1
|
Sun Y, Xie J, Zhu J, Yuan Y. Bioinformatics and Machine Learning Methods Identified MGST1 and QPCT as Novel Biomarkers for Severe Acute Pancreatitis. Mol Biotechnol 2024; 66:1246-1265. [PMID: 38236462 DOI: 10.1007/s12033-023-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
Severe acute pancreatitis (SAP) is a life-threatening gastrointestinal emergency. The study aimed to identify biomarkers and investigate molecular mechanisms of SAP. The GSE194331 dataset from GEO database was analyzed using bioinformatics. Differentially expressed genes (DEGs) associated with SAP were identified, and a protein-protein interaction network (PPI) was constructed. Machine learning algorithms were used to determine potential biomarkers. Gene set enrichment analysis (GSEA) explored molecular mechanisms. Immune cell infiltration were analyzed, and correlation between biomarker expression and immune cell infiltration was calculated. A competing endogenous RNA network (ceRNA) was constructed, and biomarker expression levels were quantified in clinical samples using RT-PCR. 1101 DEGs were found, with two modules most relevant to SAP. Potential biomarkers in peripheral blood samples were identified as glutathione S-transferase 1 (MGST1) and glutamyl peptidyltransferase (QPCT). GSEA revealed their association with immunoglobulin regulation, with QPCT potentially linked to pancreatic cancer development. Correlation between biomarkers and immune cell infiltration was demonstrated. A ceRNA network consisting of 39 nodes and 41 edges was constructed. Elevated expression levels of MGST1 and QPCT were verified in clinical samples. In conclusion, peripheral blood MGST1 and QPCT show promise as SAP biomarkers for diagnosis, providing targets for therapeutic intervention and contributing to SAP understanding.
Collapse
Affiliation(s)
- Yang Sun
- Department of Emergency Medicine, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Jingjun Xie
- Department of General Surgery, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Jun Zhu
- Department of Pharmacy, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| | - Yadong Yuan
- Department of General Surgery, Armed Police Henan Corps Hospital, No. 1 Kangfu Middle Street, Erqi District, Zhengzhou, 450052, Henan, China
| |
Collapse
|
2
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Osipov A, Nikolic O, Gertych A, Parker S, Hendifar A, Singh P, Filippova D, Dagliyan G, Ferrone CR, Zheng L, Moore JH, Tourtellotte W, Van Eyk JE, Theodorescu D. The Molecular Twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients. NATURE CANCER 2024; 5:299-314. [PMID: 38253803 PMCID: PMC10899109 DOI: 10.1038/s43018-023-00697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Contemporary analyses focused on a limited number of clinical and molecular biomarkers have been unable to accurately predict clinical outcomes in pancreatic ductal adenocarcinoma. Here we describe a precision medicine platform known as the Molecular Twin consisting of advanced machine-learning models and use it to analyze a dataset of 6,363 clinical and multi-omic molecular features from patients with resected pancreatic ductal adenocarcinoma to accurately predict disease survival (DS). We show that a full multi-omic model predicts DS with the highest accuracy and that plasma protein is the top single-omic predictor of DS. A parsimonious model learning only 589 multi-omic features demonstrated similar predictive performance as the full multi-omic model. Our platform enables discovery of parsimonious biomarker panels and performance assessment of outcome prediction models learning from resource-intensive panels. This approach has considerable potential to impact clinical care and democratize precision cancer medicine worldwide.
Collapse
Affiliation(s)
- Arsen Osipov
- Department of Medicine (Medical Oncology), Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Oncology, Pancreatic Cancer Precision Medicine Center of Excellence, Johns Hopkins University, Baltimore, MD, USA
| | | | - Arkadiusz Gertych
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah Parker
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Hendifar
- Department of Medicine (Medical Oncology), Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Grant Dagliyan
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cristina R Ferrone
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lei Zheng
- Department of Oncology, Pancreatic Cancer Precision Medicine Center of Excellence, Johns Hopkins University, Baltimore, MD, USA
| | - Jason H Moore
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Warren Tourtellotte
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Brayer KJ, Hanson JA, Cingam S, Martinez C, Ness SA, Rabinowitz I. The inflammatory response of human pancreatic cancer samples compared to normal controls. PLoS One 2023; 18:e0284232. [PMID: 37910468 PMCID: PMC10619777 DOI: 10.1371/journal.pone.0284232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a poor prognosis cancer with an aggressive growth profile that is often diagnosed at late stage and that has few curative or therapeutic options. PDAC growth has been linked to alterations in the pancreas microbiome, which could include the presence of the fungus Malassezia. We used RNA-sequencing to compare 14 matched tumor and normal (tumor adjacent) pancreatic cancer samples and found Malassezia RNA in both the PDAC and normal tissues. Although the presence of Malassezia was not correlated with tumor growth, a set of immune- and inflammatory-related genes were up-regulated in the PDAC compared to the normal samples, suggesting that they are involved in tumor progression. Gene set enrichment analysis suggests that activation of the complement cascade pathway and inflammation could be involved in pro PDAC growth.
