1
|
Vaccaro A, de Alves Pereira B, van de Walle T, Dimberg A. Tertiary Lymphoid Structures in Central Nervous System Disorders. Methods Mol Biol 2025; 2864:21-42. [PMID: 39527215 DOI: 10.1007/978-1-0716-4184-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The central nervous system (CNS) constitutes a tightly regulated milieu, where immune responses are strictly controlled to prevent neurological damage. This poses considerable challenges to the therapeutic management of CNS pathologies, such as autoimmune disorders and cancer. Tertiary lymphoid structures (TLS) are ectopic, lymph node-like structures containing B- and T-cells, often associated with chronic inflammation or cancer, which have been shown to be detrimental in autoimmunity but beneficial in cancer. In-depth studies of TLS induction in CNS disorders, as well as their precise role in regulating adaptive immune responses in this context, will be paramount to the development of novel TLS-targeting therapies. In the present chapter, we review the anatomical and physiological peculiarities shaping TLS formation in the CNS, their relevance in autoimmunity and cancer, as well as their implications for the development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Shu DH, Sidiropoulos DN. Maturation of Tertiary Lymphoid Structures. Methods Mol Biol 2025; 2864:43-55. [PMID: 39527216 DOI: 10.1007/978-1-0716-4184-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are organized collections of B and T lymphocytes that arise in nonlymphoid tissue in response to chronic, unresolved inflammation. TLS have structural and functional similarities to germinal centers found in lymph nodes and are believed to support the establishment of lymph node-like adaptive immune responses at local sites of inflammation. However, understanding of the underlying biology of these structures remains limited, particularly the different stages of TLS life cycle and the signals governing the initiation, maturation, and termination of TLS. Here, we review current understanding of the maturation of TLS and the signals and cell types involved in various stages of development with particular emphasis on recent studies of TLS in cancer, where evidence suggests that TLS may play an important role in supporting antitumor immune responses in solid tumors.
Collapse
Affiliation(s)
- Daniel H Shu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
- Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Bod L, Shalapour S. B cells spatial organization defines their phenotype and function in cancer "Tell me with whom you consort, and I will tell you who you are" - Goethe. Curr Opin Immunol 2024; 91:102504. [PMID: 39547092 DOI: 10.1016/j.coi.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The presence of B cells and their subtypes in the tumor environment has been recognized a for very long time. Immunoglobulins specific for more than thousands of tumor-associated antigens were detected in the sera of patients with cancer; however, antibody-mediated cancer cell killing is usually impaired. The role of humoral immune response remained elusive until recently, with new discoveries regarding their contribution in regulating antitumor immunity, particularly during immunotherapy. Humoral immunity has been described to promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome in different tumor entities. The antagonism effect of B cells depends on their subtypes and immunoglobulin isotypes and is regulated by their spatial distribution and localization. In this short review, we will focus on how the spatial organization of B cells within the tumor microenvironment, tumor-associated lymph nodes, and tertiary lymphoid structures define their fate and function and contribute to the regulation of antitumor immunity.
Collapse
Affiliation(s)
- Lloyd Bod
- Department of Medicine, Krantz Family Center for Cancer Research, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
4
|
Li R, Strobl J, Poyner EFM, Balbaa A, Torabi F, Mazin PV, Chipampe NJ, Stephenson E, Ramírez-Suástegi C, Shanmugiah VBM, Gardner L, Olabi B, Coulthard R, Botting RA, Zila N, Prigmore E, Gopee NH, Chroscik MA, Kritikaki E, Engelbert J, Goh I, Chan HM, Johnson HF, Ellis J, Rowe V, Tun W, Reynolds G, Yang D, Foster AR, Gambardella L, Winheim E, Admane C, Rumney B, Steele L, Jardine L, Nenonen J, Pickard K, Lumley J, Hampton P, Hu S, Liu F, Liu X, Horsfall D, Basurto-Lozada D, Grimble L, Bacon CM, Weatherhead SC, Brauner H, Wang Y, Bai F, Reynolds NJ, Allen JE, Jonak C, Brunner PM, Teichmann SA, Haniffa M. Cutaneous T cell lymphoma atlas reveals malignant T H2 cells supported by a B cell-rich tumor microenvironment. Nat Immunol 2024; 25:2320-2330. [PMID: 39558094 PMCID: PMC11588665 DOI: 10.1038/s41590-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Cutaneous T cell lymphoma (CTCL) is a potentially fatal clonal malignancy of T cells primarily affecting the skin. The most common form of CTCL, mycosis fungoides, can be difficult to diagnose, resulting in treatment delay. We performed single-cell and spatial transcriptomics analysis of skin from patients with mycosis fungoides-type CTCL and an integrated comparative analysis with human skin cell atlas datasets from healthy and inflamed skin. We revealed the co-optation of T helper 2 (TH2) cell-immune gene programs by malignant CTCL cells and modeling of the tumor microenvironment to support their survival. We identified MHC-II+ fibroblasts and dendritic cells that can maintain TH2 cell-like tumor cells. CTCL tumor cells are spatially associated with B cells, forming tertiary lymphoid structure-like aggregates. Finally, we validated the enrichment of B cells in CTCL and its association with disease progression across three independent patient cohorts. Our findings provide diagnostic aids, potential biomarkers for disease staging and therapeutic strategies for CTCL.
Collapse
Affiliation(s)
- Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Johanna Strobl
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Elizabeth F M Poyner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Aya Balbaa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Pavel V Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | - Louis Gardner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Cellular Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nusayhah H Gopee
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marta A Chroscik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Efpraxia Kritikaki
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Justin Engelbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Hon Man Chan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Jasmine Ellis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Victoria Rowe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Win Tun
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle, UK
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dexin Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | | | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Benjamin Rumney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lloyd Steele
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Julia Nenonen
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Jennifer Lumley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Hampton
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simeng Hu
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Louise Grimble
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chris M Bacon
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sophie C Weatherhead
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanna Brauner
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Nick J Reynolds
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biosciences Institute, Newcastle University, Newcastle, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Porras N, Sánchez-Vizcaíno JM, Rodríguez-Bertos A, Kosowska A, Barasona JÁ. Tertiary lymphoid organs in wild boar exposed to a low-virulent isolate of African swine fever virus. Vet Q 2024; 44:1-13. [PMID: 38533618 DOI: 10.1080/01652176.2024.2331525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Despite the great interest in the development of a vaccine against African swine fever (ASF) in wild boar, the immunological mechanisms that induce animal protection are still unknown. For this purpose, tertiary lymphoid organs (TLOs) of wild boar were characterised and compared with mucosa-associated lymphoid tissues (MALTs) by histopathology, histomorphometry and immunohistochemistry (CD3, CD79, PAX5, LYVE1, fibronectin). In addition, real-time polymerase chain reaction (qPCR) and immunohistochemistry (p72) were used to evaluate the presence of ASF virus (ASFV) in blood and tissues samples, respectively. TLOs were observed in animals infected with a low-virulent ASFV isolate (LVI), animals co-infected with low and high-virulent ASFV isolates (LVI-HVI) and animals infected only with the high virulence isolate (HVI). TLOs in LVI and LVI-HVI groups were located adjacent to the mucosa and presented a similar structure to MALT. Immunoexpresion of p72 observed in the inflammatory cells adjacent to TLOs/MALTs confirmed its development and reactivity generated by ASF attenuated isolates. Immunohistochemical evaluation, based on cellular composition (T and B lymphocytes), and histomorphometrical study revealed a more pronounced maturation of TLOs/MALTs in the LVI-HVI group. It is currently unclear whether these formations play a protective role by contributing to local immunity in chronic inflammatory diseases. However, the structural similarities between TLOs and MALTs and the location of TLOs close to the mucosa suggest that they may perform a similar function, facilitating a local protective response. Nevertheless, further investigations are warranted to assess the cellular and humoral dynamics of these lymphoid organs induced by attenuated isolates.
Collapse
Affiliation(s)
- Néstor Porras
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - José M Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Antonio Rodríguez-Bertos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Internal Medicine and Animal Surgery, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Aleksandra Kosowska
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - José Á Barasona
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
MacFawn IP, Magnon G, Gorecki G, Kunning S, Rashid R, Kaiza ME, Atiya H, Ruffin AT, Taylor S, Soong TR, Bao R, Coffman LG, Bruno TC. The activity of tertiary lymphoid structures in high grade serous ovarian cancer is governed by site, stroma, and cellular interactions. Cancer Cell 2024; 42:1864-1881.e5. [PMID: 39393357 DOI: 10.1016/j.ccell.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Most high grade serous ovarian cancers (HGSOC) originate in the fallopian tube but spread to the ovary and peritoneal cavity, highlighting the need to understand antitumor immunity across HGSOC sites. Using spatial analyses, we discover that tertiary lymphoid structures (TLSs) within ovarian tumors are less developed compared with TLSs in fallopian tube or omental tumors. We reveal transcriptional differences across a spectrum of lymphoid structures, demonstrating that immune cell activity increases when residing in more developed TLSs and produce a prognostic, spatially derived TLS signature from HGSOC tumors. We interrogate TLS-adjacent stroma and assess how normal mesenchymal stem cells MSCs (nMSCs) may support B cell function and TLS, contrary to cancer-educated MSCs (CA-MSCs) which negate the prognostic benefit of our TLS signature, suggesting that pro-tumorigenic stroma could limit TLS formation.
