1
|
Rane SS, Shellard E, Adamson A, Eyre S, Warren RB. IL23R mutations associated with decreased risk of psoriasis lead to the differential expression of genes implicated in the disease. Exp Dermatol 2024; 33:e15180. [PMID: 39306854 DOI: 10.1111/exd.15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Psoriasis is an incurable immune-mediated skin disease, affecting around 1%-3% of the population. Various lines of evidence implicate IL23 as being pivotal in disease. Genetic variants within the IL23 receptor (IL23R) increase the risk of developing psoriasis, and biologic therapies specifically targeting IL23 demonstrated high efficacy in treating disease. IL23 acts via the IL23R, signalling through the STAT3 pathway, mediating the cascade of events that ultimately results in the clinical presentation of psoriasis. Given the essential role of IL23R in disease, it is important to understand the impact of genetic variants on receptor function with respect to downstream gene regulation. Here we developed model systems in CD4+ (Jurkat) and CD8+ (MyLa) T cells to express either the wild type risk or mutant (R381Q) protective form of IL23R. After confirmation that the model system expressed the genes/proteins and had a differential effect on the phosphorylation of STAT3, we used RNAseq to explore differential gene regulation, in particular for genes implicated with risk to psoriasis, at a single time point for both cell types, and in a time course experiment for Jurkat CD4+ T cells. These experiments discovered differentially regulated genes in the cells expressing wild type and mutant IL23R, including HLA-B, SOCS1, RUNX3, CCR5, CXCR3, CCR9, KLF3, CD28, IRF, SOCS6, TNFAIP and ICAM5, that have been implicated in both the IL23 pathway and psoriasis. These genes have the potential to define a IL23/psoriasis pathway in disease, advancing our understanding of the biology behind the disease.
Collapse
Affiliation(s)
- Shraddha S Rane
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Elan Shellard
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Antony Adamson
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Steve Eyre
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard B Warren
- Manchester Academic Health Science Centre, Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| |
Collapse
|
2
|
Körholz J, Chen LS, Strauss T, Schuetz C, Dalpke AH. One gene to rule them all - clinical perspectives of a potent suppressor of cytokine signaling - SOCS1. Front Immunol 2024; 15:1385190. [PMID: 38711523 PMCID: PMC11070515 DOI: 10.3389/fimmu.2024.1385190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
The discovery of Suppressor of Cytokine Signaling 1 (SOCS1) in 1997 marked a significant milestone in understanding the regulation of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathways. Subsequent research deciphered its cellular functions, and recent insights into SOCS1 deficiencies in humans underscored its critical role in immune regulation. In humans, SOCS-haploinsufficiency (SOCS1-HI) presents a diverse clinical spectrum, encompassing autoimmune diseases, infection susceptibility, and cancer. Variability in disease manifestation, even within families sharing the same genetic variant, raises questions about clinical penetrance and the need for individualized treatments. Current therapeutic strategies include JAK inhibition, with promising results in controlling inflammation in SOCS1-HI patients. Hematopoietic stem cell transplantation and gene therapy emerge as promising avenues for curative treatments. The evolving landscape of SOCS1 research, emphasizes the need for a nuanced understanding of genetic variants and their functional consequences.
