1
|
Haghmorad D, Soltanmohammadi A, Jadid Tavaf M, Zargarani S, Yazdanpanah E, Shadab A, Yousefi B. The protective role of interaction between vitamin D, sex hormones and calcium in multiple sclerosis. Int J Neurosci 2024; 134:735-753. [PMID: 36369838 DOI: 10.1080/00207454.2022.2147431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder that causes disability and paralysis, especially among young adults. Although interactions of several factors, such as viral infections, autoimmunity, genetic and environmental factors, performance a role in the beginning and progression of the disease, the exact cause of MS is unknown to date. Different immune cells such as Th1 and Th17 play an impressive role in the immunopathogenesis of MS, while, regulatory cells such as Th2 and Treg diminish the severity of the illness. Sex hormones have a vital role in many autoimmune disorders, including multiple sclerosis. Testosterone, estrogen and progesterone have various roles in the progress of MS, which higher prevalence of disease in women and more severe in men reveals the importance of sex hormones' role in this disease. Vitamin D after chemical changes in the body, as an active hormone called calcitriol, plays an important role in regulating immune responses and improves MS by modulating the immune system. The optimum level of calcium in the body with vitamin D modulates immune responses and calcium as an essential ion in the body plays a key role in the treatment of autoimmune diseases. The interaction between vitamin D and sex hormones has protective and therapeutic effects against MS and functional synergy between estrogen and calcitriol occurs in disease recovery. Moreover, vitamin D and calcium interact with each other to regulate the immune system and shift them to anti-inflammatory responses.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Azita Soltanmohammadi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Jadid Tavaf
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Simin Zargarani
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Department of Immunology and Allergy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
2
|
Beckers L, Baeten P, Popescu V, Swinnen D, Cardilli A, Hamad I, Van Wijmeersch B, Tavernier SJ, Kleinewietfeld M, Broux B, Fraussen J, Somers V. Alterations in the innate and adaptive immune system in a real-world cohort of multiple sclerosis patients treated with ocrelizumab. Clin Immunol 2024; 259:109894. [PMID: 38185268 DOI: 10.1016/j.clim.2024.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
B cell depletion by the anti-CD20 antibody ocrelizumab is effective in relapsing-remitting (RR) and primary progressive (PP) multiple sclerosis (MS). We investigated immunological changes in peripheral blood of a real-world MS cohort after 6 and 12 months of ocrelizumab. All RRMS and most PPMS patients (15/20) showed treatment response. Ocrelizumab not only reduced CD20+ B cells, but also numbers of CD20+ T cells. Absolute numbers of monocytes, dendritic cells and CD8+ T cells were increased, while CD56hi natural killer cells were reduced after ocrelizumab. The residual B cell population shifted towards transitional and activated, IgA+ switched memory B cells, double negative B cells, and antibody-secreting cells. Delaying the treatment interval by 2-3 months increased mean B cell frequencies and enhanced naive B cell repopulation. Ocrelizumab reduced plasma levels of interleukin(IL)-12p70 and interferon(IFN)-α2. These findings will contribute to understanding ineffective treatment responses, dealing with life-threatening infections and further unravelling MS pathogenesis.
Collapse
Affiliation(s)
- L Beckers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - P Baeten
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - V Popescu
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; Noorderhart, Rehabilitation and MS Center, Pelt, Belgium
| | - D Swinnen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium
| | - A Cardilli
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium
| | - I Hamad
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium
| | - B Van Wijmeersch
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; Noorderhart, Rehabilitation and MS Center, Pelt, Belgium
| | - S J Tavernier
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
| | - M Kleinewietfeld
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium; VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Diepenbeek, Belgium
| | - B Broux
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - J Fraussen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - V Somers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
3
|
Mao K, Wang J, Xie Q, Yang YG, Shen S, Sun T, Wang J. Cationic nanoparticles-based approaches for immune tolerance induction in vivo. J Control Release 2024; 366:425-447. [PMID: 38154540 DOI: 10.1016/j.jconrel.2023.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The development of autoimmune diseases and the rejection of transplanted organs are primarily caused by an exaggerated immune response to autoantigens or graft antigens. Achieving immune tolerance is crucial for the effective treatment of these conditions. However, traditional therapies often have limited therapeutic efficacy and can result in systemic toxic effects. The emergence of nanomedicine offers a promising avenue for addressing immune-related diseases. Among the various nanoparticle formulations, cationic nanoparticles have demonstrated significant potential in inducing immune tolerance. In this review, we provide an overview of the underlying mechanism of autoimmune disease and organ transplantation rejection. We then highlight the recent advancements and advantages of utilizing cationic nanoparticles for inducing immune tolerance in the treatment of autoimmune diseases and the prevention of transplant rejection.
Collapse
Affiliation(s)
- Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Qianyue Xie
- Huafu International Department, Affiliated High School of South China Normal University, Guangzhou, Guangdong, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China; Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovatiion Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Keehn CC, Yazdian A, Hunt PJ, Davila-Siliezar P, Laylani NA, Lee AG. Monoclonal antibodies in neuro-ophthalmology. Saudi J Ophthalmol 2024; 38:13-24. [PMID: 38628411 PMCID: PMC11017005 DOI: 10.4103/sjopt.sjopt_256_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 04/19/2024] Open
Abstract
Neuro-ophthalmologic diseases include a broad range of disorders affecting the afferent and efferent visual pathways. Recently, monoclonal antibody (mAb) therapies have emerged as a promising targeted approach in the management of several of these complex conditions. Here, we describe the mechanism-specific applications and advancements in neuro-ophthalmologic mAb therapies. The application of mAbs in neuro-ophthalmologic diseases highlights our increasing understanding of disease-specific mechanisms in autoimmune conditions such as neuromyelitis optica, thyroid eye disease, and myasthenia gravis. Due to the specificity of mAb therapies, applications in neuro-ophthalmologic diseases have yielded exceptional clinical outcomes, including both reduced rate of relapse and progression to disability, visual function preservation, and quality of life improvement. These advancements have not only expanded the range of treatable neuro-ophthalmologic diseases but also reduced adverse events and increased the response rate to treatment. Further research into neuro-ophthalmologic disease mechanisms will provide accurate and specific targeting of important disease mediators through applications of future mAbs. As our understanding of these diseases and the relevant therapeutic targets evolve, we will continue to build on our understanding of how mAbs interfere with disease pathogenesis, and how these changes improve clinical outcomes and quality of life for patients.
Collapse
Affiliation(s)
- Caroline C. Keehn
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Arman Yazdian
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Patrick J. Hunt
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
| | - Pamela Davila-Siliezar
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
| | - Noor A. Laylani
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
| | - Andrew G. Lee
- Department of Ophthalmology, Baylor College of Medicine, Houston, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, USA
- Department of Ophthalmology, The University of Texas MD Anderson Cancer Center, Houston, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, USA
- Department of Ophthalmology, Texas A and M College of Medicine, Bryan, Texas, USA
- Department of Ophthalmology, University of Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
5
|
Nuesslein-Hildesheim B, Ferrero E, Schmid C, Huck C, Smith P, Tisserand S, Rubert J, Bornancin F, Eichlisberger D, Cenni B. Remibrutinib (LOU064) inhibits neuroinflammation driven by B cells and myeloid cells in preclinical models of multiple sclerosis. J Neuroinflammation 2023; 20:194. [PMID: 37633912 PMCID: PMC10463946 DOI: 10.1186/s12974-023-02877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is a key signaling node in B cell receptor (BCR) and Fc receptor (FcR) signaling. BTK inhibitors (BTKi) are an emerging oral treatment option for patients suffering from multiple sclerosis (MS). Remibrutinib (LOU064) is a potent, highly selective covalent BTKi with a promising preclinical and clinical profile for MS and other autoimmune or autoallergic indications. METHODS The efficacy and mechanism of action of remibrutinib was assessed in two different experimental autoimmune encephalomyelitis (EAE) mouse models for MS. The impact of remibrutinib on B cell-driven EAE pathology was determined after immunization with human myelin oligodendrocyte glycoprotein (HuMOG). The efficacy on myeloid cell and microglia driven neuroinflammation was determined in the RatMOG EAE. In addition, we assessed the relationship of efficacy to BTK occupancy in tissue, ex vivo T cell response, as well as single cell RNA-sequencing (scRNA-seq) in brain and spinal cord tissue. RESULTS Remibrutinib inhibited B cell-dependent HuMOG EAE in dose-dependent manner and strongly reduced neurological symptoms. At the efficacious oral dose of 30 mg/kg, remibrutinib showed strong BTK occupancy in the peripheral immune organs and in the brain of EAE mice. Ex vivo MOG-specific T cell recall response was reduced, but not polyclonal T cell response, indicating absence of non-specific T cell inhibition. Remibrutinib also inhibited RatMOG EAE, suggesting that myeloid cell and microglia inhibition contribute to its efficacy in EAE. Remibrutinib did not reduce B cells, total Ig levels nor MOG-specific antibody response. In brain and spinal cord tissue a clear anti-inflammatory effect in microglia was detected by scRNA-seq. Finally, remibrutinib showed potent inhibition of in vitro immune complex-driven inflammatory response in human microglia. CONCLUSION Remibrutinib inhibited EAE models by a two-pronged mechanism based on inhibition of pathogenic B cell autoreactivity, as well as direct anti-inflammatory effects in microglia. Remibrutinib showed efficacy in both models in absence of direct B cell depletion, broad T cell inhibition or reduction of total Ig levels. These findings support the view that remibrutinib may represent a novel treatment option for patients with MS.
Collapse
Affiliation(s)
| | - Enrico Ferrero
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Cindy Schmid
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Catherine Huck
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Sarah Tisserand
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joelle Rubert
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Bruno Cenni
- Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
6
|
Londoño AC, Mora CA. Continued dysregulation of the B cell lineage promotes multiple sclerosis activity despite disease modifying therapies. F1000Res 2023; 10:1305. [PMID: 37655229 PMCID: PMC10467621 DOI: 10.12688/f1000research.74506.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
A clear understanding of the origin and role of the different subtypes of the B cell lineage involved in the activity or remission of multiple sclerosis (MS) is important for the treatment and follow-up of patients living with this disease. B cells, however, are dynamic and can play an anti-inflammatory or pro-inflammatory role, depending on their milieu. Depletion of B cells has been effective in controlling the progression of MS, but it can have adverse side effects. A better understanding of the role of the B cell subtypes, through the use of surface biomarkers of cellular activity with special attention to the function of memory and other regulatory B cells (Bregs), will be necessary in order to offer specific treatments without inducing undesirable effects.