Collapse
Affiliation(s)
- Ian P MacFawn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Grant Magnon
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Grace Gorecki
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sheryl Kunning
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Rufiaat Rashid
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Medard Ernest Kaiza
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Huda Atiya
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ayana T Ruffin
- Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Rinda Soong
- Magee Women's Research Institute, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Riyue Bao
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Lan G Coffman
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Magee Women's Research Institute, Pittsburgh, PA 15213, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
7
|
Sun G, Liu Y. Tertiary lymphoid structures in ovarian cancer. Front Immunol 2024; 15:1465516. [PMID: 39569184 PMCID: PMC11576424 DOI: 10.3389/fimmu.2024.1465516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Ovarian cancer (OC) is a significant cause of cancer-related mortality in women worldwide. Despite advances in treatment modalities, including surgery and chemotherapy, the overall prognosis for OC patients remains poor, particularly for patients with advanced or recurrent disease. Immunotherapy, particularly immune checkpoint blockade (ICB), has revolutionized cancer treatment in various malignancies but has shown limited efficacy in treating OC, which is primarily attributed to the immunologically. Tertiary lymphoid structures (TLSs), which are ectopic aggregates of immune cells, have emerged as potential mediators of antitumor immunity. This review explores the composition, formation, and induction of tumor associated TLS (TA-TLS) in OC, along with their role and therapeutic implications in disease development and treatment. By elucidating the roles TA-TLSs and their cellular compositions played in OC microenvironment, novel therapeutic targets may be identified to overcome immune suppression and enhance immunotherapy efficacy in ovarian cancer.
Collapse
Affiliation(s)
- Guojuan Sun
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- Department of Gynaecology and Obstetrics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Li S, Chen K, Sun Z, Chen M, Pi W, Zhou S, Yang H. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Expert Rev Mol Med 2024; 26:e30. [PMID: 39438247 PMCID: PMC11505612 DOI: 10.1017/erm.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the immune response via cellular and humoral immunity. RT can induce local immunity to modify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure (TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells and other immune cells. The maturation of TLS is determined by the presence of mature dendritic cells, the density of TLS is determined by the number of immune cells. TLS maturation and density both affect the antitumour immune response in the TME. This review summarized the recent research on the impact and the role of RT on TLS, including the changes of TLS components and formation conditions and the mechanism of how RT affects TLS and transforms the TME. RT may promote TLS maturation and density to modify the TME regarding enhanced antitumour immunity.
Collapse
Affiliation(s)
- Shuling Li
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kuifei Chen
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhenwei Sun
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Meng Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haihua Yang
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
9
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
10
|
Xie M, Lin X, Bao X, Liang Y, Deng H, Song J, Ma X, Zhang X, Yao J, Pan L, Xue X. Tertiary Lymphoid Structure in Tumor Microenvironment and Immunotherapy of Lung Cancer. Arch Bronconeumol 2024; 60 Suppl 2:S77-S85. [PMID: 39174437 DOI: 10.1016/j.arbres.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024]
Abstract
Immune checkpoint inhibitors have opened an era of lung cancer therapy. However, a notable disparity exists in the efficacy of immunotherapy among individual patients. The tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregation that appears under pathological conditions and is the primary site of action for anti-tumor immunity. It is commonly reported that the presence of TLS within the tumor microenvironment (TME) relates to a favorable clinical prognosis and an excellent response to immunotherapy in lung cancer patients. A thorough understanding of TLS and its dynamic changes in TME has become an attractive focus for optimizing immunotherapy strategies for lung cancer. In this review, we comprehensively generalize the composition, formation, mechanism, detection methods of TLS, and summarize the role of TLS in lung cancer immunotherapy. Finally, induction of TLS is also discussed, which may provide more effective therapeutic strategies for lung cancer therapy.
Collapse
Affiliation(s)
- Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Hui Deng
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China.
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China.
| |
Collapse
|
11
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
12
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
13
|
Lacinski RA, Dziadowicz SA, Melemai VK, Fitzpatrick B, Pisquiy JJ, Heim T, Lohse I, Schoedel KE, Llosa NJ, Weiss KR, Lindsey BA. Spatial multiplexed immunofluorescence analysis reveals coordinated cellular networks associated with overall survival in metastatic osteosarcoma. Bone Res 2024; 12:55. [PMID: 39333065 PMCID: PMC11436896 DOI: 10.1038/s41413-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/16/2024] [Accepted: 07/18/2024] [Indexed: 09/29/2024] Open
Abstract
Patients diagnosed with advanced osteosarcoma, often in the form of lung metastases, have abysmal five-year overall survival rates. The complexity of the osteosarcoma immune tumor microenvironment has been implicated in clinical trial failures of various immunotherapies. The purpose of this exploratory study was to spatially characterize the immune tumor microenvironment of metastatic osteosarcoma lung specimens. Knowledge of the coordinating cellular networks within these tissues could then lead to improved outcomes when utilizing immunotherapy for treatment of this disease. Importantly, various cell types, interactions, and cellular neighborhoods were associated with five-year survival status. Of note, increases in cellular interactions between T lymphocytes, positive for programmed cell death protein 1, and myeloid-derived suppressor cells were observed in the 5-year deceased cohort. Additionally, cellular neighborhood analysis identified an Immune-Cold Parenchyma cellular neighborhood, also associated with worse 5-year survival. Finally, the Osteosarcoma Spatial Score, which approximates effector immune activity in the immune tumor microenvironment through the spatial proximity of immune and tumor cells, was increased within 5-year survivors, suggesting improved effector signaling in this patient cohort. Ultimately, these data represent a robust spatial multiplexed immunofluorescence analysis of the metastatic osteosarcoma immune tumor microenvironment. Various communication networks, and their association with survival, were described. In the future, identification of these networks may suggest the use of specific, combinatory immunotherapeutic strategies for improved anti-tumor immune responses and outcomes in osteosarcoma.
Collapse
Affiliation(s)
- Ryan A Lacinski
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Sebastian A Dziadowicz
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
- Bioinformatics Core, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Vincent K Melemai
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Brody Fitzpatrick
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - John J Pisquiy
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Tanya Heim
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Ines Lohse
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Karen E Schoedel
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Nicolas J Llosa
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Kurt R Weiss
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Brock A Lindsey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
14
|
Hovd AMK, Nayar S, Smith CG, Kanapathippillai P, Iannizzotto V, Barone F, Fenton KA, Pedersen HL. Podoplanin expressing macrophages and their involvement in tertiary lymphoid structures in mouse models of Sjögren's disease. Front Immunol 2024; 15:1455238. [PMID: 39355243 PMCID: PMC11442383 DOI: 10.3389/fimmu.2024.1455238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are formed in tissues targeted by chronic inflammation processes, such as infection and autoimmunity. In Sjögren's disease, the organization of immune cells into TLS is an important part of disease progression. Here, we investigated the dynamics of tissue resident macrophages in the induction and expansion of salivary gland TLS. We induced Sjögren's disease by cannulation of the submandibular glands of C57BL/6J mice with LucAdV5. In salivary gland tissues from these mice, we analyzed the different macrophage populations prior to cannulation on day 0 and on day 2, 5, 8, 16 and 23 post-infection using multicolored flow cytometry, mRNA gene analysis, and histological evaluation of tissue specific macrophages. The histological localization of macrophages in the LucAdV5 induced inflamed salivary glands was compared to salivary glands of NZBW/F1 lupus prone mice, a spontaneous mouse model of Sjögren's disease. The evaluation of the dynamics and changes in macrophage phenotype revealed that the podoplanin (PDPN) expressing CX3CR1+ macrophage population was increased in the salivary gland tissue during LucAdV5 induced inflammation. This PDPN+ CX3CR1+ macrophage population was, together with PDPN+CD206+ macrophages, observed to be localized in the parenchyma during the acute inflammation phase as well as surrounding the TLS structure in the later stages of inflammation. This suggests a dual role of tissue resident macrophages, contributing to both proinflammatory and anti-inflammatory processes, as well as their possible interactions with other immune cells within the inflamed tissue. These macrophages may be involved with lymphoid neogenesis, which is associated with disease severity and progression. In conclusion, our study substantiates the involvement of proinflammatory and regulatory macrophages in autoimmune pathology and underlines the possible multifaceted functions of macrophages in lymphoid cell organization.