Collapse
Affiliation(s)
- Julia Körholz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Chronic Immunodeficiencies (UCID), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lan-Sun Chen
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, University Heidelberg, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| | - Timmy Strauss
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Chronic Immunodeficiencies (UCID), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Chronic Immunodeficiencies (UCID), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander H. Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Medical Faculty, University Heidelberg, Heidelberg, Germany
- University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Fan X, Qiu L, Zhu W, Huang L, Tu X, Miao Y. CEBPA-Regulated Expression of SOCS1 Suppresses Milk Protein Synthesis through mTOR and JAK2-STAT5 Signaling Pathways in Buffalo Mammary Epithelial Cells. Foods 2023; 12:foods12040708. [PMID: 36832783 PMCID: PMC9955710 DOI: 10.3390/foods12040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Milk protein content is a key quality indicator of milk, and therefore elucidating its synthesis mechanism has been the focus of research in recent years. Suppressor of cytokine signaling 1 (SOCS1) is an important inhibitor of cytokine signaling pathways that can inhibit milk protein synthesis in mice. However, it remains elusive whether SOCS1 plays roles in the milk protein synthesis in the buffalo mammary gland. In this study, we found that the mRNA and protein expression levels of SOCS1 in buffalo mammary tissue during the dry-off period was significantly lower than those during lactation. Overexpression and knockdown experiments of SOCS1 showed that it influenced the expression and phosphorylation of multiple key factors in the mTOR and JAK2-STAT5 signaling pathways in buffalo mammary epithelial cells (BuMECs). Consistently, intracellular milk protein content was significantly decreased in cells with SOCS1 overexpression, while it increased significantly in the cells with SOCS1 knockdown. The CCAAT/enhancer binding protein α (CEBPA) could enhance the mRNA and protein expression of SOCS1 and its promoter activity in BuMECs, but this effect was eliminated when CEBPA and NF-κB binding sites were deleted. Therefore, CEBPA was determined to promote SOCS1 transcription via the CEBPA and NF-κB binding sites located in the SOCS1 promoter. Our data indicate that buffalo SOCS1 plays a significant role in affecting milk protein synthesis through the mTOR and JAK2-STAT5 signaling pathways, and its expression is directly regulated by CEBPA. These results improve our understanding of the regulation mechanism of buffalo milk protein synthesis.
Collapse
|
4
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
5
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Körholz J, Gabrielyan A, Sowerby JM, Boschann F, Chen LS, Paul D, Brandt D, Kleymann J, Kolditz M, Toepfner N, Knöfler R, Jacobsen EM, Wolf C, Conrad K, Röber N, Lee-Kirsch MA, Smith KGC, Mundlos S, Berner R, Dalpke AH, Schuetz C, Rae W. One Gene, Many Facets: Multiple Immune Pathway Dysregulation in SOCS1 Haploinsufficiency. Front Immunol 2021; 12:680334. [PMID: 34421895 PMCID: PMC8375263 DOI: 10.3389/fimmu.2021.680334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023] Open
Abstract
Background Inborn errors of immunity (IEI) present with a large phenotypic spectrum of disease, which can pose diagnostic and therapeutic challenges. Suppressor of cytokine signaling 1 (SOCS1) is a key negative regulator of cytokine signaling, and has recently been associated with a novel IEI. Of patients described to date, it is apparent that SOCS1 haploinsufficiency has a pleiotropic effect in humans. Objective We sought to investigate whether dysregulation of immune pathways, in addition to STAT1, play a role in the broad clinical manifestations of SOCS1 haploinsufficiency. Methods We assessed impacts of reduced SOCS1 expression across multiple immune cell pathways utilizing patient cells and CRISPR/Cas9 edited primary human T cells. Results SOCS1 haploinsufficiency phenotypes straddled across the International Union of Immunological Societies classifications of IEI. We found that reduced SOCS1 expression led to dysregulation of multiple intracellular pathways in immune cells. STAT1 phosphorylation is enhanced, comparably with STAT1 gain-of-function mutations, and STAT3 phosphorylation is similarly reduced with concurrent reduction of Th17 cells. Furthermore, reduced SOCS1 E3 ligase function was associated with increased FAK1 in immune cells, and increased AKT and p70 ribosomal protein S6 kinase phosphorylation. We also found Toll-like receptor responses are increased in SOCS1 haploinsufficiency patients. Conclusions SOCS1 haploinsufficiency is a pleiotropic monogenic IEI. Dysregulation of multiple immune cell pathways may explain the variable clinical phenotype associated with this new condition. Knowledge of these additional dysregulated immune pathways is important when considering the optimum management for SOCS1 haploinsufficient patients.