Collapse
Affiliation(s)
- Ana C. Londoño
- Neurologia y Neuroimagen, Instituto Neurologico de Colombia (INDEC), Medellin, Antioquia, Colombia
| | - Carlos A. Mora
- Spine & Brain Institute, Ascension St. Vincent's Riverside Hospital, Jacksonville, FL, 32204, USA
| |
Collapse
|
7
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
8
|
Fan YN, Zhao G, Zhang Y, Ye QN, Sun YQ, Shen S, Liu Y, Xu CF, Wang J. Progress in nanoparticle-based regulation of immune cells. MEDICAL REVIEW (2021) 2023; 3:152-179. [PMID: 37724086 PMCID: PMC10471115 DOI: 10.1515/mr-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/03/2023] [Indexed: 09/20/2023]
Abstract
Immune cells are indispensable defenders of the human body, clearing exogenous pathogens and toxicities or endogenous malignant and aging cells. Immune cell dysfunction can cause an inability to recognize, react, and remove these hazards, resulting in cancers, inflammatory diseases, autoimmune diseases, and infections. Immune cells regulation has shown great promise in treating disease, and immune agonists are usually used to treat cancers and infections caused by immune suppression. In contrast, immunosuppressants are used to treat inflammatory and autoimmune diseases. However, the key to maintaining health is to restore balance to the immune system, as excessive activation or inhibition of immune cells is a common complication of immunotherapy. Nanoparticles are efficient drug delivery systems widely used to deliver small molecule inhibitors, nucleic acid, and proteins. Using nanoparticles for the targeted delivery of drugs to immune cells provides opportunities to regulate immune cell function. In this review, we summarize the current progress of nanoparticle-based strategies for regulating immune function and discuss the prospects of future nanoparticle design to improve immunotherapy.
Collapse
Affiliation(s)
- Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Gui Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yue Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Qian-Ni Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yi-Qun Sun
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yang Liu
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong Province, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Beckers L, Somers V, Fraussen J. IgD -CD27 - double negative (DN) B cells: Origins and functions in health and disease. Immunol Lett 2023; 255:67-76. [PMID: 36906182 DOI: 10.1016/j.imlet.2023.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Human B cells can be divided into four main subsets based on differential expression of immunoglobulin (Ig)D and CD27. IgD-CD27- double negative (DN) B cells make up a heterogeneous group of B cells that have first been described in relation to aging and systemic lupus erythematosus but have been mostly disregarded in B cell research. Over the last few years, DN B cells have gained a lot of interest because of their involvement in autoimmune and infectious diseases. DN B cells can be divided into different subsets that originate via different developmental processes and have different functional properties. Further research into the origin and function of different DN subsets is needed to better understand the role of these B cells in normal immune responses and how they could be targeted in specific pathologies. In this review, we give an overview of both phenotypic and functional properties of DN B cells and provide insight into the currently proposed origins of DN B cells. Moreover, their involvement in normal aging and different pathologies is discussed.
Collapse
Affiliation(s)
- Lien Beckers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Veerle Somers
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Judith Fraussen
- University MS Center (UMSC), Hasselt-Pelt, Hasselt, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
10
|
Chunder R, Schropp V, Jabari S, Marzin M, Amor S, Kuerten S. Identification of a novel role for matrix metalloproteinase-3 in the modulation of B cell responses in multiple sclerosis. Front Immunol 2022; 13:1025377. [PMID: 36389698 PMCID: PMC9644161 DOI: 10.3389/fimmu.2022.1025377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 07/30/2023] Open
Abstract
There has been a growing interest in the presence and role of B cell aggregates within the central nervous system of multiple sclerosis patients. However, very little is known about the expression profile of molecules associated with these aggregates and how they might be influencing aggregate development or persistence in the brain. The current study focuses on the effect of matrix metalloproteinase-3, which is associated with B cell aggregates in autopsied multiple sclerosis brain tissue, on B cells. Autopsied brain sections from multiple sclerosis cases and controls were screened for the presence of CD20+ B cell aggregates and expression of matrix metalloproteinase-3. Using flow cytometry, enzyme-linked immunosorbent assay and gene array as methods, in vitro studies were conducted using peripheral blood of healthy volunteers to demonstrate the effect of matrix metalloproteinase-3 on B cells. Autopsied brain sections from multiple sclerosis patients containing aggregates of B cells expressed a significantly higher amount of matrix metalloproteinase-3 compared to controls. In vitro experiments demonstrated that matrix metalloproteinase-3 dampened the overall activation status of B cells by downregulating CD69, CD80 and CD86. Furthermore, matrix metalloproteinase-3-treated B cells produced significantly lower amounts of interleukin-6. Gene array data confirmed that matrix metalloproteinase-3 altered the proliferation and survival profiles of B cells. Taken together, out data indicate a role for B cell modulatory properties of matrix metalloproteinase-3.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Verena Schropp
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Samir Jabari
- Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Manuel Marzin
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Sandra Amor
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
11
|
Visweswaran M, Hendrawan K, Massey JC, Khoo ML, Ford CD, Zaunders JJ, Withers B, Sutton IJ, Ma DDF, Moore JJ. Sustained immunotolerance in multiple sclerosis after stem cell transplant. Ann Clin Transl Neurol 2022; 9:206-220. [PMID: 35106961 PMCID: PMC8862434 DOI: 10.1002/acn3.51510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/12/2022] Open
Abstract
Objective Autologous haematopoietic stem cell transplantation (AHSCT) has the potential to induce sustained periods of disease remission in multiple sclerosis (MS), which is an inflammatory disease of the central nervous system (CNS) characterised by demyelination and axonal degeneration. However, the mechanisms associated with durable treatment responses in MS require further elucidation. Methods To characterise the longer term immune reconstitution effects of AHSCT at 24 and 36 months (M) post‐transplant, high‐dimensional immunophenotyping of peripheral blood mononuclear cells from 22 MS patients was performed using two custom‐designed 18‐colour flow cytometry panels. Results The higher baseline frequencies of specific pro‐inflammatory immune cells (T‐helper‐17 (Th17) cells, mucosal‐associated invariant T‐cells and CNS‐homing T‐conventional (T‐conv) cells observed in MS patients were decreased post‐AHSCT by 36M. This was accompanied by a post‐AHSCT increase in frequencies and absolute counts of immunoregulatory CD56hi natural killer cells at 24M and terminally differentiated CD8+CD28−CD57+ cells until 36M. A sustained increase in the proportion of naïve B‐cells, with persistent depletion of memory B‐cells and plasmablasts was observed until 36M. Reconstitution of the B‐cell repertoire was accompanied by a reduction in the frequency of circulating T‐follicular helper cells (cTfh) expressing programmed cell death‐1 (PD1+) at 36M. Associations between frequency dynamics and clinical outcomes indicated only responder patients to exhibit a decrease in Th17, CNS‐homing T‐conv and PD1+ cTfh pro‐inflammatory subsets at 36M, and an increase in CD39+ T‐regulatory cells at 24M. Interpretation AHSCT induces substantial recalibration of pro‐inflammatory and immunoregulatory components of the immune system of MS patients for up to 36M post‐transplant.
Collapse
Affiliation(s)
- Malini Visweswaran
- Blood, Stem Cells and Cancer Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kevin Hendrawan
- Blood, Stem Cells and Cancer Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer C Massey
- Blood, Stem Cells and Cancer Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Department of Neurology, St Vincent's Hospital Sydney, Darlinghurst, Sydney, New South Wales, Australia.,Department of Haematology, St Vincent's Hospital Sydney, Darlinghurst, Sydney, New South Wales, Australia
| | - Melissa L Khoo
- Blood, Stem Cells and Cancer Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Carole D Ford
- Blood, Stem Cells and Cancer Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - John J Zaunders
- NSW State Reference Laboratory for HIV, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Barbara Withers
- Blood, Stem Cells and Cancer Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Department of Haematology, St Vincent's Hospital Sydney, Darlinghurst, Sydney, New South Wales, Australia
| | - Ian J Sutton
- Department of Neurology, St Vincent's Hospital Sydney, Darlinghurst, Sydney, New South Wales, Australia
| | - David D F Ma
- Blood, Stem Cells and Cancer Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Department of Haematology, St Vincent's Hospital Sydney, Darlinghurst, Sydney, New South Wales, Australia
| | - John J Moore
- Blood, Stem Cells and Cancer Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Department of Haematology, St Vincent's Hospital Sydney, Darlinghurst, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Prado C, Osorio-Barrios F, Falcón P, Espinoza A, Saez JJ, Yuseff MI, Pacheco R. Dopaminergic stimulation leads B-cell infiltration into the central nervous system upon autoimmunity. J Neuroinflammation 2021; 18:292. [PMID: 34920747 PMCID: PMC8680379 DOI: 10.1186/s12974-021-02338-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here, we addressed the role of the dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in B cells in animal models of MS. METHODS Mice harbouring Drd3-deficient or Drd3-sufficient B cells were generated by bone marrow transplantation into recipient mice devoid of B cells. In these mice, we compared the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC-function of B cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B cells display a fundamental APC-function in the CNS. APC-function was assessed in vitro by pulsing B cells with huMOG-coated beads and then co-culturing with MOG-specific T cells. RESULTS Our data show that the selective Drd3 deficiency in B cells abolishes the disease development in the huMOG-induced EAE model. Mechanistic analysis indicates that although DRD3-signalling did not affect the APC-function of B cells, DRD3 favours the CNS-tropism in a subset of pro-inflammatory B cells in the huMOG-induced EAE model, an effect that was associated with higher CXCR3 expression. Conversely, the results show that the selective Drd3 deficiency in B cells exacerbates the disease severity in the pMOG-induced EAE model. Further analysis shows that DRD3-stimulation increased the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in the pMOG-induced EAE model. CONCLUSIONS Our findings demonstrate that DRD3 in B cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B cells with APC-function and promoting CNS-homing of B cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B cells as a critical regulator of CNS-autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, 7510156, Santiago, Chile
| | - Francisco Osorio-Barrios
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Paulina Falcón
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile
| | - Juan José Saez
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - María Isabel Yuseff
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Ciencia & Vida, Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, 7780272, Santiago, Chile. .,Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, 7510156, Santiago, Chile.