Collapse
Affiliation(s)
- Aud-Malin Karlsson Hovd
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Saba Nayar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Charlotte G. Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Premasany Kanapathippillai
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Valentina Iannizzotto
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
15
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
16
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
17
|
Merali N, Jessel MD, Arbe-Barnes EH, Ruby Lee WY, Gismondi M, Chouari T, O'Brien JW, Patel B, Osei-Bordom D, Rockall TA, Sivakumar S, Annels N, Frampton AE. Impact of tertiary lymphoid structures on prognosis and therapeutic response in pancreatic ductal adenocarcinoma. HPB (Oxford) 2024; 26:873-894. [PMID: 38729813 DOI: 10.1016/j.hpb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is known to have a heterogeneous desmoplastic tumour microenvironment (TME) with a large number of immunosuppressive cells. Recently, high B-cell infiltration in PDAC has received growing interest as a potential therapeutic target. METHODS Our literature review summarises the characteristics of tumour-associated tertiary lymphoid structures (TLSs) and highlight the key studies exploring the clinical outcomes of TLSs in PDAC patients and the direct effect on the TME. RESULTS The location, density and maturity stages of TLSs within tumours play a key role in determining the prognosis and is a new emerging target in cancer immunotherapy. DISCUSSION TLS development is imperative to improve the prognosis of PDAC patients. In the future, studying the genetics and immune characteristics of tumour infiltrating B cells and TLSs may lead towards enhancing adaptive immunity in PDAC and designing personalised therapies.
Collapse
Affiliation(s)
- Nabeel Merali
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Edward H Arbe-Barnes
- UCL Institute of Immunity and Transplantation, The Pears Building, Pond Street, London, UK
| | - Wing Yu Ruby Lee
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Martha Gismondi
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Tarak Chouari
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - James W O'Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Bhavik Patel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Daniel Osei-Bordom
- Liver and Digestive Health, University College London, Royal Free Hospital, Pond St, London, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, UK
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK
| | - Adam E Frampton
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, UK; Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK; Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, UK.
| |
Collapse
|
18
|
Xu H, Zhao X, Luo J. Combination of tumor antigen drainage and immune activation to promote a cancer-immunity cycle against glioblastoma. Cell Mol Life Sci 2024; 81:275. [PMID: 38907858 PMCID: PMC11335198 DOI: 10.1007/s00018-024-05300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
While conventional cancer modalities, such as chemotherapy and radiotherapy, act through direct killing of tumor cells, cancer immunotherapy elicits potent anti-tumor immune responses thereby eliminating tumors. Nevertheless, promising outcomes have not been reported in patients with glioblastoma (GBM) likely due to the immune privileged status of the central nervous system and immunosuppressive micro-environment within GBM. In the past years, several exciting findings, such as the re-discovery of meningeal lymphatic vessels (MLVs), three-dimensional anatomical reconstruction of MLV networks, and the demonstration of the promotion of GBM immunosurveillance by lymphatic drainage enhancement, have revealed an intricate communication between the nervous and immune systems, and brought hope for the development of new GBM treatment. Based on conceptual framework of the updated cancer-immunity (CI) cycle, here we focus on GBM antigen drainage and immune activation, the early events in driving the CI cycle. We also discuss the implications of these findings for developing new therapeutic approaches in tackling fatal GBM in the future.
Collapse
Affiliation(s)
- Han Xu
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xiaomei Zhao
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jincai Luo
- Laboratory of Vascular Biology, Institute of Molecular Medicine, College of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Wang YQ, Chen WJ, Zhou W, Dong KQ, Zuo L, Xu D, Chen JX, Chen WJ, Li WY, Liu ZC, Jiang ZY, Tang YF, Qin YX, Wang LH, Pan XW, Cui XG. Integrated analysis of tertiary lymphoid structures and immune infiltration in ccRCC microenvironment revealed their clinical significances: a multicenter cohort study. J Immunother Cancer 2024; 12:e008613. [PMID: 38908856 PMCID: PMC11331356 DOI: 10.1136/jitc-2023-008613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) serve as organized lymphoid aggregates that influence immune responses within the tumor microenvironment. This study aims to investigate the characteristics and clinical significance of TLSs and tumor-infiltrating lymphocytes (TILs) in clear cell renal cell carcinoma (ccRCC). METHODS TLSs and TILs were analyzed comprehensively in 754 ccRCC patients from 6 academic centers and 532 patients from The Cancer Genome Atlas. Integrated analysis was performed based on single-cell RNA-sequencing datasets from 21 ccRCC patients to investigate TLS heterogeneity in ccRCC. Immunohistochemistry and multiplex immunofluorescence were applied. Cox regression and Kaplan-Meier analyses were used to reveal the prognostic significance. RESULTS The study demonstrated the existence of TLSs and TILs heterogeneities in the ccRCC microenvironment. TLSs were identified in 16% of the tumor tissues in 113 patients. High density (>0.6/mm2) and maturation of TLSs predicted good overall survival (OS) (p<0.01) in ccRCC patients. However, high infiltration (>151) of scattered TILs was an independent risk factor of poor ccRCC prognosis (HR=14.818, p<0.001). The presence of TLSs was correlated with improved progression-free survival (p=0.002) and responsiveness to therapy (p<0.001). Interestingly, the combination of age and TLSs abundance had an impact on OS (p<0.001). Higher senescence scores were detected in individuals with immature TLSs (p=0.003). CONCLUSIONS The study revealed the contradictory features of intratumoral TLSs and TILs in the ccRCC microenvironment and their impact on clinical prognosis, suggesting that abundant and mature intratumoral TLSs were associated with decreased risks of postoperative ccRCC relapse and death as well as favorable therapeutic response. Distinct spatial distributions of immune infiltration could reflect effective antitumor or protumor immunity in ccRCC.
Collapse
Affiliation(s)
- Yu-Qi Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Jin Chen
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Urology, The Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke-Qin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Urology, PLA Central Military Command General Hospital, Wuhan, Hubei, China
| | - Li Zuo
- Department of Urology, Changzhou No 2 People's Hospital, Changzhou, Jiangsu, China
| | - Da Xu
- Department of Urology, The Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Jia-Xin Chen
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Urology, The Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wei-Jie Chen
- Department of Urology, The Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wen-Yan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zi-Chang Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zheng-Yu Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yi-Fan Tang
- Department of Urology, Wuxi No 2 People's Hospital, Wuxi, Jiangsu, China
| | - Yu-Xuan Qin
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin-Hui Wang
- Department of Urology, The First Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Xiu-Wu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin-Gang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
21
|
Ruddle NH. Posttransplant Tertiary Lymphoid Organs. Transplantation 2024; 108:1090-1099. [PMID: 37917987 PMCID: PMC11042531 DOI: 10.1097/tp.0000000000004812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 11/04/2023]
Abstract
Tertiary lymphoid organs (TLOs), also known as tertiary or ectopic lymphoid structures or tissues, are accumulations of lymphoid cells in sites other than canonical lymphoid organs, that arise through lymphoid neogenesis during chronic inflammation in autoimmunity, microbial infection, cancer, aging, and transplantation, the focus of this review. Lymph nodes and TLOs are compared regarding their cellular composition, organization, vascular components, and migratory signal regulation. These characteristics of posttransplant TLOs (PT-TLOs) are described with individual examples in a wide range of organs including heart, kidney, trachea, lung, artery, skin, leg, hand, and face, in many species including human, mouse, rat, and monkey. The requirements for induction and maintenance of TLOs include sustained exposure to autoantigens, alloantigens, tumor antigens, ischemic reperfusion, nephrotoxic agents, and aging. Several staging schemes have been put forth regarding their function in organ rejection. PT-TLOs most often are associated with organ rejection, but in some cases contribute to tolerance. The role of PT-TLOs in cancer is considered in the case of immunosuppression. Furthermore, TLOs can be associated with development of lymphomas. Challenges for PT-TLO research are considered regarding staging, imaging, and opportunities for their therapeutic manipulation to inhibit rejection and encourage tolerance.