Collapse
Affiliation(s)
- Julia Körholz
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany.,UniversitätsCentrum für seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Anastasia Gabrielyan
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - John M Sowerby
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lan-Sun Chen
- Institute of Medical Microbiology and Virology, Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Diana Paul
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - David Brandt
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Janina Kleymann
- Department of Internal Medicine, Pneumology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Kolditz
- Department of Internal Medicine, Pneumology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nicole Toepfner
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Ralf Knöfler
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Christine Wolf
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Karsten Conrad
- Institute of Immunology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Röber
- Institute of Immunology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany.,UniversitätsCentrum für seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefan Mundlos
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Research Group (RG) Development and Disease, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Reinhard Berner
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany.,UniversitätsCentrum für seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Catharina Schuetz
- Department of Pediatrics, University Hospital and Medical Faculty Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany.,UniversitätsCentrum für seltene Erkrankungen, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Huber A, Killy B, Grummel N, Bodendorfer B, Paul S, Wiesmann V, Naschberger E, Zimmer J, Wirtz S, Schleicher U, Vera J, Ekici AB, Dalpke A, Lang R. Mycobacterial Cord Factor Reprograms the Macrophage Response to IFN-γ towards Enhanced Inflammation yet Impaired Antigen Presentation and Expression of GBP1. THE JOURNAL OF IMMUNOLOGY 2020; 205:1580-1592. [PMID: 32796022 DOI: 10.4049/jimmunol.2000337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Mycobacteria survive in macrophages despite triggering pattern recognition receptors and T cell-derived IFN-γ production. Mycobacterial cord factor trehalose-6,6-dimycolate (TDM) binds the C-type lectin receptor MINCLE and induces inflammatory gene expression. However, the impact of TDM on IFN-γ-induced macrophage activation is not known. In this study, we have investigated the cross-regulation of the mouse macrophage transcriptome by IFN-γ and by TDM or its synthetic analogue trehalose-6,6-dibehenate (TDB). As expected, IFN-γ induced genes involved in Ag presentation and antimicrobial defense. Transcriptional programs induced by TDM and TDB were highly similar but clearly distinct from the response to IFN-γ. The glycolipids enhanced expression of a subset of IFN-γ-induced genes associated with inflammation. In contrast, TDM/TDB exerted delayed inhibition of IFN-γ-induced genes, including pattern recognition receptors, MHC class II genes, and IFN-γ-induced GTPases, with antimicrobial function. TDM downregulated MHC class II cell surface expression and impaired T cell activation by peptide-pulsed macrophages. Inhibition of the IFN-γ-induced GTPase GBP1 occurred at the level of transcription by a partially MINCLE-dependent mechanism that may target IRF1 activity. Although activation of STAT1 was unaltered, deletion of Socs1 relieved inhibition of GBP1 expression by TDM. Nonnuclear Socs1 was sufficient for inhibition, suggesting a noncanonical, cytoplasmic mechanism. Taken together, unbiased analysis of transcriptional reprogramming revealed a significant degree of negative regulation of IFN-γ-induced Ag presentation and antimicrobial gene expression by the mycobacterial cord factor that may contribute to mycobacterial persistence.