| |
Collapse
|
13
|
Kashani N, Kelland EE, Vajdi B, Anderson LM, Gilmore W, Lund BT. Immune Regulatory Cell Bias Following Alemtuzumab Treatment in Relapsing-Remitting Multiple Sclerosis. Front Immunol 2021; 12:706278. [PMID: 34777337 PMCID: PMC8581537 DOI: 10.3389/fimmu.2021.706278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Alemtuzumab is a highly effective treatment for relapsing-remitting multiple sclerosis. It selectively targets the CD52 antigen to induce profound lymphocyte depletion, followed by recovery of T and B cells with regulatory phenotypes. We previously showed that regulatory T cell function is restored with cellular repletion, but little is known about the functional capacity of regulatory B-cells and peripheral blood monocytes during the repletion phase. In this study (ClinicalTrials.gov ID# NCT03647722) we simultaneously analyzed the change in composition and function of both regulatory lymphocyte populations and distinct monocyte subsets in cross-sectional cohorts of MS patients prior to or 6, 12, 18, 24 or 36 months after their first course of alemtuzumab treatment. We found that the absolute number and percentage of cells with a regulatory B cell phenotype were significantly higher after treatment and were positivity correlated with regulatory T cells. In addition, B cells from treated patients secreted higher levels of IL-10 and BDNF, and inhibited the proliferation of autologous CD4+CD25- T cell targets. Though there was little change in monocytes populations overall, following the second annual course of treatment, CD14+ monocytes had a significantly increased anti-inflammatory bias in cytokine secretion patterns. These results confirmed that the immune system in alemtuzumab-treated patients is altered in favor of a regulatory milieu that involves expansion and increased functionality of multiple regulatory populations including B cells, T cells and monocytes. Here, we showed for the first time that functionally competent regulatory B cells re-appear with similar kinetics to that of regulatory T-cells, whereas the change in anti-inflammatory bias of monocytes does not occur until after the second treatment course. These findings justify future studies of all regulatory cell types following alemtuzumab treatment to reveal further insights into mechanisms of drug action, and to identify key immunological predictors of durable clinical efficacy in alemtuzumab-treated patients.
Collapse
Affiliation(s)
- Nicole Kashani
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Eve E Kelland
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Borna Vajdi
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauren M Anderson
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wendy Gilmore
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brett T Lund
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Nogimori T, Sugawara Y, Higashiguchi M, Murakami H, Akita H, Takahama S, Tanaka S, Yamamoto T. OMIP 078: A 31-parameter panel for comprehensive immunophenotyping of multiple immune cells in human peripheral blood mononuclear cells. Cytometry A 2021; 99:893-898. [PMID: 34355867 DOI: 10.1002/cyto.a.24490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
This 31-parameter panel was developed for simultaneously measuring multiple immune cell populations including T cells, B cells, natural killer cells, dendritic cells, monocytes, and hematopoietic progenitor cells in human peripheral blood mononuclear cells. This panel enables the capture of individual immune dynamics and assessments of single-cell changes in the immune system that are associated with aging and diseases. This panel includes markers to separate the differentiation status of each cell population and might be applicable to studies of infectious and autoimmune diseases, as patient samples are usually limited in volume and require an analysis system that provides a relatively large amount of information.
Collapse
Affiliation(s)
- Takuto Nogimori
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuko Sugawara
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,BD Biosciences, Nippon Becton Dickinson Company, Ltd, Tokyo, Japan
| | - Masaya Higashiguchi
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirotomo Murakami
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Akita
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shokichi Takahama
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Satoshi Tanaka
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,BD Biosciences, Nippon Becton Dickinson Company, Ltd, Tokyo, Japan
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Haindl MT, Üçal M, Klaus B, Tögl L, Dohrmann J, Adzemovic MZ, Enzinger C, Hochmeister S. Anti-CD20 treatment effectively attenuates cortical pathology in a rat model of widespread cortical demyelination. J Neuroinflammation 2021; 18:138. [PMID: 34130726 PMCID: PMC8207776 DOI: 10.1186/s12974-021-02189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cortical demyelination represents a prominent feature of the multiple sclerosis (MS) brain, especially in (late) progressive stages. We recently developed a new rat model that reassembles critical features of cortical pathology characteristic to progressive types of MS. In persons affected by MS, B-cell depleting anti-CD20 therapy proved successful in the relapsing remitting as well as the early progressive course of MS, with respect to reducing the relapse rate and number of newly formed lesions. However, if the development of cortical pathology can be prevented or at least slowed down is still not clear. The main goal of this study was thus to increase our understanding for the mode of action of B-cells and B-cell directed therapy on cortical lesions in our rat model. Methods For this purpose, we set up two separate experiments, with two different induction modes of B-cell depletion. Brain tissues were analyzed thoroughly using histology. Results We observed a marked reduction of cortical demyelination, microglial activation, astrocytic reaction, and apoptotic cell loss in anti-CD20 antibody treated groups. At the same time, we noted increased neuronal preservation compared to control groups, indicating a favorable impact of anti-CD20 therapy. Conclusion These findings might pave the way for further research on the mode of action of B-cells and therefore help to improve therapeutic options for progressive MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02189-w.
Collapse
Affiliation(s)
| | - Muammer Üçal
- Department of Neurosurgery, Research Unit Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Benjamin Klaus
- Department of Neurosurgery, Research Unit Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Lennart Tögl
- Department of Neurosurgery, Research Unit Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Jana Dohrmann
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Milena Z Adzemovic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | | | | |
Collapse
|
16
|
Zhu L, Chen B, Su W. A Review of the Various Roles and Participation Levels of B-Cells in Non-Infectious Uveitis. Front Immunol 2021; 12:676046. [PMID: 34054864 PMCID: PMC8160461 DOI: 10.3389/fimmu.2021.676046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Non-infectious uveitis is an inflammatory disorder of the eye that accounts for severe visual loss without evident infectious agents. While T cells are supposed to dominate the induction of inflammation in non-infectious uveitis, the role of B cells in the pathogenesis of this disease is obscure. Therefore, this review aimed to discuss diverse B-cell participation in different non-infectious uveitides and their roles in the pathogenesis of this disease as well as the mechanism of action of rituximab. Increasing evidence from experimental models and human non-infectious uveitis has suggested the participation of B cells in non-infectious uveitis. The participation levels vary in different uveitides. Furthermore, B cells play multiple roles in the pathogenic mechanisms. B cells produce autoantibodies, regulate T cell responses via antibody-independent functions, and constitute ectopic lymphoid structures. Regulatory B cells perform pivotal anti-inflammatory functions in non-infectious uveitis. Rituximab may work by depleting pro-inflammatory B cells and restoring the quantity and function of regulatory B cells in this disease. Identifying the levels of B-cell participation and the associated roles is beneficial for optimizing therapy. Diversified experimental model choices and emerging tools and/or methods are conducive for future studies on this topic.
Collapse
Affiliation(s)
- Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Mizrachi T, Marsha O, Brusin K, Ben-David Y, Thakur GA, Vaknin-Dembinsky A, Treinin M, Brenner T. Suppression of neuroinflammation by an allosteric agonist and positive allosteric modulator of the α7 nicotinic acetylcholine receptor GAT107. J Neuroinflammation 2021; 18:99. [PMID: 33902624 PMCID: PMC8077754 DOI: 10.1186/s12974-021-02149-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background The α7 nicotinic acetylcholine receptor (α7 nAChR) negatively regulates the synthesis and release of pro-inflammatory cytokines by immune cells. Our previous studies showed that in encephalitogenic T cells, α7 nAChR expression is upregulated and that activation of the cholinergic system can attenuate experimental autoimmune encephalomyelitis (EAE). GAT107 is an allosteric agonist and positive allosteric modulator (ago-PAM) of α7 nAChR that can produce persistent activation of this receptor. Therefore, in the present study, we investigated the effect of GAT107 on neuroinflammation in EAE, the animal model used for the study of multiple sclerosis (MS) via α7 nAChR, and the inflammatory pathways involved. Methods EAE was induced by administration of myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 mice. EAE mice were treated with the ago-PAM GAT107 or a placebo for 9 days, starting from the day of EAE induction. Clinical assessment and immunological evaluation of immune cells and cytokine production was performed. Results Following activation of the α7 nAChR by GAT107 during EAE, disease severity was significantly reduced by 70% and was correlated with a reduction in the extent of neuroinflammation in the CNS. The treatment reduced encephalitogenic T cell proliferation and the production of pro-inflammatory cytokines, as well as increased the production of the anti-inflammatory cytokine IL-10. Furthermore, the expression of immune cell markers was altered by GAT107 treatment, which induced a significant reduction in macrophages, dendritic cells, and B cells, as well as a reduction in anti-MOG35–55 antibodies. Additionally, GAT107 was found to directly activate α7 nAChR in murine macrophage RAW264.7 cells and in human PBMCs derived from MS patients and healthy donors. Conclusions Our results show that GAT107 can be a useful molecule for harnessing the cholinergic anti-inflammatory pathway for long-lasting and wide-ranging modulation and downregulation of neuroinflammation in EAE.