Collapse
Affiliation(s)
- Nancy H. Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| |
Collapse
|
22
|
Chen Y, Wu Y, Yan G, Zhang G. Tertiary lymphoid structures in cancer: maturation and induction. Front Immunol 2024; 15:1369626. [PMID: 38690273 PMCID: PMC11058640 DOI: 10.3389/fimmu.2024.1369626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregate formed in peripheral non-lymphoid tissues, including inflamed or cancerous tissue. Tumor-associated TLS serves as a prominent center of antigen presentation and adaptive immune activation within the periphery, which has exhibited positive prognostic value in various cancers. In recent years, the concept of maturity regarding TLS has been proposed and mature TLS, characterized by well-developed germinal centers, exhibits a more potent tumor-suppressive capacity with stronger significance. Meanwhile, more and more evidence showed that TLS can be induced by therapeutic interventions during cancer treatments. Thus, the evaluation of TLS maturity and the therapeutic interventions that induce its formation are critical issues in current TLS research. In this review, we aim to provide a comprehensive summary of the existing classifications for TLS maturity and therapeutic strategies capable of inducing its formation in tumors.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Yuhao Wu
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guorong Yan
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| | - Guolong Zhang
- Department of Phototherapy, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Skin Cancer Center, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Photomedicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
23
|
Zhang L, Zhang R, Jin D, Zhang T, Shahatiaili A, Zang J, Wang L, Pu Y, Zhuang G, Chen H, Fan J. Synergistic induction of tertiary lymphoid structures by chemoimmunotherapy in bladder cancer. Br J Cancer 2024; 130:1221-1231. [PMID: 38332180 PMCID: PMC10991273 DOI: 10.1038/s41416-024-02598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND A substantial number of patients with bladder cancer fail to benefit from immune checkpoint inhibitors (ICIs). We aim to investigate whether the addition of other therapeutic modalities into immunotherapy may augment the immune reactivity, thereby improving the overall response rate. METHODS We conducted a comprehensive assessment of the immunological changes following immunotherapy and chemotherapy, employing both single-cell RNA sequencing and bulk RNA sequencing analyses. RESULTS The bladder cancer patient treated with ICIs exhibited a higher abundance of B cells and T follicular helper cells compared to the treatment-naïve patient. Analysis of public datasets and the in-house RJBLC-I2N003 cohort revealed the induction of tertiary lymphoid structure (TLS) neogenesis and maturation by immunotherapy. The IMvigor 210 study suggested that TLS could serve as a predictor of immunotherapy response and patient prognosis. In addition, genome-wide transcriptome data unveiled a shift towards the immune-enriched subtype over the desert subtype in patients receiving neoadjuvant chemotherapy. Notably, the proportions of CD20 + B cells, T follicular helper cells, and TLSs were significantly increased. In patients treated with a combination of neoadjuvant chemotherapy and ICIs, TLS positivity and maturity were improved compared to the baseline. Furthermore, neoadjuvant chemoimmunotherapy resulted in a higher rate of pathological complete response compared to monotherapies. CONCLUSIONS This work pinpointed the individual effect of immunotherapy and chemotherapy in fostering TLS development, and underscored the superior effectiveness of combined modalities in enhancing TLS maturation and response rates.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiyun Zhang
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Jin
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianxiang Zhang
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Akezhouli Shahatiaili
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zang
- Department of Radiation Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuanchun Pu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haige Chen
- Department of Urology, State Key Laboratory of Systems Medicine for Cancer, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
24
|
Wang Q, Zhong W, Shen X, Hao Z, Wan M, Yang X, An R, Zhu H, Cai H, Li T, Lv Y, Dong X, Chen G, Liu A, Du J. Tertiary lymphoid structures predict survival and response to neoadjuvant therapy in locally advanced rectal cancer. NPJ Precis Oncol 2024; 8:61. [PMID: 38431733 PMCID: PMC10908779 DOI: 10.1038/s41698-024-00533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Tertiary lymphoid structure (TLS) contributes to the anti-tumor immune response, and predicts the prognosis of colorectal cancer patients. However, the potential impact of TLS in shaping the immune status of rectal adenocarcinoma, and the intrinsic relationship between TLS and neoadjuvant therapies (neoTx) remain unclear. We performed hematoxylin-eosin staining, immunohistochemical and biomolecular analyses to investigate TLS and tumor-infiltrating lymphocytes (TILs) in 221 neoTx-treated and 242 treatment-naïve locally advanced rectal cancer (LARC) patients. High TLS density was significantly associated with the absence of vascular invasion, a lower neutrophil-to-lymphocyte ratio, increased TLS maturity, a longer recurrence-free survival (RFS) (hazard ratio [HR] 0.2985 95% confidence interval [CI] 0.1894-0.4706, p < 0.0001) and enhanced infiltration of adaptive immune cells. Biomolecular analysis showed that high TLS-score was strongly associated with more infiltration of immune cells and increased activation of immune-related pathways. TLS+ tumors in pre-treatment specimens were associated with a higher proportion of good respond (62.5% vs. 29.8%, p < 0.0002) and pathological complete remission (pCR) (40.0% vs. 11.1%, p < 0.0001), and significantly increased RFS (HR 0.3574 95%CI 0.1489-0.8578 p = 0.0213) compared with TLS- tumors in the neoTx cohort, which was confirmed in GSE119409 and GSE150082. Further studies showed that neoTx significantly reduced TLS density and maturity, and abolished the prognostic value of TLS. Our study illustrates that TLS may have a key role in mediating the T-cell-inflamed tumor microenvironment, which also provides a new direction for neoTx, especially neoadjuvant immunotherapy, in LRAC patients.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
- The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wentao Zhong
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Xiaofei Shen
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zechen Hao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510030, China
| | - Meng Wan
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Xiaopeng Yang
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Ran An
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Hongyan Zhu
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Huiyun Cai
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Tao Li
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Yuan Lv
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Xing Dong
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China.
| | - Aijun Liu
- Department of Pathology, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China.
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China.
| |
Collapse
|
25
|
van Straalen KR, Ma F, Tsou PS, Plazyo O, Gharaee-Kermani M, Calbet M, Xing X, Sarkar MK, Uppala R, Harms PW, Wasikowski R, Nahlawi L, Nakamura M, Eshaq M, Wang C, Dobry C, Kozlow JH, Cherry-Bukowiec J, Brodie WD, Wolk K, Uluçkan Ö, Mattichak MN, Pellegrini M, Modlin RL, Maverakis E, Sabat R, Kahlenberg JM, Billi AC, Tsoi LC, Gudjonsson JE. Single-cell sequencing reveals Hippo signaling as a driver of fibrosis in hidradenitis suppurativa. J Clin Invest 2024; 134:e169225. [PMID: 38051587 PMCID: PMC10836805 DOI: 10.1172/jci169225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrated the central role of the Hippo pathway in promoting extensive fibrosis in HS and provided preclinical evidence that the profibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide insights into key aspects of HS pathogenesis with broad therapeutic implications.
Collapse
Affiliation(s)
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Mehrnaz Gharaee-Kermani
- Department of Dermatology and
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marta Calbet
- Almirall SA, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | | | | | - Paul W. Harms
- Department of Dermatology and
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | - Cong Wang
- Laboratory for Experimental Immunodermatology, Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Jill Cherry-Bukowiec
- Section of General Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William D. Brodie
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kerstin Wolk
- Interdisciplinary group Molecular Immunopathology, Dermatology/Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Özge Uluçkan
- Almirall SA, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Megan N. Mattichak
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Emanual Maverakis
- Department of Dermatology, University of California, Sacramento, California, USA
| | - Robert Sabat
- Interdisciplinary group Molecular Immunopathology, Dermatology/Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - J. Michelle Kahlenberg
- Department of Dermatology and
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
26
|
Ribatti D. Tertiary lymphoid structures, a historical reappraisal. Tissue Cell 2024; 86:102288. [PMID: 38101028 DOI: 10.1016/j.tice.2023.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Tertiary lymphoid structures (TLSs) are accumulations of lymphoid cells within non-lymphoid organs that share the cellular compartments, spatial organization, vasculature, chemokines, and function with secondary lymphoid organs, especially lymph nodes. TLSs are organized into a separate T cell and B cell compartments which contain germinal centers with follicular dendritic cells. In most cases, TLSs contain Peripheral Node addressin (PNAD) expressing high endothelial venules (HEVs). TLSs have been described in various mouse models of inflammation and are associated with a wide range of autoimmune diseases. Other than these, TLSs have been described in chronic allograft rejection and cancer.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
27
|
Dong Y, Wang T, Wu H. Tertiary lymphoid structures in autoimmune diseases. Front Immunol 2024; 14:1322035. [PMID: 38259436 PMCID: PMC10800951 DOI: 10.3389/fimmu.2023.1322035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized lymphoid-like aggregations in non-lymphoid tissues. Tissues with chronic and persistent inflammation infiltration may drive and form ectopic germinal center-like structures, which are very common in autoimmune diseases, chronic infections, and tumor microenvironments. However, the mechanisms governing the formation of TLSs are still being explored. At present, it is not clear whether the formation of TLSs is associated with local uncontrolled immune inflammatory responses. While TLSs suggest a good prognosis in tumors, the opposite is true in autoimmune diseases. This review article will discuss the current views on initiating and maintaining TLSs and the potential therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Wang M, Rajkumar S, Lai Y, Liu X, He J, Ishikawa T, Nallapothula D, Singh RR. Tertiary lymphoid structures as local perpetuators of organ-specific immune injury: implication for lupus nephritis. Front Immunol 2023; 14:1204777. [PMID: 38022566 PMCID: PMC10644380 DOI: 10.3389/fimmu.2023.1204777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In response to inflammatory stimuli in conditions such as autoimmune disorders, infections and cancers, immune cells organize in nonlymphoid tissues, which resemble secondary lymphoid organs. Such immune cell clusters are called tertiary lymphoid structures (TLS). Here, we describe the potential role of TLS in the pathogenesis of autoimmune disease, focusing on lupus nephritis, a condition that incurs major morbidity and mortality. In the kidneys of patients and animals with lupus nephritis, the presence of immune cell aggregates with similar cell composition, structure, and gene signature as lymph nodes and of lymphoid tissue-inducer and -organizer cells, along with evidence of communication between stromal and immune cells are indicative of the formation of TLS. TLS formation in kidneys affected by lupus may be instigated by local increases in lymphorganogenic chemokines such as CXCL13, and in molecules associated with leukocyte migration and vascularization. Importantly, the presence of TLS in kidneys is associated with severe tubulointerstitial inflammation, higher disease activity and chronicity indices, and poor response to treatment in patients with lupus nephritis. TLS may contribute to the pathogenesis of lupus nephritis by increasing local IFN-I production, facilitating the recruitment and supporting survival of autoreactive B cells, maintaining local production of systemic autoantibodies such as anti-dsDNA and anti-Sm/RNP autoantibodies, and initiating epitope spreading to local autoantigens. Resolution of TLS, along with improvement in lupus, by treating animals with soluble BAFF receptor, docosahexaenoic acid, complement inhibitor C4BP(β-), S1P1 receptor modulator Cenerimod, dexamethasone, and anti-CXCL13 further emphasizes a role of TLS in the pathogenesis of lupus. However, the mechanisms underlying TLS formation and their roles in the pathogenesis of lupus nephritis are not fully comprehended. Furthermore, the lack of non-invasive methods to visualize/quantify TLS in kidneys is also a major hurdle; however, recent success in visualizing TLS in lupus-prone mice by photon emission computed tomography provides hope for early detection and manipulation of TLS.
