppressing IκBα phosphorylation. Further analysis revealed that watsonianone A activated the thioredoxin system and decreased intracellular reactive oxygen species (ROS) levels, which are closely associated with NF-κB activation in RSV-infected cells. These results reveal that watsonianone A can attenuate RSV-induced inflammation via the suppression of ROS-sensitive inflammatory signaling.
Collapse
Affiliation(s)
- Ling Zhuang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Li-Feng Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhong Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Xu-Hui Xiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Wei Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Wen-Jun Song
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Man-Mei Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
15
|
TAT-HSA-α-MSH fusion protein with extended half-life inhibits tumor necrosis factor-α in brain inflammation of mice. Appl Microbiol Biotechnol 2016; 100:5353-61. [PMID: 26816094 DOI: 10.1007/s00253-015-7251-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Neuroinflammation constitutes a principal process involved in the progression of various central nervous system (CNS) disorders, including Parkinson's disease, Alzheimer's disease, ischemic stroke, and traumatic brain injury. The safety and efficacy of potential neuroprotective therapeutic agents is controversial and limited. Alpha-melanocyte-stimulating hormone (α-MSH) as a tridecapeptide derived from pro-opiomelanocortin displays potent anti-inflammatory and protective effects with a wide therapeutic window in brain damage. However, it is difficult to deliver effective concentrations of α-MSH into brain tissue via nondirect application. Besides, the half-life of the tridecapeptide is only a few minutes. In the present study, we generated a novel TAT-HSA-α-MSH by genetically fusing α-MSH with N-terminus 11-amino acid protein transduction domain of the human immunodeficiency virus Tat protein (TAT) and human serum albumin (HSA), which showed favorable pharmacokinetic properties and can effectively cross the blood brain barrier (BBB). The findings showed that TAT-HSA-α-MSH significantly inhibits NF-κB activation in human glioma cells A172 and tumor necrosis factor-α (TNF-α) production in experimental brain inflammation. These results indicate that TAT-HSA-α-MSH may be a potential therapeutic agent for treating neuroinflammation which plays a fundamental role in CNS disorders.
Collapse
|