Collapse
Affiliation(s)
- Tehila Mizrachi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Oshrit Marsha
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Karen Brusin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Yael Ben-David
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ganesh A Thakur
- Pharmaceutical Science, Bouve College of Health Science, Northeastern University, Boston, USA
| | - Adi Vaknin-Dembinsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| | - Millet Treinin
- Department of Medical Neurobiology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Talma Brenner
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
18
|
Chunder R, Schropp V, Kuerten S. B Cells in Multiple Sclerosis and Virus-Induced Neuroinflammation. Front Neurol 2020; 11:591894. [PMID: 33224101 PMCID: PMC7670072 DOI: 10.3389/fneur.2020.591894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation can be defined as an inflammatory response within the central nervous system (CNS) mediated by a complex crosstalk between CNS-resident and infiltrating immune cells from the periphery. Triggers for neuroinflammation not only include pathogens, trauma and toxic metabolites, but also autoimmune diseases such as neuromyelitis optica spectrum disorders and multiple sclerosis (MS) where the inflammatory response is recognized as a disease-escalating factor. B cells are not considered as the first responders of neuroinflammation, yet they have recently gained focus as a key component involved in the disease pathogenesis of several neuroinflammatory disorders like MS. Traditionally, the prime focus of the role of B cells in any disease, including neuroinflammatory diseases, was their ability to produce antibodies. While that may indeed be an important contribution of B cells in mediating disease pathogenesis, several lines of recent evidence indicate that B cells are multifunctional players during an inflammatory response, including their ability to present antigens and produce an array of cytokines. Moreover, interaction between B cells and other cellular components of the immune system or nervous system can either promote or dampen neuroinflammation depending on the disease. Given that the interest in B cells in neuroinflammation is relatively new, the precise roles that they play in the pathophysiology and progression of different neuroinflammatory disorders have not yet been well-elucidated. Furthermore, the possibility that they might change their function during the course of neuroinflammation adds another level of complexity and the puzzle remains incomplete. Indeed, advancing our knowledge on the role of B cells in neuroinflammation would also allow us to tackle these disorders better. Here, we review the available literature to explore the relationship between autoimmune and infectious neuroinflammation with a focus on the involvement of B cells in MS and viral infections of the CNS.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Verena Schropp
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
19
|
Najafi S, Moghadam NB, Saadat P, Noorbakhsh SM, Mohammadi AV, Manouchehrinia A, Hosseini M, Matsuo H, Mirshafiey A. A controlled, randomized phase II clinical trial for efficacy and safety evaluation of mannuronic acid in secondary progressive form of multiple sclerosis. Int J Neurosci 2020; 132:403-412. [PMID: 32878514 DOI: 10.1080/00207454.2020.1818741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The β-D-Mannuronic acid (M2000) as a novel immunosuppressive drug, patented (PCT/EP2017/067920), has shown positive effects in experimental model of multiple sclerosis (MS). In this study, our aim was to assess efficacy and safety outcomes in MS treated patients with mannuronic acid compared to the conventional drug. METHODS In a 6-month, randomized controlled, phase II trial, we enrolled patients who had secondary progressive multiple sclerosis (SPMS), were 21-54 years of age, with a score of 1-7 on the Expanded Disability Status Scale (EDSS), and who had at least one relapse in the previous 6 months. Patients were administered orally 1000 mg/day (two 500 mg/capsule daily) of M2000. Endpoints included changes in brain magnetic resonance imaging (MRI) measures and the EDSS score, as compared to the conventional drug (interferon beta-1a, interferon beta-1b). RESULTS A total of 25 (92.5%) of the M2000 treated patients and 25 conventionally treated patients completed the study. M2000 had better performance compared to the conventional drug regarding to MRI-related measurements, however, the differences between groups were not statistically significant. M2000 decreased the disability progression over the 6-month period. The EDSS score was decreased in the M2000 treated group in the sixth month versus the conventional drug (p < 0.009). Furthermore, we did not observe any short-term side effects. CONCLUSIONS As compared with the conventional drug, mannuronic acid (M2000) improved the rate of disability progression. This clinical trial demonstrated the efficacy and safety of mannuronic acid in patients with SPMS. (Registered Clinical Trials number, IRCT2016111313739N6).
Collapse
Affiliation(s)
- Soheil Najafi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Beladi Moghadam
- Department of Neurology, Imam Hossein Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Ali Manouchehrinia
- Department of Clinical Neuroscience (CNS), Karolinska Institutet, Stockholm, Sweden
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hidenori Matsuo
- National Hospital Organization, Nagasaki Kawatana Medical Center, Nagasaki, Japan
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun Rev 2020; 19:102647. [PMID: 32801039 DOI: 10.1016/j.autrev.2020.102647] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) where immunopathology is thought to be mediated by myelin-reactive CD4+ T helper (TH) cells. The TH cells most commonly implicated in the pathogenesis of the disease are of TH1 and TH17 lineage, which are defined by the production of interferon-γ and interleukin-17, respectively. Moreover, there is emerging evidence for the involvement of TH17.1 cells, which share the hallmarks of TH1 and TH17 subsets. In this review, we summarise current knowledge about the potential role of TH17 subsets in the initiation and progression of the disease and put a focus on their response to approved immunomodulatory MS drugs. In this regard, TH17 cells are abundant in peripheral blood, cerebrospinal fluid and brain lesions of MS patients, and their counts and inflammatory mediators are further increased during relapses. Fingolimod and alemtuzumab induce a paramount decrease in central memory T cells, which harbour the majority of peripheral TH17 cells, while the efficacy of natalizumab, dimethyl fumarate and importantly hematopoietic stem cell therapy correlates with TH17.1 cell inhibition. Interestingly, also CD20 antibodies target highly inflammatory TH cells and hamper TH17 differentiation by IL-6 reductions. Moreover, recovery rates of TH cells best correlate with long-term efficacy after therapeutical immunodepletion. We conclude that central memory TH17.1 cells play a pivotal role in MS pathogenesis and they represent a major target of MS therapeutics.
Collapse
Affiliation(s)
- Tobias Moser
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria; Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Liechtensteinstrasse 67, 3120 Mistelbach, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
21
|
Klöß S, Dehmel S, Braun A, Parnham MJ, Köhl U, Schiffmann S. From Cancer to Immune-Mediated Diseases and Tolerance Induction: Lessons Learned From Immune Oncology and Classical Anti-cancer Treatment. Front Immunol 2020; 11:1423. [PMID: 32733473 PMCID: PMC7360838 DOI: 10.3389/fimmu.2020.01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022] Open
Abstract
Success in cancer treatment over the last four decades has ranged from improvements in classical drug therapy to immune oncology. Anti-cancer drugs have also often proven beneficial for the treatment of inflammatory and autoimmune diseases. In this review, we report on challenging examples that bridge between treatment of cancer and immune-mediated diseases, addressing mechanisms and experimental models as well as clinical investigations. Patient-derived tumor xenograft (PDX) (humanized) mouse models represent useful tools for preclinical evaluation of new therapies and biomarker identification. However, new developments using human ex vivo approaches modeling cancer, for example in microfluidic human organs-on-chips, promise to identify key molecular, cellular and immunological features of human cancer progression in a fully human setting. Classical drugs which bridge the gap, for instance, include cytotoxic drugs, proteasome inhibitors, PI3K/mTOR inhibitors and metabolic inhibitors. Biologicals developed for cancer therapy have also shown efficacy in the treatment of autoimmune diseases. In immune oncology, redirected chimeric antigen receptor (CAR) T cells have achieved spectacular remissions in refractory B cell leukemia and lymphoma and are currently under development for tolerance induction using cell-based therapies such as CAR Tregs or NK cells. Finally, a brief outline will be given of the lessons learned from bridging cancer and autoimmune diseases as well as tolerance induction.
Collapse
Affiliation(s)
- Stephan Klöß
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
| | - Ulrike Köhl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany.,Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Susanne Schiffmann
- Institute of Clinical Pharmacology, University Hospital Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| |
Collapse
|
22
|
Rolla S, Maglione A, De Mercanti SF, Clerico M. The Meaning of Immune Reconstitution after Alemtuzumab Therapy in Multiple Sclerosis. Cells 2020; 9:E1396. [PMID: 32503344 PMCID: PMC7348777 DOI: 10.3390/cells9061396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Alemtuzumab is a monoclonal antibody that binds to CD52, a protein present on the surface of mature lymphocytes, but not on the stem cells from which these lymphocytes are derived. It is currently used as an immune reconstitution therapy in patients with relapsing-remitting multiple sclerosis. Alemtuzumab treatment is an intermittent infusion that induces long-term remission of Multiple Sclerosis also in the treatment-free period. After the robust T and B cell depletion induced by alemtuzumab, the immune system undergoes radical changes during its reconstitution. In this review, we will discuss the current knowledge on the reconstitution of the lymphocyte repertoire after alemtuzumab treatment and how it could affect the development of side effects, which led to its temporary suspension by the European Medical Agency.
Collapse
Affiliation(s)
- Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano (TO), Italy; (A.M.); (S.F.D.M.); (M.C.)
| | | | | | | |
Collapse
|
23
|
Abstract
The search for an ideal multiple sclerosis biomarker with good diagnostic value, prognostic reference and an impact on clinical outcome has yet to be realized and is still ongoing. The aim of this review is to establish an overview of the frequent biomarkers for multiple sclerosis that exist to date. The review summarizes the results obtained from electronic databases, as well as thorough manual searches. In this review the sources and methods of biomarkers extraction are described; in addition to the description of each biomarker, determination of the prognostic, diagnostic, disease monitoring and treatment response values besides clinical impact they might possess. We divided the biomarkers into three categories according to the achievement method: laboratory markers, genetic-immunogenetic markers and imaging markers. We have found two biomarkers at the time being considered the gold standard for MS diagnostics. Unfortunately, there does not exist a single solitary marker being able to present reliable diagnostic value, prognostic value, high sensitivity and specificity as well as clinical impact. We need more studies to find the best biomarker for MS.