Collapse
Affiliation(s)
- Alexandra Huber
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Barbara Killy
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Nadine Grummel
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Barbara Bodendorfer
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Sushmita Paul
- Laboratory of Systems Tumor Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Veit Wiesmann
- Fraunhofer-Institut für Integrierte Schaltungen, D-91058 Erlangen, Germany
| | - Elisabeth Naschberger
- Molekulare und Experimentelle Chirurgie, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nuremberg, D-91054 Erlangen, Germany
| | - Jana Zimmer
- Department of Infectious Diseases, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Arif Bülent Ekici
- Institut für Humangenetik, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; and
| | - Alexander Dalpke
- Department of Infectious Diseases, University Hospital Heidelberg, D-69120 Heidelberg, Germany.,Institut für Medizinische Mikrobiologie und Hygiene, Technische Universität Dresden, 01307 Dresden, Germany
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany;
| |
Collapse
|
8
|
Chen D, Ning F, Zhang J, Tang Y, Teng X. NF-κB pathway took part in the development of apoptosis mediated by miR-15a and oxidative stress via mitochondrial pathway in ammonia-treated chicken splenic lymphocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139017. [PMID: 32380330 DOI: 10.1016/j.scitotenv.2020.139017] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ammonia, a kind of gas with pungent smell, is harmful to livestock and people, and has bad influence on the atmosphere. However, the mechanism of splenic toxicity caused by ammonia is still poorly understood. The aim of present study was to investigate the effect of ammonia on chicken splenic lymphocytes from the perspective of apoptosis. Chicken splenic lymphocytes were divided into the control group and the two ammonium treatment groups (1 mmol/L and 5 mmol/L ammonia), and were cultured for 24 h. CCK-8, flow cytometry (FC), fluorescence microscope, quantitative real-time PCR (qRT-PCR), and Western blot were used to study the differences between different groups. The results showed that ammonia exposure increased the release of calcium (Ca)2+ and reactive oxygen species (ROS) from mitochondrion. Besides, we found an increase in mRNA levels of glutathione peroxidase (GPx), inflammation-related genes (nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric (iNOS), tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β)), apoptosis-related genes (B-cell lymphoma-2 (BCL-2), Bcl-2 associated X protein (BAX), Cytochrome c (Cytc), apoptotic protease activating factor 1 (APAF1), Caspase-9, and Caspase-3), and an increase in protein levels of NF-κB, iNOS, BAX, Cytc, Caspase-9, and Caspase-3. At the same time, we found a decrease level of GPx protein expression, and a decrease level of glutathione S-transferase (GST) mRNA expression, and a decrease level of heme oxygenase-1 (HO-1) and BCL-2 mRNA and protein expression in splenic lymphocytes exposed to ammonia. Meanwhile, miR-15a expression increased under ammonia exposure. In summary, these results indicated that ammonia induced oxidative stress, promoted the release of Ca2+, Cytc, and ROS from mitochondria, and then induced mitochondria-mediated inflammatory response, finally triggered apoptosis in chicken splenic lymphocytes.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China
| | - Fangyong Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Shah SWA, Ishfaq M, Nasrullah M, Qayum A, Akhtar MU, Jo H, Hussain M, Teng X. Ammonia inhalation-induced inflammation and structural impairment in the bursa of fabricius and thymus of broilers through NF-κB signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11596-11607. [PMID: 31970641 DOI: 10.1007/s11356-020-07743-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Ammonia (NH3) is a toxic, environmental pollutant, and irritant gas. Previous studies reported the toxic effects of NH3 which led to inflammation in various organs of chicken. However, the exact mechanism of NH3-induced inflammation in chicken lymphoid organs bursa of fabricius (BF) and thymus is still elusive. Thus, this study was designed to investigate NH3-induced inflammation in chicken BF and thymus. Experimental chickens were divided into low (5.0 mg/m3), middle (10.0-15.0 mg/m3), and high (20.0-45.0 mg/m3) NH3-treated groups. To investigate NH3-induced inflammation in chicken's BF and thymus, histological observation, NO content and iNOS activity, inflammatory cytokine contents, and mRNA levels were performed by light microscopy, microplate spectrophotometer, ELISA assay, and qRT-PCR. The finding of the present study showed that NH3 exposure reduced BF and thymus index, increased nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity, inflammatory cytokine contents and mRNA levels of nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (Cox-2), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), IL-10, IL-1β, IL-18, toll-like receptor 2A (TLR-2A), and iNOS. Histopathological examination revealed signs of inflammation including increased nuclear debris and vacuoles in the cortex and medulla of thymus and bursal follicles. Conclusively, our findings displayed that NH3 exposure affects the normal function of BF and thymus and led inflammation. The data provided a new ground for NH3-induced toxicity and risk assessment in chicken production.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Chang Jiang Road, Xiang Fang District, Harbin, People's Republic of China