Collapse
Affiliation(s)
- Meiying Wang
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Peking University Shenzhen Hosiptal, Shenzhen, China
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Snehin Rajkumar
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yupeng Lai
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xingjiao Liu
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jing He
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tatsuya Ishikawa
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Dhiraj Nallapothula
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
29
|
Nakamura S, Ohuchida K, Hayashi M, Katayama N, Tsutsumi C, Yamada Y, Hisano K, Okuda S, Ohtsubo Y, Iwamoto C, Torata N, Mizuuchi Y, Shindo K, Nakata K, Moriyama T, Morisaki T, Oda Y, Nakamura M. Tertiary lymphoid structures correlate with enhancement of antitumor immunity in esophageal squamous cell carcinoma. Br J Cancer 2023; 129:1314-1326. [PMID: 37604932 PMCID: PMC10575855 DOI: 10.1038/s41416-023-02396-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are associated with a favorable prognosis in several cancers. However, the correlation between TLSs and outcomes of esophageal squamous cell carcinoma (ESCC) and the impact of TLSs on the tumor immune microenvironment (TIME) remain unknown. METHODS We pathologically evaluated the significance of TLSs in ESCC focusing on TLS maturation using 180 ESCC specimens and performed single-cell RNA sequencing (scRNA-seq) using 14 ESCC tissues to investigate functional differences of immune cells according to TLS presence. RESULTS TLS+ cases had better recurrence-free-survival (RFS) (p < 0.0001) and overall survival (OS) (p = 0.0016) compared with TLS- cases. Additionally, mature TLS+ cases had better RFS and OS compared with immature TLS+ cases (p = 0.019 and p = 0.015) and TLS- cases (p < 0.0001 and p = 0.0002). The scRNA-seq showed that CD8+ T cells in TLS+ tumors expressed high levels of cytotoxic signatures and antigen-presentation of dendritic cells (DCs) was enhanced in TLS+ tumors. Immunohistochemistry showed that the densities of tumor-infiltrating CD8+ T cells and DCs were significantly higher in TLS+ tumors than those in TLS- tumors. CONCLUSIONS These data suggest the prognostic and functional significance of TLSs in ESCC and provides new insights into TLSs on the TIME.
Collapse
Affiliation(s)
- Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masataka Hayashi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Katayama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko Hisano
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Ohtsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Houel A, Foloppe J, Dieu-Nosjean MC. Harnessing the power of oncolytic virotherapy and tertiary lymphoid structures to amplify antitumor immune responses in cancer patients. Semin Immunol 2023; 69:101796. [PMID: 37356421 DOI: 10.1016/j.smim.2023.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Tertiary lymphoid structures (TLS) are ectopic aggregates of immune cells that develop in non-lymphoid tissues under persistent inflammation. Since their presence has been associated with a better prognosis in cancer patients, modulating TLS formation is being part of new challenges in immunotherapy. Although mechanisms underlying TLS genesis are still not fully understood, different strategies have been developed in preclinical models to induce their formation and ultimately enhance antitumor responses. Herein, we will discuss a new approach that would consist in using oncolytic viruses (OV). These viruses have the unique feature to preferentially infect, replicate in and kill cancer cells. Their immunoadjuvant property, their use as a vector of therapeutic molecules and their selectivity for cancer cells, make them an attractive strategy to induce TLS in the tumor microenvironment. This review will examine the current knowledge about TLS neogenesis, approaches for inducing them, and relevance of using OV for this purpose, especially in combination with immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Ana Houel
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France; Transgene, Illkirch-Graffenstaden, France
| | | | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France.
| |
Collapse
|
31
|
Jafari N, Gheitasi R, Khorasani HR, Golpour M, Mehri M, Nayeri K, Pourbagher R, Mostafazadeh M, Kalali B, Mostafazadeh A. Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts. Heliyon 2023; 9:e19238. [PMID: 37674821 PMCID: PMC10477462 DOI: 10.1016/j.heliyon.2023.e19238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/15/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Emerging evidence indicates that fibroblasts play pivotal roles in immunoregulation by producing various proteins under health and disease states. In the present study, for the first time, we compared the proteomes of serum-starved human skin fibroblasts and peripheral blood mononuclear cells (PBMCs) using Nano-LC-ESI-tandem mass spectrometry. This analysis contributes to a better understanding of the underlying molecular mechanisms of chronic inflammation and cancer, which are intrinsically accompanied by growth factor deficiency.The proteomes of starved fibroblasts and PBMCs consisted of 307 and 294 proteins, respectively, which are involved in lymphocyte migration, complement activation, inflammation, acute phase response, and immune regulation. Starved fibroblasts predominantly produced extracellular matrix-related proteins such as collagen/collagenase, while PBMCs produced focal adhesion-related proteins like beta-parvin and vinculin which are involved in lymphocyte migration. PBMCs produced a more diverse set of inflammatory molecules like heat shock proteins, while fibroblasts produced human leukocytes antigen-G and -E that are known as main immunomodulatory molecules. Fifty-four proteins were commonly found in both proteomes, including serum albumin, amyloid-beta, heat shock cognate 71 kDa, and complement C3. GeneMANIA bioinformatic tool predicted 418 functions for PBMCs, including reactive oxygen species metabolic processes and 241 functions for starved fibroblasts such as antigen processing and presentation including non-classical MHC -Ib pathway, and negative regulation of the immune response. Protein-protein interactions network analysis indicated the immunosuppressive function for starved fibroblasts-derived human leucocytes antigen-G and -E. Moreover, in an in vitro model of allogeneic transplantation, the immunosuppressive activity of starved fibroblasts was experimentally documented. Conclusion Under serum starvation-induced metabolic stress, both PBMCs and fibroblasts produced molecules like heat shock proteins and amyloid-beta, which can have pathogenic roles in auto-inflammatory diseases such as rheumatoid arthritis, type 1 diabetes mellitus, systemic lupus erythematosus, aging, and cancer. However, starved fibroblasts showed immunosuppressive activity in an in vitro model of allogeneic transplantation, suggesting their potential to modify such adverse reactions by down-regulating the immune system.