Collapse
|
24
|
Ogata H, Zhang X, Yamasaki R, Fujii T, Machida A, Morimoto N, Kaida K, Masuda T, Ando Y, Kuwahara M, Kusunoki S, Nakamura Y, Matsushita T, Isobe N, Kira JI. Intrathecal cytokine profile in neuropathy with anti-neurofascin 155 antibody. Ann Clin Transl Neurol 2019; 6:2304-2316. [PMID: 31657126 PMCID: PMC6856599 DOI: 10.1002/acn3.50931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
Objective To characterize the CSF cytokine profile in chronic inflammatory demyelinating polyneuropathy (CIDP) patients with IgG4 anti‐neurofascin 155 (NF155) antibodies (NF155+ CIDP) or those lacking anti‐NF155 antibodies (NF155− CIDP). Methods Twenty‐eight CSF cytokines/chemokines/growth factors were measured by multiplexed fluorescent immunoassay in 35 patients with NF155+ CIDP, 36 with NF155− CIDP, and 28 with non‐inflammatory neurological disease (NIND). Results CSF CXCL8/IL‐8, IL‐13, TNF‐α, CCL11/eotaxin, CCL2/MCP‐1, and IFN‐γ were significantly higher, while IL‐1β, IL‐1ra, and G‐CSF were lower, in NF155+ CIDP than in NIND. Compared with NF155− CIDP, CXCL8/IL‐8 and IL‐13 were significantly higher, and IL‐1β, IL‐1ra, and IL‐6 were lower, in NF155+ CIDP. CXCL8/IL‐8, IL‐13, CCL11/eotaxin, CXCL10/IP‐10, CCL3/MIP‐1α, CCL4/MIP‐1β, and TNF‐α levels were positively correlated with markedly elevated CSF protein, while IL‐13, CCL11/eotaxin, and IL‐17 levels were positively correlated with increased CSF cell counts. IL‐13, CXCL8/IL‐8, CCL4/MIP‐1β, CCL3/MIP‐1α, and CCL5/RANTES were decreased by combined immunotherapies in nine NF155+ CIDP patients examined longitudinally. By contrast, NF155− CIDP had significantly increased IFN‐γ compared with NIND, and exhibited positive correlations of IFN‐γ, CXCL10/IP‐10, and CXCL8/IL‐8 with CSF protein. Canonical discriminant analysis of cytokines/chemokines revealed that NF155+ and NF155− CIDP were separable, and that IL‐4, IL‐10, and IL‐13 were the three most significant discriminators. Interpretation Intrathecal upregulation of type 2 helper T (Th2) cell cytokines is characteristic of IgG4 NF155+ CIDP, while type 1 helper T cell cytokines are increased in CIDP regardless of the presence or absence of anti‐NF155 antibodies, suggesting that overproduction of Th2 cell cytokines is unique to NF155+ CIDP.
Collapse
Affiliation(s)
- Hidenori Ogata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xu Zhang
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Fujii
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Machida
- Department of Neurology, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Nobutoshi Morimoto
- Department of Neurology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | - Kenichi Kaida
- Department of Neurology, Anti-aging and Vascular Medicine, National Defense Medical College, Saitama, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoi Kuwahara
- Department of Neurology, School of Medicine, Kinki University, Osaka, Japan
| | - Susumu Kusunoki
- Department of Neurology, School of Medicine, Kinki University, Osaka, Japan
| | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
van Mierlo HC, Broen JCA, Kahn RS, de Witte LD. B-cells and schizophrenia: A promising link or a finding lost in translation? Brain Behav Immun 2019; 81:52-62. [PMID: 31271869 DOI: 10.1016/j.bbi.2019.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/07/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Recent genetic studies have suggested a potential role for B-cells in the pathogenesis of schizophrenia. Greater insight in the functioning of B-cells in patients with schizophrenia is therefore of importance. In this narrative review we aim to give an overview of the current literature on B-cells and schizophrenia. We found no evidence for altered numbers of these cells in blood. We did find support for increased levels of B-cell related cytokines and certain autoantibodies. Studies on B-cell development and function, or their numbers in cerebrospinal fluid or brain tissue are very limited. Based on the available data we appraise whether various B-cell mediated pathological mechanisms are likely to play a role in schizophrenia and provide directions for future research.
Collapse
Affiliation(s)
- Hans C van Mierlo
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Jasper C A Broen
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine, New York, United States; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, United States
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, United States; Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, United States
| |
Collapse
|
26
|
Ntellas P, Dardiotis E, Sevdali E, Siokas V, Aloizou AM, Tsinti G, Germenis AE, Hadjigeorgiou GM, Eibel H, Speletas M. TNFRSF13C/BAFFR P21R and H159Y polymorphisms in multiple sclerosis. Mult Scler Relat Disord 2019; 37:101422. [PMID: 32172995 DOI: 10.1016/j.msard.2019.101422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 01/13/2023]
Abstract
Recent studies implicate B cells in multiple sclerosis (MS) pathogenesis, and consequently, several molecules participating in B cell survival and proliferation, including B-cell activating factor (BAFF), have recently been analyzed in MS patients. BAFF mediates its function through binding to three receptors; among them, its interaction with the BAFF receptor (BAFFR) is crucial in mediating its survival function. Interestingly, two common polymorphisms of the TNFRSF13C gene, encoding BAFFR, P21R (rs77874543) and H159Y (rs61756766), have been reported to affect BAFFR assembly and signaling. In order to evaluate the possible contribution of BAFFR in MS pathogenesis and/or phenotype, we analyzed both TNFRSF13C/BAFFR polymorphisms in 486 MS patients in relation to their disease severity, their disability status and the age of disease onset and duration. As control group, we used allele frequencies extracted from the Exome Aggregation Consortium (ExAC) Browser. Interestingly, we found a higher prevalence of the H159Y polymorphism in MS patients, suggesting that enhanced BAFFR-signaling might contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Panagiotis Ntellas
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eirini Sevdali
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Gerasimina Tsinti
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Anastasios E Germenis
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | - Hermann Eibel
- Centre for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Matthaios Speletas
- Department of Immunology & Histocompatibility, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| |
Collapse
|
27
|
Short-term changes in frequencies of circulating leukocytes associated with narrowband UVB phototherapy in people with clinically isolated syndrome. Sci Rep 2019; 9:7980. [PMID: 31138860 PMCID: PMC6538725 DOI: 10.1038/s41598-019-44488-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
Clinically isolated syndrome (CIS) is the earliest clinical episode in multiple sclerosis (MS). Low environmental exposure to UV radiation is implicated in risk of developing MS, and therefore, narrowband UVB phototherapy might delay progression to MS in people with CIS. Twenty individuals with CIS were recruited, and half were randomised to receive 24 sessions of narrowband UVB phototherapy over a period of 8 weeks. Here, the effects of narrowband UVB phototherapy on the frequencies of circulating immune cells and immunoglobulin levels after phototherapy are reported. Peripheral blood samples for all participants were collected at baseline, and 1, 2, 3, 6 and 12 months after enrolment. An extensive panel of leukocyte populations, including subsets of T cells, B cells, monocytes, dendritic cells, and natural killer cells were examined in phototherapy-treated and control participants, and immunoglobulin levels measured in serum. There were significant short-term increases in the frequency of naïve B cells, intermediate monocytes, and fraction III FoxP3+ T regulatory cells, and decreases in switched memory B cells and classical monocytes in phototherapy-treated individuals. Since B cells are increasingly targeted by MS therapies, the effects of narrowband UVB phototherapy in people with MS should be investigated further.
Collapse
|
28
|
Leng Y, Romero R, Xu Y, Galaz J, Slutsky R, Arenas-Hernandez M, Garcia-Flores V, Motomura K, Hassan SS, Reboldi A, Gomez-Lopez N. Are B cells altered in the decidua of women with preterm or term labor? Am J Reprod Immunol 2019; 81:e13102. [PMID: 30768818 DOI: 10.1111/aji.13102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
PROBLEM The immunophenotype of B cells at the maternal-fetal interface (decidua) in labor at term and preterm labor is poorly understood. METHOD OF STUDY Decidual tissues were obtained from women with preterm or term labor and from non-labor gestational age-matched controls. Immunophenotyping of decidual B cells was performed using multicolor flow cytometry. RESULTS (a) In the absence of acute or chronic chorioamnionitis, total B cells were more abundant in the decidua parietalis of women who delivered preterm than in those who delivered at term, regardless of the presence of labor; (b) decidual transitional and naïve B cells were the most abundant B-cell subsets; (c) decidual B1 B cells were increased in women with either labor at term or preterm labor and chronic chorioamnionitis compared to those without this placental lesion; (d) decidual transitional B cells were reduced in women with preterm labor compared to those without labor; (e) naïve, class-switched, and non-class-switched B cells in the decidual tissues underwent mild alterations with the process of preterm labor; (f) decidual plasmablasts seemed to increase in women with either labor at term or preterm labor with chronic chorioamnionitis; and (g) decidual B cells expressed high levels of interleukin (IL)-12, IL-6, and/or IL-35. CONCLUSION Total B cells are not increased with the presence of preterm or term labor; yet, specific subsets (B1 and plasmablasts) undergo alterations in women with chronic chorioamnionitis. Therefore, B cells are solely implicated in the pathological process of preterm labor in a subset of women with chronic inflammation of the placenta. These findings provide insight into the immunology of the maternal-fetal interface in preterm and term labor.
Collapse
Affiliation(s)
- Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
29
|
Van Kaer L, Postoak JL, Wang C, Yang G, Wu L. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cell Mol Immunol 2019; 16:531-539. [PMID: 30874627 DOI: 10.1038/s41423-019-0221-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) in which the immune system damages the protective insulation surrounding the nerve fibers that project from neurons. A hallmark of MS and its animal model, experimental autoimmune encephalomyelitis (EAE), is autoimmunity against proteins of the myelin sheath. Most studies in this field have focused on the roles of CD4+ T lymphocytes, which form part of the adaptive immune system as both mediators and regulators in disease pathogenesis. Consequently, the treatments for MS often target the inflammatory CD4+ T-cell responses. However, many other lymphocyte subsets contribute to the pathophysiology of MS and EAE, and these subsets include CD8+ T cells and B cells of the adaptive immune system, lymphocytes of the innate immune system such as natural killer cells, and subsets of innate-like T and B lymphocytes such as γδ T cells, natural killer T cells, and mucosal-associated invariant T cells. Several of these lymphocyte subsets can act as mediators of CNS inflammation, whereas others exhibit immunoregulatory functions in disease. Importantly, the efficacy of some MS treatments might be mediated in part by effects on lymphocytes other than CD4+ T cells. Here we review the contributions of distinct subsets of lymphocytes on the pathogenesis of MS and EAE, with an emphasis on lymphocytes other than CD4+ T cells. A better understanding of the distinct lymphocyte subsets that contribute to the pathophysiology of MS and its experimental models will inform the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Joshua L Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Chuan Wang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
30
|
Glatiramer Acetate modulates ion channels expression and calcium homeostasis in B cell of patients with relapsing-remitting multiple sclerosis. Sci Rep 2019; 9:4208. [PMID: 30862866 PMCID: PMC6414512 DOI: 10.1038/s41598-018-38152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/27/2018] [Indexed: 11/09/2022] Open
Abstract
To investigate the effects of Glatiramer Acetate (GA) on B cells by an integrated computational and experimental approach. GA is an immunomodulatory drug approved for the treatment of multiple sclerosis (MS). GA effect on B cells is yet to be fully elucidated. We compared transcriptional profiles of B cells from treatment-naïve relapsing remitting MS patients, treated or not with GA for 6 hours in vitro, and of B cells before and after six months of GA administration in vivo. Microarrays were analyzed with two different computational approaches, one for functional analysis of pathways (Gene Set Enrichment Analysis) and one for the identification of new drug targets (Mode-of-action by Network Analysis). GA modulates the expression of genes involved in immune response and apoptosis. A differential expression of genes encoding ion channels, mostly regulating Ca2+ homeostasis in endoplasmic reticulum (ER) was also observed. Microfluorimetric analysis confirmed this finding, showing a specific GA effect on ER Ca2+ concentration. Our findings unveils a GA regulatory effect on the immune response by influencing B cell phenotype and function. In particular, our results highlight a new functional role for GA in modulating Ca2+ homeostasis in these cells.