| | - Muhammad Nasrullah
- College of Agricultural economics and Management, Northeast Agricultural University, Harbin, People's Republic of China
| | - Abdul Qayum
- Key Laboratory of Dairy Science, College of Food Science and Technology, Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhammad Usman Akhtar
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hyeonsoo Jo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhammad Hussain
- Key Laboratory of Dairy Science, College of Food Science and Technology, Ministry of Education, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
10
|
Wang WW, Zhu K, Yu HW, Pan YL. Interleukin-17A potentiates interleukin-13-induced eotaxin-3 production by human nasal epithelial cells from patients with allergic rhinitis. Int Forum Allergy Rhinol 2019; 9:1327-1333. [PMID: 31403761 DOI: 10.1002/alr.22382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/13/2019] [Accepted: 06/30/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Interleukin (IL)-17A is involved in the pathogenesis of allergic rhinitis (AR). Increased expression of IL-17A is correlated with disease severity and nasal eosinophilia. However, the molecular mechanisms by which IL-17A contributes to T-helper 2 cytokine IL-13-driven pathology in AR remain unclear. We sought to obtain mechanistic insight into how IL-17A and IL-13 regulate the epithelial production of eotaxin-3 representing eosinophilic inflammation in AR. METHODS Human nasal epithelial cells (HNECs) from AR patients were cultured and stimulated with IL-17A, IL-13, or IL-17A and IL-13. Phosphorylated signal transducer activator of transcription 6 (p-STAT6) and suppressor of cytokine signaling 1 (SOCS1) in HNECs were assayed using Western blotting. Immunocytochemistry was used to determine p-STAT6-positive expression in the cells. Eotaxin-3 expression in the cells and culture supernatants was evaluated using real-time polymerase chain reaction and enzyme-linked immunosorbent assays. RESULTS Stimulation with IL-13 alone induced STAT6 phosphorylation and promoted p-STAT6 nuclear translocation, leading to eotaxin-3 production by HNECs. These effects were further enhanced by cotreatment with IL-13 and IL-17A, whereas IL-17A alone had no impact on STAT6 or eotaxin-3 expression. Incubation with IL-17A or IL-13 increased the level of SOCS1 protein in the cells, whereas the addition of IL-17A attenuated IL-13-induced SOCS1 expression. CONCLUSION IL-17A potentiated IL-13-driven STAT6 activation through the downregulation of SOCS1 expression, leading to enhancement of eotaxin-3 production by HNECs. These factors contributed to eosinophilic inflammation in AR.
Collapse
Affiliation(s)
- Wei Wei Wang
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| | - Kai Zhu
- Department of Pathology, Huzhou Maternity and Child Health Care Hospital, Zhejiang, PR China
| | - Hong Wei Yu
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| | - Yong Liang Pan
- Schools of Medicine and Nursing Sciences, Huzhou University, Zhejiang, PR China
| |
Collapse
|
11
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
12
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Shi Q, Wang W, Chen M, Zhang H, Xu S. Ammonia induces Treg/Th1 imbalance with triggered NF-κB pathway leading to chicken respiratory inflammation response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:354-362. [PMID: 30599354 DOI: 10.1016/j.scitotenv.2018.12.375] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Ammonia (NH3) is a severe air pollutant and a component of haze (PM2.5). The respiratory tract is the first route of exogenous ammonia's entry into the human and animal body. Many studies have suggested that exposure to NH3 is associated with a higher risk of respiratory tract tracheitis; however, the underlying mechanism remains unclear. In this study, chicken tracheas were used as a model to investigate toxic effects and genetic changes induced by NH3 exposure, as evaluated by scanning electron microscopy (SEM) and bioinformatic analyses. The transcript analysis illustrated that NH3 exposure caused immune disorders, which play key roles in regulating inflammatory responses from NH3 exposure. Therefore, we carried out Real-time quantitative PCR (RT-PCR) and Western Blot analyses to detect the immune response genes; Treg/Th1, Th2 and Th17 secretions were found that led to inflammatory responses. Next, we also detected the NF-κB pathway and downstream genes, accompanied by cytochromes P450 (CYPs), antioxidative genes, and heat shock proteins (HSPs). Our results are consistent with transcriptome detection, indicating that ammonia has a negative effect on immune responses and causes inflammatory injury of the trachea. This study provided baseline information for exploration of the molecular mechanism of NH3-PM2.5 induced respiratory diseases.
Collapse
Affiliation(s)
- Qunxiang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|