Collapse
Affiliation(s)
- Negar Jafari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Gheitasi
- Institutes for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Hamid Reza Khorasani
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Monireh Golpour
- Department of Immunology, Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mehri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Kosar Nayeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Pourbagher
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Behnam Kalali
- Department of Medicine II, Klinikum Grosshadern, LMU University, 81377, Munich, Germany
| | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
32
|
Esparcia-Pinedo L, Romero-Laorden N, Alfranca A. Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer. Front Immunol 2023; 14:1231315. [PMID: 37622111 PMCID: PMC10445545 DOI: 10.3389/fimmu.2023.1231315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells with an organization that resembles that of secondary lymphoid organs. Both structures share common developmental characteristics, although TLSs usually appear in chronically inflamed non-lymphoid tissues, such as tumors. TLSs contain diverse types of immune cells, with varying degrees of spatial organization that represent different stages of maturation. These structures support both humoral and cellular immune responses, thus the correlation between the existence of TLS and clinical outcomes in cancer patients has been extensively studied. The finding that TLSs are associated with better prognosis in some types of cancer has led to the design of therapeutic strategies based on promoting the formation of these structures. Agents such as chemokines, cytokines, antibodies and cancer vaccines have been used in combination with traditional antitumor treatments to enhance TLS generation, with good results. The induction of TLS formation therefore represents a novel and promising avenue for the treatment of a number of tumor types.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, Madrid, Spain
| |
Collapse
|
33
|
Li H, Ding JY, Zhang MJ, Yu HJ, Sun ZJ. Tertiary lymphoid structures and cytokines interconnections: The implication in cancer immunotherapy. Cancer Lett 2023:216293. [PMID: 37392991 DOI: 10.1016/j.canlet.2023.216293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of lymphocytes and antigen-presenting cells that develop in non-lymphoid tissues during chronic inflammation, resembling the structure and features of secondary lymphoid organs. Numerous studies have shown that TLSs may be an important source of antitumor immunity within solid tumors, facilitating T cell and B cell differentiation and the subsequent production of antitumor antibodies, which are beneficial for cancer prognosis and responses to immunotherapy. The formation of TLS relies on the cytokine signaling network between heterogeneous cell populations, such as stromal cells, lymphocytes and cancer cells. The coordinated action of various cytokines drives the complex process of TLS development. In this review, we will comprehensively describe the mechanisms by which various cytokines regulate TLS formation and function, and the recent advancements and therapeutic potential of exploiting these mechanisms to induce TLS as an emerging immunotherapeutic approach or to enhance existing immunotherapy.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Jia-Yi Ding
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| |
Collapse
|
34
|
Huang Y, Ba X, Han L, Wang H, Lin W, Chen Z, Tu S. T peripheral helper cells in autoimmune diseases: What do we know? Front Immunol 2023; 14:1145573. [PMID: 37077922 PMCID: PMC10106688 DOI: 10.3389/fimmu.2023.1145573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The interactions between T cells and B cells are essential for antibody responses and the development of autoimmune diseases. Recently, a distinct subset of T cells capable of helping B cells was established in synovial fluid, and they were termed peripheral helper T (Tph) cells. PD-1hiCXCR5−CD4+ Tph cells express high levels of CXCL13, which drives the formation of lymphoid aggregates and tertiary lymphoid structures, ultimately facilitating the local production of pathogenic autoantibodies. Tph and T follicular helper cells share some key features but can be distinguished by their surface markers, transcriptional regulation, and migration capability. We summarize recent findings on Tph cells in this review and provide a perspective on their potential roles in a range of autoimmune diseases. More clinical and in-depth mechanistic investigations of Tph cells may help to improve the understanding of pathogenesis and further provide novel therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medcal College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medcal College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Chen, ; Shenghao Tu,
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medcal College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Chen, ; Shenghao Tu,
| |
Collapse
|
35
|
Abstract
The theory that cancer-associated fibroblasts (CAFs) are immunosuppressive cells has prevailed throughout the past decade. However, recent high-throughput, high-resolution mesenchyme-directed single-cell studies have harnessed computational advances to functionally characterize cell states, highlighting the existence of immunostimulatory CAFs. Our group and others have uncovered and experimentally substantiated key functions of cancer antigen-presenting CAFs in T cell immunity, both in vitro and in vivo, refuting the conventional assumption that CAFs impede adaptive immune rejection of tumours. In this Perspective, I unify the follicular and non-follicular, non-endothelial stroma of tumours under the 'peripheral adaptive immune mesenchyme' framework and position subsets of CAFs as direct positive regulators of the adaptive immune system. Building on the understanding of cancer antigen presentation by CAFs and the second touch hypothesis, which postulates that full T cell polarization requires interaction with antigen-presenting cells in the non-lymphoid tissue where the antigen resides, I re-design the 'cancer-immunity cycle' to incorporate intratumoural activation of cancer-specific CD4+ T cells. Lastly, a road map to therapeutic harnessing of immunostimulatory CAF states is proposed.
Collapse
Affiliation(s)
- Maria Tsoumakidou
- Institute of Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece.
| |
Collapse
|
36
|
Jin L, Gao W, Chen P, Zhao W, Zhao Y, Li D, Zhou J, Yu B, Dong G. Murine neonatal dermal fibroblast acquires a lymphoid tissue organizer cell-like activity upon synergistic activation of TNF-α receptor and LTβ receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119399. [PMID: 36402207 DOI: 10.1016/j.bbamcr.2022.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Tertiary lymphoid organs (TLOs) are ectopic aggregates of immune cells. As accumulating studies demonstrate TLOs as a predictor of better prognosis in certain cancers, targeting TLO formation, which is tightly regulated by the lymphoid tissue organizer cells (LTOs), has become intriguing in cancer treatment. However, the clinical outcome of these attempts is limited, because the approaches for activating tumor adjacent LTO is lack and little is known about what type of self-cell can be used as LTO to initiate TLO formation. Here we demonstrate that co-stimulation with membrane-bound ligand LTα1β2 and soluble TNF-α could induced an LTO-like activity in murine neonatal dermal fibroblast, featured by high expression of cell migration-associated chemokines and adhesion molecules that resemble typical LTO gene signature. Furthermore, the LTO-phenotypic dermal fibroblast could enhance the attachment and survival of T and B cell and proliferation of T cell. These findings suggest dermal fibroblast as a promising target for TLO induction to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Lujia Jin
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing, China; Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Zhou
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Biyue Yu
- School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Guanglong Dong
- Department & Institute of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
37
|
Sato Y, Tamura M, Yanagita M. Tertiary lymphoid tissues: a regional hub for kidney inflammation. Nephrol Dial Transplant 2023; 38:26-33. [PMID: 34245300 DOI: 10.1093/ndt/gfab212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 01/26/2023] Open
Abstract
Tertiary lymphoid tissues (TLTs) are inducible ectopic lymphoid tissues that develop at sites of chronic inflammation in nonlymphoid organs. As with lymph nodes, TLTs initiate adaptive immune responses and coordinate local tissue immunity. Although virtually ignored for decades, TLTs have recently received a great deal of attention for their ability to influence disease severity, prognosis and response to therapy in various diseases, including cancer, autoimmune disorders and infections. TLTs are also induced in kidneys of patients with chronic kidney diseases such as immunoglobulin A nephropathy and lupus nephritis. Nevertheless, TLTs in the kidney have not been extensively investigated and their mechanism of development, functions and clinical relevance remain unknown, mainly because of the absence of adequate murine kidney TLT models and limited availability of human kidney samples containing TLTs. We recently found that aged kidneys, but not young kidneys, exhibit multiple TLTs after injury. Interestingly, although they are a minor component of TLTs, resident fibroblasts in the kidneys diversify into several distinct phenotypes that play crucial roles in TLT formation. Furthermore, the potential of TLTs as a novel kidney injury/inflammation marker as well as a novel therapeutic target for kidney diseases is also suggested. In this review article we describe the current understanding of TLTs with a focus on age-dependent TLTs in the kidney and discuss their potential as a novel therapeutic target and kidney inflammation marker.
Collapse
Affiliation(s)
- Yuki Sato
- Medical Innovation Center, TMK Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC), Tsukuba, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Zhang Q, Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front Immunol 2023; 13:1063711. [PMID: 36713409 PMCID: PMC9875059 DOI: 10.3389/fimmu.2022.1063711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates that form at sites of chronic inflammation, including cancers, in non-lymphoid tissues. Although the formation of TLSs is similar to that of secondary lymphoid organs, the pathogenic factors leading to TLS formation in cancerous tissues and the mechanisms underlying the role of these structures in the intra-tumoral adaptive antitumor immune response are not fully understood. The presence of TLSs may impact patient prognosis and treatment outcomes. This review examines the current understanding of TLSs in cancers, including their composition and formation as well as their potential to predict prognosis and therapeutic efficacy. We also summarize strategies to induce TLS formation for cancer treatment.
Collapse
Affiliation(s)
| | - Suhui Wu
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
39
|
Gauthier V, Kyriazi M, Nefla M, Pucino V, Raza K, Buckley CD, Alsaleh G. Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Front Immunol 2023; 14:1137659. [PMID: 36926329 PMCID: PMC10011104 DOI: 10.3389/fimmu.2023.1137659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblasts, derived from the embryonic mesenchyme, are a diverse array of cells with roles in development, homeostasis, repair, and disease across tissues. In doing so, fibroblasts maintain micro-environmental homeostasis and create tissue niches by producing a complex extracellular matrix (ECM) including various structural proteins. Although long considered phenotypically homogenous and functionally identical, the emergence of novel technologies such as single cell transcriptomics has allowed the identification of different phenotypic and cellular states to be attributed to fibroblasts, highlighting their role in tissue regulation and inflammation. Therefore, fibroblasts are now recognised as central actors in many diseases, increasing the need to discover new therapies targeting those cells. Herein, we review the phenotypic heterogeneity and functionality of these cells and their roles in health and disease.