Collapse
|
31
|
Abstract
B cells play a vital function in multiple sclerosis (MS) pathogenesis through an array of effector functions. All currently approved MS disease-modifying therapies alter the frequency, phenotype, or homing of B cells in one way or another. The importance of this mechanism of action has been reinforced with the successful development and clinical testing of B-cell-depleting monoclonal antibodies that target the CD20 surface antigen. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, was approved by the Food and Drug Administration (FDA) in March 2017 after pivotal trials showed dramatic reductions in inflammatory disease activity in relapsing MS as well as lessening of disability progression in primary progressive MS. These and other clinical studies place B cells at the center of the inflammatory cascade in MS and provide a launching point for development of therapies that target selective pathogenic B-cell populations.
Collapse
Affiliation(s)
- Joseph J Sabatino
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Scott S Zamvil
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| | - Stephen L Hauser
- Multiple Sclerosis Center, Department of Neurology, University of California, San Francisco, California 94158
| |
Collapse
|
32
|
Lassmann H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front Immunol 2019; 9:3116. [PMID: 30687321 PMCID: PMC6335289 DOI: 10.3389/fimmu.2018.03116] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023] Open
Abstract
In the majority of patients multiple sclerosis starts with a relapsing remitting course (RRMS), which may at later times transform into secondary progressive disease (SPMS). In a minority of patients the relapsing remitting disease is skipped and the patients show progression from the onset (primary progressive MS, PPMS). Evidence obtained so far indicate major differences between RRMS and progressive MS, but no essential differences between SPMS and PPMS, with the exception of a lower incidence in the global load of focal white matter lesions and in particular in the presence of classical active plaques in PPMS. We suggest that in MS patients two types of inflammation occur, which develop in parallel but partially independent from each other. The first is the focal bulk invasion of T- and B-lymphocytes with profound blood brain barrier leakage, which predominately affects the white matter, and which gives rise to classical active demyelinated plaques. The other type of inflammation is a slow accumulation of T-cells and B-cells in the absence of major blood brain barrier damage in the connective tissue spaces of the brain, such as the meninges and the large perivascular Virchow Robin spaces, where they may form aggregates or in most severe cases structures in part resembling tertiary lymph follicles. This type of inflammation is associated with the formation of subpial demyelinated lesions in the cerebral and cerebellar cortex, with slow expansion of pre-existing lesions in the white matter and with diffuse neurodegeneration in the normal appearing white or gray matter. The first type of inflammation dominates in acute and relapsing MS. The second type of inflammation is already present in early stages of MS, but gradually increases with disease duration and patient age. It is suggested that CD8+ T-lymphocytes remain in the brain and spinal cord as tissue resident cells, which may focally propagate neuroinflammation, when they re-encounter their cognate antigen. B-lymphocytes may propagate demyelination and neurodegeneration, most likely by producing soluble neurotoxic factors. Whether lymphocytes within the brain tissue of MS lesions have also regulatory functions is presently unknown. Key open questions in MS research are the identification of the target antigen recognized by tissue resident CD8+ T-cells and B-cells and the molecular nature of the soluble inflammatory mediators, which may trigger tissue damage.
Collapse
Affiliation(s)
- Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Monteiro A, Cruto C, Rosado P, Rosado L, Fonseca AM, Paiva A. Interferon-beta treated-multiple sclerosis patients exhibit a decreased ratio between immature/transitional B cell subset and plasmablasts. J Neuroimmunol 2019; 326:49-54. [DOI: 10.1016/j.jneuroim.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
|
34
|
Montes Diaz G, Hupperts R, Fraussen J, Somers V. Dimethyl fumarate treatment in multiple sclerosis: Recent advances in clinical and immunological studies. Autoimmun Rev 2018; 17:1240-1250. [DOI: 10.1016/j.autrev.2018.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
|
35
|
Grajchen E, Hendriks JJA, Bogie JFJ. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol Commun 2018; 6:124. [PMID: 30454040 PMCID: PMC6240956 DOI: 10.1186/s40478-018-0628-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by massive infiltration of immune cells, demyelination, and axonal loss. Active MS lesions mainly consist of macrophages and microglia containing abundant intracellular myelin remnants. Initial studies showed that these foamy phagocytes primarily promote MS disease progression by internalizing myelin debris, presenting brain-derived autoantigens, and adopting an inflammatory phenotype. However, more recent studies indicate that phagocytes can also adopt a beneficial phenotype upon myelin internalization. In this review, we summarize and discuss the current knowledge on the spatiotemporal physiology of foamy phagocytes in MS lesions, and elaborate on extrinsic and intrinsic factors regulating their behavior. In addition, we discuss and link the physiology of myelin-containing phagocytes to that of foamy macrophages in other disorders such atherosclerosis.
Collapse
Affiliation(s)
- Elien Grajchen
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium.
| |
Collapse
|
36
|
Regulatory B and T lymphocytes in multiple sclerosis: friends or foes? AUTOIMMUNITY HIGHLIGHTS 2018; 9:9. [PMID: 30415321 PMCID: PMC6230324 DOI: 10.1007/s13317-018-0109-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Current clinical experience with immunomodulatory agents and monoclonal antibodies in principle has established the benefit of depleting lymphocytic populations in relapsing–remitting multiple sclerosis (RRMS). B and T cells may exert multiple pro-inflammatory actions, but also possess regulatory functions making their role in RRMS pathogenesis much more complex. There is no clear correlation of Tregs and Bregs with clinical features of the disease. Herein, we discuss the emerging data on regulatory T and B cell subset distributions in MS and their roles in the pathophysiology of MS and its murine model, experimental autoimmune encephalomyelitis (EAE). In addition, we summarize the immunomodulatory properties of certain MS therapeutic agents through their effect on such regulatory cell subsets and their relevance to clinical outcomes.
Collapse
|
37
|
Hartwell BL, Pickens CJ, Leon M, Northrup L, Christopher MA, Griffin JD, Martinez-Becerra F, Berkland C. Soluble antigen arrays disarm antigen-specific B cells to promote lasting immune tolerance in experimental autoimmune encephalomyelitis. J Autoimmun 2018; 93:76-88. [PMID: 30007842 PMCID: PMC6117839 DOI: 10.1016/j.jaut.2018.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022]
Abstract
Autoreactive lymphocytes that escape central immune tolerance may be silenced via an endogenous peripheral tolerance mechanism known as anergy. Antigen-specific therapies capable of inducing anergy may restore patients with autoimmune diseases to a healthy phenotype while avoiding deleterious side effects associated with global immunosuppression. Inducing anergy in B cells may be a particularly potent intervention, as B cells can contribute to autoimmune diseases through multiple mechanisms and offer the potential for direct antigen-specific targeting through the B cell receptor (BCR). Our previous results suggested autoreactive B cells may be silenced by multivalent 'soluble antigen arrays' (SAgAs), which are polymer conjugates displaying multiple copies of autoantigen with or without a secondary peptide that blocks intracellular cell-adhesion molecule-1 (ICAM-1). Here, key therapeutic molecular properties of SAgAs were identified and linked to the immunological mechanism through comprehensive cellular and in vivo analyses. We determined non-hydrolyzable 'cSAgAs' displaying multivalent 'click'-conjugated antigen more potently suppressed experimental autoimmune encephalomyelitis (EAE) compared to hydrolyzable SAgAs capable of releasing conjugated antigen. cSAgAs restored a healthy phenotype in disease-specific antigen presenting cells (APCs) by inducing an anergic response in B cells and a subset of B cells called autoimmune-associated B cells (ABCs) that act as potent APCs in autoimmune disease. Accompanied by a cytokine response skewed towards a Th2/regulatory phenotype, this generated an environment of autoantigenic tolerance. By identifying key therapeutic molecular properties and an immunological mechanism that drives SAgA efficacy, this work guides the design of antigen-specific immunotherapies capable of inducing anergy.
Collapse
MESH Headings
- Animals
- Autoantigens/genetics
- Autoantigens/immunology
- B-Lymphocyte Subsets/drug effects
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Click Chemistry
- Clonal Anergy/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Hydrolysis
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacology
- Immunotherapy/methods
- Injections, Subcutaneous
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/immunology
- Mice
- Myelin Proteolipid Protein/administration & dosage
- Peptide Fragments/administration & dosage
- Peptide Fragments/chemical synthesis
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Protein Array Analysis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Spleen/immunology
- Spleen/pathology
- Th2 Cells/immunology
- Th2 Cells/pathology
Collapse
Affiliation(s)
- Brittany L Hartwell
- Bioengineering Graduate Program, University of Kansas, 1520 West 15th Street, Lawrence, KS 66045, USA
| | - Chad J Pickens
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - Martin Leon
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | - Laura Northrup
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - Matthew A Christopher
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | - J Daniel Griffin
- Bioengineering Graduate Program, University of Kansas, 1520 West 15th Street, Lawrence, KS 66045, USA
| | - Francisco Martinez-Becerra
- Immunology Core Laboratory of the Kansas Vaccine Institute, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Cory Berkland
- Bioengineering Graduate Program, University of Kansas, 1520 West 15th Street, Lawrence, KS 66045, USA; Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, KS 66045, USA.