Collapse
Affiliation(s)
- Vincent Gauthier
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Kyriazi
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Meriam Nefla
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Pucino
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Rheumatology, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Christopher D Buckley
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Shang L, Zhou X. Spatially aware dimension reduction for spatial transcriptomics. Nat Commun 2022; 13:7203. [PMID: 36418351 PMCID: PMC9684472 DOI: 10.1038/s41467-022-34879-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Spatial transcriptomics are a collection of genomic technologies that have enabled transcriptomic profiling on tissues with spatial localization information. Analyzing spatial transcriptomic data is computationally challenging, as the data collected from various spatial transcriptomic technologies are often noisy and display substantial spatial correlation across tissue locations. Here, we develop a spatially-aware dimension reduction method, SpatialPCA, that can extract a low dimensional representation of the spatial transcriptomics data with biological signal and preserved spatial correlation structure, thus unlocking many existing computational tools previously developed in single-cell RNAseq studies for tailored analysis of spatial transcriptomics. We illustrate the benefits of SpatialPCA for spatial domain detection and explores its utility for trajectory inference on the tissue and for high-resolution spatial map construction. In the real data applications, SpatialPCA identifies key molecular and immunological signatures in a detected tumor surrounding microenvironment, including a tertiary lymphoid structure that shapes the gradual transcriptomic transition during tumorigenesis and metastasis. In addition, SpatialPCA detects the past neuronal developmental history that underlies the current transcriptomic landscape across tissue locations in the cortex.
Collapse
Affiliation(s)
- Lulu Shang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
41
|
Wang YQ, Chen WJ, Li WY, Pan XW, Cui X. Impact of interaction networks of B cells with other cells on tumorigenesis, progression and response to immunotherapy of renal cell carcinoma: A review. Front Oncol 2022; 12:995519. [PMID: 36465392 PMCID: PMC9712799 DOI: 10.3389/fonc.2022.995519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/31/2022] [Indexed: 08/06/2023] Open
Abstract
Ample evidence indicates that the development and progression of renal cell carcinoma (RCC) are complex pathological processes involving interactions between tumor cells, immune cells and stromal components. Tumor infiltrated immune cells determine whether tumor advancement is promoted or inhibited. Among them, infiltrated B lymphocytes are present in all stages of RCC, playing a major role in determining tumor formation and advancement, as an essential part in the tumor microenvironment (TME). Although the advent of targeted and immune therapies has remarkably improved the survival of patients with advanced RCC, few cases can achieve complete response due to drug resistance. In this review article, we intend to summary the recent studies that outline the interaction networks of B cells with other cells, discuss the role of B cells in RCC development and progression, and assess their impact on RCC immunotherapy.
Collapse
Affiliation(s)
- Yu-qi Wang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wen-jin Chen
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wen-yan Li
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiu-wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin−gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
42
|
Yoshikawa T, Lee YH, Sato Y, Yanagita M. Tertiary lymphoid tissues in kidney diseases: a perspective for the pediatric nephrologist. Pediatr Nephrol 2022; 38:1399-1409. [PMID: 36251070 DOI: 10.1007/s00467-022-05770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Chronic kidney disease (CKD) is a major public health problem worldwide. In the pediatric population, CKD is also an important health issue because it causes several comorbid conditions that can have long-term consequences beyond the pediatric age. Chronic inflammation is a common pathological feature of CKD, irrespective of etiology, and leads to maladaptive repair and kidney dysfunction. Tertiary lymphoid tissues (TLTs) are ectopic lymphoid structures that develop in non-lymphoid organs under chronic inflammation caused by pathological conditions, including infections, autoimmune diseases, and cancers. TLTs in the kidneys have been poorly researched due to the lack of an animal model. We have recently found that, in aged but not young mice, TLTs develop in multiple kidney injury models, and the analysis of age-dependent TLTs has brought about several novel insights into the development and pathogenic impacts of TLTs in the kidney. Age-dependent TLT formation is also observed in human kidneys. In addition to aged kidneys, TLT development is also reported in several human kidney diseases including kidney allografts, lupus nephritis, and IgA nephropathy in both adults and children. In this review, we describe the novel findings on TLTs in the kidney obtained mainly from the analysis of age-dependent TLTs and discuss the clinical relevance of TLTs in kidney diseases.
Collapse
Affiliation(s)
- Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. .,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| |
Collapse
|
43
|
CHEN J, CHEN J, WANG L. Tertiary lymphoid structures as unique constructions associated with the organization, education, and function of tumor-infiltrating immunocytes. J Zhejiang Univ Sci B 2022; 23:812-822. [PMID: 36226536 PMCID: PMC9561406 DOI: 10.1631/jzus.b2200174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tertiary lymphoid structures (TLSs) are formations at sites with persistent inflammatory stimulation, including tumors. These ectopic lymphoid organs mainly consist of chemo-attracting B cells, T cells, and supporting dendritic cells (DCs). Mature TLSs exhibit functional organization for the optimal development and collaboration of adaptive immune response, delivering an augmented effect on the tumor microenvironment (TME). The description of the positive correlation between TLSs and tumor prognosis is reliable only under a certain condition involving the localization and maturation of TLSs. Emerging evidence suggests that underlying mechanisms of the anti-tumor effect of TLSs pave the way for novel immunotherapies. Several approaches have been developed to take advantage of intratumoral TLSs, either by combining it with therapeutic agents or by inducing the neogenesis of TLSs.
Collapse
Affiliation(s)
- Jing CHEN
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China,Institute of Immunology and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Jian CHEN
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China,Jian CHEN,
| | - Lie WANG
- Institute of Immunology and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Cancer Center, Zhejiang University, Hangzhou310058, China,Lie WANG,
| |
Collapse
|
44
|
Lee J, Park BC, Jang NY, Lee S, Cho YK, Sharma P, Byun SW, Jeon K, Jeon Y, Park U, Ro HJ, Park HR, Kim Y, Lee D, Chung S, Kim YK, Cho N. Inducing Ectopic T Cell Clusters Using Stromal Vascular Fraction Spheroid-Based Immunotherapy to Enhance Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203842. [PMID: 36058002 PMCID: PMC9534947 DOI: 10.1002/advs.202203842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/21/2022] [Indexed: 05/09/2023]
Abstract
Tertiary lymphoid structures (TLSs) provide specialized niches for immune cells, resulting in improved prognoses for patients undergoing cancer immunotherapy. Shaping TLS-like niches may improve anti-cancer immunity and overcome the current limitations of immune cell-based immunotherapy. Here, it is shown that stromal vascular fraction (SVF) from adipose tissues can enhance dendritic cell (DC)-mediated T cell immunity by inducing ectopic T lymphocyte clusters. SVF cells expanded ex vivo have phenotypes and functions similar to those of fibroblastic reticular cells in a secondary lymphoid organ, and their properties can be modulated using three-dimensional spheroid culture and coculture with DCs spiked with antigen-loaded iron oxide-zinc oxide core-shell nanoparticles. Thereby, the combination of SVF spheroids and mature DCs significantly augments T cell recruitment and retention at the injection site. This strategy elicits enhanced antigen-specific immune response and anti-tumoral immunity in mice, illustrating the potential for a novel immunotherapeutic design using SVF as a structural scaffold for TLS.
Collapse
Affiliation(s)
- Jae‐Won Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
- Institute of Endemic DiseasesCollege of MedicineSeoul National UniversitySeoul03080Korea
| | - Bum Chul Park
- Department of Materials Science and EngineeringKorea UniversitySeoul02481Korea
- Brain Korea Center for Smart Materials and DevicesKorea UniversitySeoul02841Korea
| | - Na Yoon Jang
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Sihyeon Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Young Kyu Cho
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Prashant Sharma
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Sang Won Byun
- Department of Materials Science and EngineeringKorea UniversitySeoul02481Korea
| | - Kyeongseok Jeon
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Yun‐Hui Jeon
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
| | - Uni Park
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Hyo Jin Ro
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Hyo Ree Park
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
| | - Yuri Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
- Institute of Endemic DiseasesCollege of MedicineSeoul National UniversitySeoul03080Korea
| | - Dong‐Sup Lee
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
| | - Seok Chung
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and EngineeringKorea UniversitySeoul02481Korea
- Brain Korea Center for Smart Materials and DevicesKorea UniversitySeoul02841Korea
| | - Nam‐Hyuk Cho
- Department of Biomedical SciencesSeoul National University College of MedicineSeoul03080Korea
- Department of Microbiology and ImmunologySeoul National University College of MedicineSeoul03080Korea
- Institute of Endemic DiseasesCollege of MedicineSeoul National UniversitySeoul03080Korea
- Seoul National University Bundang HospitalSeongnam‐siGyeonggi‐do13620Republic of Korea
| |
Collapse
|
45
|
Liang Y, Guo GL, Zhang L. Current and Emerging Molecular Markers of Liver Diseases: A Pathogenic Perspective. Gene Expr 2022; 21:9-19. [PMID: 38911667 PMCID: PMC11192043 DOI: 10.14218/gejlr.2022.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the past decade, with the rapid development of molecular medicine and the application of more sophisticated methods for disease diagnosis and treatment, a number of molecular markers have become available for liver diseases. Pathogenesis-related markers are likely to be effectively discovered and rigorously validated, due to the unique biological links to diseases. The present study reviews the predominant clinical and research articles in the previous decade to provide a pathogenic perspective of current and emerging biomarkers for liver diseases, including hepatocellular neoplasms (e.g. hepatocellular carcinoma), non-neoplastic hepatocellular diseases, intrahepatic biliary diseases, and other liver diseases. Although it remains challenging to cover all markers for the diagnosis and prognosis of liver diseases, current and emerging molecular markers in clinical practice and under investigation are reviewed in a wide spectrum of liver diseases, in order to help clinicians and researchers identify liver disease markers for reference.
Collapse
Affiliation(s)
- Yuanxin Liang
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernst Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Research and Development Service, Veterans Health Administration, New Jersey Health Care System, East Orange, New Jersey, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey, USA
- Department of Chemical Biology, Ernst Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
46
|
Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P, Harrer A. The CXCL13/CXCR5 Immune Axis in Health and Disease—Implications for Intrathecal B Cell Activities in Neuroinflammation. Cells 2022; 11:cells11172649. [PMID: 36078057 PMCID: PMC9454489 DOI: 10.3390/cells11172649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The chemokine C-X-C- ligand 13 (CXCL13) is a major B cell chemoattractant to B cell follicles in secondary lymphoid organs (SLO) that proposedly recruits B cells to the cerebrospinal fluid (CSF) during neuroinflammation. CXCR5, the cognate receptor of CXCL13, is expressed on B cells and certain T cell subsets, in particular T follicular helper cells (Tfh cells), enabling them to follow CXCL13 gradients towards B cell follicles for spatial proximity, a prerequisite for productive T cell–B cell interaction. Tfh cells are essential contributors to B cell proliferation, differentiation, and high-affinity antibody synthesis and are required for germinal center formation and maintenance. Circulating Tfh cells (cTfh) have been observed in the peripheral blood and CSF. Furthermore, CXCL13/CXCR5-associated immune activities organize and shape adaptive B cell-related immune responses outside of SLO via the formation of ectopic lymphoid structures in inflamed tissues, including the central nervous system (CNS). This review summarizes the recent advances in our understanding of the CXCL13/CXCR5 immune axis and its role in vaccination, autoimmunity, and infection with a special focus on its relevance for intrathecal B cell activities in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Christine Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ferdinand Otto
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Richard Friedrich Radlberger
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Georg Pilz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Peter Wipfler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Department of Dermatology and Allergology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
47
|
Cai S, Hu Z, Chen Y, Zhong J, Dong L. Potential roles of non-lymphocytic cells in the pathogenesis of IgG4-related disease. Front Immunol 2022; 13:940581. [PMID: 35967331 PMCID: PMC9366038 DOI: 10.3389/fimmu.2022.940581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Studies have confirmed the involvement of a variety of lymphocyte subsets, including type 2 helper T lymphocytes (Th2) and IgG4+ B lymphocytes, in the pathogenesis of IgG4-related disease (IgG4-RD). Those lymphocytes contribute to the major pathogenetic features of IgG4-RD. However, they are not the only cellular components in the immunoinflammatory environment of this mysterious disease entity. Recent studies have suggested that various non-lymphocytic components, including macrophages and fibroblasts, may also play an important role in the pathogenetic process of IgG4-RD in terms of contributing to the chronic and complex progress of the disease. Therefore, the potential role of non-lymphocyte in the pathogenesis of IgG4-RD is worth discussing.
Collapse
Affiliation(s)
| | | | - Yu Chen
- *Correspondence: Lingli Dong, ; Jixin Zhong, ; Yu Chen,
| | - Jixin Zhong
- *Correspondence: Lingli Dong, ; Jixin Zhong, ; Yu Chen,
| | - Lingli Dong
- *Correspondence: Lingli Dong, ; Jixin Zhong, ; Yu Chen,
| |
Collapse
|
48
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
49
|
Jia W, Zhang T, Yao Q, Li J, Nie Y, Lei X, Mao Z, Wang Y, Shi W, Song W. Tertiary Lymphatic Structures in Primary Hepatic Carcinoma: Controversy Cannot Overshadow Hope. Front Immunol 2022; 13:870458. [PMID: 35844587 PMCID: PMC9278517 DOI: 10.3389/fimmu.2022.870458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells found in the tumor microenvironment. TLS can influence primary hepatic carcinoma (PHC) occurrence and have an active role in cancer. TLS can promote or inhibit the growth of PHC depending on their location, and although available findings are controversial, they suggest that TLS have a protective role in PHC tissues and a non-protective role in paracancerous tissues. In addition, the cellular composition of TLS can also influence the outcome of PHC. As an immunity marker, TLS can act as a marker of immunotherapy to predict its effect and help to identify patients who will respond well to immunotherapy. Modulation of TLS formation through the use of chemokines/cytokines, immunotherapy, or induction of high endothelial vein to interfere with tumor growth has been studied extensively in PHC and other cancers. In addition, new tools such as genetic interventions, cellular crosstalk, preoperative radiotherapy, and advances in materials science have been shown to influence the prognosis of malignant tumors by modulating TLS production. These can also be used to develop PHC treatment.
Collapse
Affiliation(s)
- Weili Jia
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tianchen Zhang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qianyun Yao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianhui Li
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ye Nie
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinjun Lei
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenzhen Mao
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanfang Wang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wen Shi
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Wenjie Song,
| |
Collapse
|
50
|
Nayar S, Pontarini E, Campos J, Berardicurti O, Smith CG, Asam S, Gardner DH, Colafrancesco S, Lucchesi D, Coleby R, Chung MM, Iannizzotto V, Hunter K, Bowman SJ, Carlesso G, Herbst R, McGettrick HM, Browning J, Buckley CD, Fisher BA, Bombardieri M, Barone F. Immunofibroblasts regulate LTα3 expression in tertiary lymphoid structures in a pathway dependent on ICOS/ICOSL interaction. Commun Biol 2022; 5:413. [PMID: 35508704 PMCID: PMC9068764 DOI: 10.1038/s42003-022-03344-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 04/10/2022] [Indexed: 01/15/2023] Open
Abstract
Immunofibroblasts have been described within tertiary lymphoid structures (TLS) that regulate lymphocyte aggregation at sites of chronic inflammation. Here we report, for the first time, an immunoregulatory property of this population, dependent on inducible T-cell co-stimulator ligand and its ligand (ICOS/ICOS-L). During inflammation, immunofibroblasts, alongside other antigen presenting cells, like dendritic cells (DCs), upregulate ICOSL, binding incoming ICOS + T cells and inducing LTα3 production that, in turn, drives the chemokine production required for TLS assembly via TNFRI/II engagement. Pharmacological or genetic blocking of ICOS/ICOS-L interaction results in defective LTα expression, abrogating both lymphoid chemokine production and TLS formation. These data provide evidence of a previously unknown function for ICOSL-ICOS interaction, unveil a novel immunomodulatory function for immunofibroblasts, and reveal a key regulatory function of LTα3, both as biomarker of TLS establishment and as first driver of TLS formation and maintenance in mice and humans.
Collapse
Affiliation(s)
- Saba Nayar
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Joana Campos
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Onorina Berardicurti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Charlotte G Smith
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Saba Asam
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - David H Gardner
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | | | - Davide Lucchesi
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Rachel Coleby
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ming-May Chung
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Valentina Iannizzotto
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Kelly Hunter
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Simon J Bowman
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gianluca Carlesso
- Early Oncology ICA, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, MD, USA
| | - Ronald Herbst
- Early Oncology ICA, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, MD, USA
| | - Helen M McGettrick
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
| | - Jeff Browning
- Departments of Microbiology and Rheumatology, Boston University School of Medicine, Boston, MA, USA
| | - Christopher D Buckley
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin A Fisher
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Francesca Barone
- Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical & Dental Sciences, University of Birmingham Research Laboratories, Queen Elizabeth Hospital, Birmingham, B15 2WB, UK.
- Candel Therapeutics, Needham, Boston, MA, USA.
| |
Collapse
|