| |
Collapse
|
38
|
Moreno-Torres I, González-García C, Marconi M, García-Grande A, Rodríguez-Esparragoza L, Elvira V, Ramil E, Campos-Ruíz L, García-Hernández R, Al-Shahrour F, Fustero-Torre C, Sánchez-Sanz A, García-Merino A, Sánchez López AJ. Immunophenotype and Transcriptome Profile of Patients With Multiple Sclerosis Treated With Fingolimod: Setting Up a Model for Prediction of Response in a 2-Year Translational Study. Front Immunol 2018; 9:1693. [PMID: 30090102 PMCID: PMC6068231 DOI: 10.3389/fimmu.2018.01693] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fingolimod is a functional sphingosine-1-phosphate antagonist approved for the treatment of multiple sclerosis (MS). Fingolimod affects lymphocyte subpopulations and regulates gene expression in the lymphocyte transcriptome. Translational studies are necessary to identify cellular and molecular biomarkers that might be used to predict the clinical response to the drug. In MS patients, we aimed to clarify the differential effects of fingolimod on T, B, and natural killer (NK) cell subsets and to identify differentially expressed genes in responders and non-responders (NRs) to treatment. MATERIALS AND METHODS Samples were obtained from relapsing-remitting multiple sclerosis patients before and 6 months after starting fingolimod. Forty-eight lymphocyte subpopulations were measured by flow cytometry based on surface and intracellular marker analysis. Transcriptome sequencing by next-generation technologies was used to define the gene expression profiling in lymphocytes at the same time points. NEDA-3 (no evidence of disease activity) and NEDA-4 scores were measured for all patients at 1 and 2 years after beginning fingolimod treatment to investigate an association with cellular and molecular characteristics. RESULTS Fingolimod affects practically all lymphocyte subpopulations and exerts a strong effect on genetic transcription switching toward an anti-inflammatory and antioxidant response. Fingolimod induces a differential effect in lymphocyte subpopulations after 6 months of treatment in responder and NR patients. Patients who achieved a good response to the drug compared to NR patients exhibited higher percentages of NK bright cells and plasmablasts, higher levels of FOXP3, glucose phosphate isomerase, lower levels of FCRL1, and lower Expanded Disability Status Scale at baseline. The combination of these possible markers enabled us to build a probabilistic linear model to predict the clinical response to fingolimod. CONCLUSION MS patients responsive to fingolimod exhibit a recognizable distribution of lymphocyte subpopulations and a different pretreatment gene expression signature that might be useful as a biomarker.
Collapse
Affiliation(s)
- Irene Moreno-Torres
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Coral González-García
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Marco Marconi
- Centre for Plant Biotechnology and Genomics, Madrid, Spain
| | - Aranzazu García-Grande
- Flow Cytometry Core Facility, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | | | - Víctor Elvira
- IMT Lille Douai & CRIStAL, Univ. de Lille, Douai, France
| | - Elvira Ramil
- Sequencing Core Facility, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Lucía Campos-Ruíz
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Ruth García-Hernández
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit of Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit of Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alicia Sánchez-Sanz
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
| | - Antonio García-Merino
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
- Neurology Department, Puerta de Hierro University Hospital, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Antonio José Sánchez López
- Neuroimmunology Unit, Puerta de Hierro-Segovia de Arana Health Research Institute, Madrid, Spain
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
- Biobank, Puerta de Hierro University Hospital-IDIPHISA, Madrid, Spain
| |
Collapse
|
39
|
Machado-Santos J, Saji E, Tröscher AR, Paunovic M, Liblau R, Gabriely G, Bien CG, Bauer J, Lassmann H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018; 141:2066-2082. [PMID: 29873694 PMCID: PMC6022681 DOI: 10.1093/brain/awy151] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/22/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease in which active demyelination and neurodegeneration are associated with lymphocyte infiltrates in the brain. However, so far little is known regarding the phenotype and function of these infiltrating lymphocyte populations. In this study, we performed an in-depth phenotypic characterization of T and B cell infiltrates in a large set of multiple sclerosis cases with different disease and lesion stages and compared the findings with those seen in inflammatory, non-inflammatory and normal human controls. In multiple sclerosis lesions, we found a dominance of CD8+ T cells and a prominent contribution of CD20+ B cells in all disease courses and lesion stages, including acute multiple sclerosis cases with very short disease duration, while CD4+ T cells were sparse. A dominance of CD8+ T cells was also seen in other inflammatory controls, such as Rasmussen's encephalitis and viral encephalitis, but the contribution of B cells in these diseases was modest. Phenotypic analysis of the CD8+ T cells suggested that part of the infiltrating cells in active lesions proliferate, show an activated cytotoxic phenotype and are in part destroyed by apoptosis. Further characterization of the remaining cells suggest that CD8+ T cells acquire features of tissue-resident memory cells, which may be focally reactivated in active lesions of acute, relapsing and progressive multiple sclerosis, while B cells, at least in part, gradually transform into plasma cells. The loss of surface molecules involved in the egress of leucocytes from inflamed tissue, such as S1P1 or CCR7, and the upregulation of CD103 expression may be responsible for the compartmentalization of the inflammatory response in established lesions. Similar phenotypic changes of tissue-infiltrating CD8+ T cells were also seen in Rasmussen's encephalitis. Our data underline the potential importance of CD8+ T lymphocytes and B cells in the inflammatory response in established multiple sclerosis lesions. Tissue-resident T and B cells may represent guardians of previous inflammatory brain disease, which can be reactivated and sustain the inflammatory response, when they are re-exposed to their specific antigen.
Collapse
Affiliation(s)
- Joana Machado-Santos
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Manuela Paunovic
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Liblau
- INSERM U1043 - CNRS UMR 5282, Centre de Physiopathologie Toulouse-Purpan, Université Toulouse III, Toulouse, F-31000, France
| | - Galina Gabriely
- Department of Neurology, Anne Romney Center for Neurologic Disease, Harvard Medical School, Boston, USA
| | | | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Dimethyl fumarate induces a persistent change in the composition of the innate and adaptive immune system in multiple sclerosis patients. Sci Rep 2018; 8:8194. [PMID: 29844361 PMCID: PMC5974280 DOI: 10.1038/s41598-018-26519-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022] Open
Abstract
The effects of dimethyl fumarate (DMF) on the immune system in multiple sclerosis (MS) are not completely elucidated. In this study, an extensive immunophenotypic analysis of innate and adaptive immune cells of DMF-treated MS patients was performed. Peripheral blood immune cell phenotypes were determined using flow cytometry in a follow-up study of 12 MS patients before, after 3 and 12 months of DMF treatment and a cross-sectional study of 25 untreated and 64 DMF-treated MS patients. Direct effects of DMF on B cells were analyzed in vitro. After 12 months of DMF treatment, percentages of monocytes, natural killer cells, naive T and B cells and transitional B cells increased. Percentages of (effector) memory T cells, (non) class-switched memory B cells and double negative B cells decreased together with CD4+ T cells expressing interferon-γ (IFN-γ), granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-17 (IL-17). DMF treatment was fully effective as of 6 months and directly induced apoptosis and decreased expression of costimulatory CD40, antigen presentation molecule MHCII and B cell activating factor receptor (BAFFR) on B cells. DMF induced a persistent change of the immune system of MS patients, directly induced apoptosis and reduced expression of functional markers on B cells.
Collapse
|
41
|
Hofmann K, Clauder AK, Manz RA. Targeting B Cells and Plasma Cells in Autoimmune Diseases. Front Immunol 2018; 9:835. [PMID: 29740441 PMCID: PMC5924791 DOI: 10.3389/fimmu.2018.00835] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Success with B cell depletion using rituximab has proven the concept that B lineage cells represent a valid target for the treatment of autoimmune diseases, and has promoted the development of other B cell targeting agents. Present data confirm that B cell depletion is beneficial in various autoimmune disorders and also show that it can worsen the disease course in some patients. These findings suggest that B lineage cells not only produce pathogenic autoantibodies, but also significantly contribute to the regulation of inflammation. In this review, we will discuss the multiple pro- and anti-inflammatory roles of B lineage cells play in autoimmune diseases, in the context of recent findings using B lineage targeting therapies.
Collapse
Affiliation(s)
- Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| |
Collapse
|
42
|
Petta I, Fraussen J, Somers V, Kleinewietfeld M. Interrelation of Diet, Gut Microbiome, and Autoantibody Production. Front Immunol 2018; 9:439. [PMID: 29559977 PMCID: PMC5845559 DOI: 10.3389/fimmu.2018.00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
B cells possess a predominant role in adaptive immune responses via antibody-dependent and -independent functions. The microbiome of the gastrointestinal tract is currently being intensively investigated due to its profound impact on various immune responses, including B cell maturation, activation, and IgA antibody responses. Recent findings have demonstrated the interplay between dietary components, gut microbiome, and autoantibody production. "Western" dietary patterns, such as high fat and high salt diets, can induce alterations in the gut microbiome that in turn affects IgA responses and the production of autoantibodies. This could contribute to multiple pathologies including autoimmune and inflammatory diseases. Here, we summarize current knowledge on the influence of various dietary components on B cell function and (auto)antibody production in relation to the gut microbiota, with a particular focus on the gut-brain axis in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Ioanna Petta
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Judith Fraussen
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Veerle Somers
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| |
Collapse
|
43
|
Wang X, Xu H. Potential Epigenetic Regulation in the Germinal Center Reaction of Lymphoid Tissues in HIV/SIV Infection. Front Immunol 2018; 9:159. [PMID: 29449847 PMCID: PMC5799247 DOI: 10.3389/fimmu.2018.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
The production of high-affinity and broadly neutralizing antibodies plays a key role in the defense against pathogens. These antibody responses require effective germinal center (GC) reaction within anatomical niches of GCs, where follicular helper T (Tfh) cells provide cognate help to B cells for T cell-dependent antibody responses. Emerging evidences indicate that GC reaction in normal state and perhaps establishment of latent Tfh cell reservoir in HIV/SIV infection are tightly regulated by epigenetic histone modifications, which are responsible for activating or silencing chromatin. A better understanding of the mechanisms behind GC responses at cellular and molecular levels thus provides necessary knowledge for vaccination and immunotherapy. In this review, we discussed the epigenetic regulation of GC responses, especially for GC B and Tfh cell under normal state or HIV/SIV infection.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| |
Collapse
|
44
|
Abstract
Growing evidence indicates that B cells play a key role in the pathogenesis of multiple sclerosis (MS). B cells occupy distinct central nervous system (CNS) compartments in MS, including the cerebrospinal fluid and white matter lesions. Also, it is now known that, in addition to entering the CNS, B cells can circulate into the periphery via a functional lymphatic system. Data suggest that the role of B cells in MS mainly involves their in situ activation in demyelinating lesions, leading to altered pro- and anti-inflammatory cytokine secretion, and a highly effective antigen-presenting cell function, resulting in activation of memory or naïve T cells. Clinically, B cell-depleting agents show significant efficacy in MS. In addition, many disease-modifying therapies (DMTs) traditionally understood to target T cells are now known to influence B cell number and function. One of the earliest DMTs to be developed, glatiramer acetate (GA), has been shown to reduce the total frequency of B cells, plasmablasts, and memory B cells. It also appears to promote a shift toward reduced inflammation by increasing anti-inflammatory cytokine release and/or reducing pro-inflammatory cytokine release by B cells. In the authors' opinion, this may be mediated by cross-reactivity of B cell receptors for GA with antigen (possibly myelin basic protein) expressed in the MS lesion. More research is required to further characterize the role of B cells and their bidirectional trafficking in the pathogenesis of MS. This may uncover novel targets for MS treatments and facilitate the development of B cell biomarkers of drug response.
Collapse
|
45
|
The influence and impact of ageing and immunosenescence (ISC) on adaptive immunity during multiple sclerosis (MS) and the animal counterpart experimental autoimmune encephalomyelitis (EAE). Ageing Res Rev 2018; 41:64-81. [PMID: 29101043 DOI: 10.1016/j.arr.2017.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
The human ageing process encompasses mechanisms that effect a decline in homeostasis with increased susceptibility to disease and the development of chronic life-threatening illness. Increasing age affects the immune system which undergoes a progressive loss of efficiency, termed immunosenescence (ISC), to impact on quantitative and functional aspects of innate and adaptive immunity. The human demyelinating disease multiple sclerosis (MS) and the corresponding animal model experimental autoimmune encephalomyelitis (EAE) are strongly governed by immunological events that primarily involve the adaptive arm of the immune response. MS and EAE are frequently characterised by a chronic pathology and a protracted disease course which thereby creates the potential for exposure to the inherent, on-going effects and consequences of ISC. Collective evidence is presented to confirm the occurrence of established and unendorsed biological markers of ISC during the development of both diseases. Moreover, results are discussed from studies during the course of MS and EAE that reveal a premature upregulation of ISC-related biomarkers which indicates untimely alterations to the adaptive immune system. The effects of ISC and a prematurely aged immune system on autoimmune-associated neurodegenerative conditions such as MS and EAE are largely unknown but current evaluation of data justifies and encourages further investigation.
Collapse
|
46
|
Lin CC, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 198:4553-4560. [PMID: 28583987 DOI: 10.4049/jimmunol.1700263] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis, are neuroinflammatory diseases driven by autoreactive pathogenic TH cells that elicit demyelination and axonal damage. How TH cells acquire pathogenicity and communicate with myeloid cells and cells of the CNS remain unclear. IL-1β is recognized to play an important role in experimental autoimmune encephalomyelitis (EAE) and perhaps MS. Clinical EAE is significantly attenuated in IL-1R-deficient and IL-1β-deficient mice, and IL-1β is found in the blood, cerebrospinal fluid, and CNS lesions of MS patients. In this article, we focus on new reports that elucidate the cellular sources of IL-1β and its actions during EAE, in both lymphoid tissues and within the CNS. Several immune cell types serve as critical producers of IL-1β during EAE, with this cytokine inducing response in both hematopoietic and nonhematopoietic cells. These findings from the EAE model should inspire efforts toward investigating the therapeutic potential of IL-1 blockade in MS.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
47
|
Nguyen A, Gresle M, Marshall T, Butzkueven H, Field J. Monoclonal antibodies in the treatment of multiple sclerosis: emergence of B-cell-targeted therapies. Br J Pharmacol 2017; 174:1895-1907. [PMID: 28319650 PMCID: PMC5466523 DOI: 10.1111/bph.13780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/26/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS, and one of the most common causes of disability in young adults. Over the last decade, new disease-modifying therapies have emerged, including monoclonal antibodies (mAbs) that provide highly targeted therapies with greater efficacy than platform therapies. In particular, monoclonal antibodies directed against CD20-positive B cells have shown remarkable results in recent clinical trials and renewed interest in the mechanism of B cell-depleting therapies to ameliorate relapse activity and progression in MS. Here, we review the mechanisms of action and clinical evidence of approved and emerging mAbs, with a focus on B cell-targeted therapies.
Collapse
Affiliation(s)
- Ai‐Lan Nguyen
- Melbourne Brain Centre and Department of Medicine at the Royal Melbourne HospitalUniversity of MelbourneParkvilleVic.Australia
| | - Melissa Gresle
- Melbourne Brain Centre and Department of Medicine at the Royal Melbourne HospitalUniversity of MelbourneParkvilleVic.Australia
| | - Tessa Marshall
- Multiple Sclerosis DivisionThe Florey Institute of Neuroscience and Mental HealthParkvilleVic.Australia
| | - Helmut Butzkueven
- Melbourne Brain Centre and Department of Medicine at the Royal Melbourne HospitalUniversity of MelbourneParkvilleVic.Australia
- Eastern HealthMonash UniversityClaytonVic.Australia
| | - Judith Field
- Multiple Sclerosis DivisionThe Florey Institute of Neuroscience and Mental HealthParkvilleVic.Australia
- Department of Anatomy and NeuroscienceUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
48
|
Karnell FG, Lin D, Motley S, Duhen T, Lim N, Campbell DJ, Turka LA, Maecker HT, Harris KM. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation. Clin Exp Immunol 2017; 189:268-278. [PMID: 28498568 DOI: 10.1111/cei.12985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is an inflammatory T cell-mediated autoimmune disease. In a Phase II clinical trial, high-dose immunosuppressive therapy combined with autologous CD34+ haematopoietic stem cell transplant resulted in 69·2% of subjects remaining disease-free without evidence of relapse, loss of neurological function or new magnetic resonance imaging (MRI) lesions to year 5 post-treatment. A combination of CyTOF mass cytometry and multi-parameter flow cytometry was used to explore the reconstitution kinetics of immune cell subsets in the periphery post-haematopoietic cell transplant (HSCT) and the impact of treatment on the phenotype of circulating T cells in this study population. Repopulation of immune cell subsets progressed similarly for all patients studied 2 years post-therapy, regardless of clinical outcome. At month 2, monocytes and natural killer (NK) cells were proportionally more abundant, while CD4 T cells and B cells were reduced, relative to baseline. In contrast to the changes observed at earlier time-points in the T cell compartment, B cells were proportionally more abundant and expansion in the proportion of naive B cells was observed 1 and 2 years post-therapy. Within the T cell compartment, the proportion of effector memory and late effector subsets of CD4 and CD8 T cells was increased, together with transient increases in proportions of CD45RA-regulatory T cells (Tregs ) and T helper type 1 (Th1 cells) and a decrease in Th17·1 cells. While none of the treatment effects studied correlated with clinical outcome, patients who remained healthy throughout the 5-year study had significantly higher absolute numbers of memory CD4 and CD8 T cells in the periphery prior to stem cell transplantation.
Collapse
Affiliation(s)
| | - D Lin
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - S Motley
- Benaroya Research Institute, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - T Duhen
- Benaroya Research Institute, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - N Lim
- Immune Tolerance Network, Bethesda, MD, USA
| | - D J Campbell
- Benaroya Research Institute, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - L A Turka
- Immune Tolerance Network, Bethesda, MD, USA.,Massachusetts General Hospital, Center for Transplantation Sciences, Boston, MA, USA
| | - H T Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - K M Harris
- Immune Tolerance Network, Bethesda, MD, USA
| |
Collapse
|
49
|
Tesfagiorgis Y, Zhu SL, Jain R, Kerfoot SM. Activated B Cells Participating in the Anti-Myelin Response Are Excluded from the Inflamed Central Nervous System in a Model of Autoimmunity that Allows for B Cell Recognition of Autoantigen. THE JOURNAL OF IMMUNOLOGY 2017; 199:449-457. [DOI: 10.4049/jimmunol.1602042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/09/2017] [Indexed: 11/19/2022]
|
50
|
Jones AP, Trend S, Byrne SN, Fabis-Pedrini MJ, Geldenhuys S, Nolan D, Booth DR, Carroll WM, Lucas RM, Kermode AG, Hart PH. Altered regulatory T-cell fractions and Helios expression in clinically isolated syndrome: clues to the development of multiple sclerosis. Clin Transl Immunology 2017; 6:e143. [PMID: 28690849 PMCID: PMC5493587 DOI: 10.1038/cti.2017.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
Development of multiple sclerosis (MS) is frequently preceded by an acute or subacute neurological disturbance referred to as clinically isolated syndrome (CIS). The specific immunological disturbances present in CIS remain underexamined. This study analysed peripheral blood mononuclear cells from n=18 treatment-naive individuals with recently diagnosed CIS (<120 days) for disturbances in the phenotype of T regulatory (Treg), follicular T regulatory (Tfr), T helper (Th), follicular T helper (Tfh) and B cells. Relative to healthy controls (n=19), CIS was associated with lower proportions of suppressive CD45RA+FoxP3lo Treg and Tfr cells and greater proportions of non-suppressive CD45RA−FoxP3lo and Th17-like Treg and Tfr. Lower Helios expression (maen fluorescent intensity) was measured across all Treg and Tfr fractions in the CIS group, suggesting less potent regulatory function. Greater frequencies of activated, efficient B-cell helper Tfh subsets and a trend for a higher proportion of IgD−CD27− B cells was also detected in the CIS group, characteristics that were positively correlated with Treg and Tfr Helios expression. These results indicate that Treg and Tfr impairment is an early feature in MS.
Collapse
Affiliation(s)
- Anderson P Jones
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Stephanie Trend
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Infectious Diseases & Immunology, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia.,Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Marzena J Fabis-Pedrini
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Sian Geldenhuys
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| | - David Nolan
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia.,Immunology Department, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David R Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - William M Carroll
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological Disorders, Western Australian Neuroscience Research Institute, University of Western Australia, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, West Perth, Western Australia, Australia
| |
Collapse
|