Collapse
Affiliation(s)
- Kathryn J. Brayer
- Department of Internal Medicine, Molecular Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Joshua A. Hanson
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Shashank Cingam
- Division of Hematology- Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Cathleen Martinez
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Scott A. Ness
- Department of Internal Medicine, Molecular Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Ian Rabinowitz
- Division of Hematology- Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
5
|
Brayer KJ, Hanson JA, Cingam S, Martinez C, Ness SA, Rabinowitz I. The immune response to a fungus in pancreatic cancer samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534606. [PMID: 37034706 PMCID: PMC10081247 DOI: 10.1101/2023.03.28.534606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a poor prognosis cancer with an .aggressive growth profile that is often diagnosed at late stage and that has few curative or therapeutic options. PDAC growth has been linked to alterations in the pancreas microbiome, which could include the presence of the fungus Malassezia. We used RNA-sequencing to compare 14 paired tumor and normal (tumor adjacent) pancreatic cancer samples and found Malassezia RNA in both the PDAC and normal tissues. Although the presence of Malassezia was not correlated with tumor growth, a set of immune- and inflammatory-related genes were up-regulated in the PDAC compared to the normal samples, suggesting that they are involved in tumor progression. Gene set enrichment analysis suggests that activation of the complement cascade pathway and inflammation could be involved in pro PDAC growth.
Collapse
Affiliation(s)
- KJ Brayer
- Department of Internal Medicine / Molecular Medicine, University of New Mexico, Albuquerque, NM
| | - JA Hanson
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - S Cingam
- Department of Internal Medicine/ Division of Hematology- Oncology, University of New Mexico, Albuquerque, NM
| | - C Martinez
- Department of Pathology, University of New Mexico, Albuquerque, NM
| | - SA Ness
- Department of Internal Medicine / Molecular Medicine, University of New Mexico, Albuquerque, NM
| | - I Rabinowitz
- Department of Internal Medicine/ Division of Hematology- Oncology, University of New Mexico, Albuquerque, NM
| |
Collapse
|
6
|
Liu S, Luo W, Szatmary P, Zhang X, Lin JW, Chen L, Liu D, Sutton R, Xia Q, Jin T, Liu T, Huang W. Monocytic HLA-DR Expression in Immune Responses of Acute Pancreatitis and COVID-19. Int J Mol Sci 2023; 24:3246. [PMID: 36834656 PMCID: PMC9964039 DOI: 10.3390/ijms24043246] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Acute pancreatitis is a common gastrointestinal disease with increasing incidence worldwide. COVID-19 is a potentially life-threatening contagious disease spread throughout the world, caused by severe acute respiratory syndrome coronavirus 2. More severe forms of both diseases exhibit commonalities with dysregulated immune responses resulting in amplified inflammation and susceptibility to infection. Human leucocyte antigen (HLA)-DR, expressed on antigen-presenting cells, acts as an indicator of immune function. Research advances have highlighted the predictive values of monocytic HLA-DR (mHLA-DR) expression for disease severity and infectious complications in both acute pancreatitis and COVID-19 patients. While the regulatory mechanism of altered mHLA-DR expression remains unclear, HLA-DR-/low monocytic myeloid-derived suppressor cells are potent drivers of immunosuppression and poor outcomes in these diseases. Future studies with mHLA-DR-guided enrollment or targeted immunotherapy are warranted in more severe cases of patients with acute pancreatitis and COVID-19.
Collapse
Affiliation(s)
- Shiyu Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjuan Luo
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peter Szatmary
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Xiaoying Zhang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Wen Lin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lu Chen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BE, UK
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Jin
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Werner J, Bernhard P, Cosenza-Contreras M, Pinter N, Fahrner M, Pallavi P, Eberhard J, Bronsert P, Rückert F, Schilling O. Targeted and explorative profiling of kallikrein proteases and global proteome biology of pancreatic ductal adenocarcinoma, chronic pancreatitis, and normal pancreas highlights disease-specific proteome remodelling. Neoplasia 2023; 36:100871. [PMID: 36610378 PMCID: PMC9841175 DOI: 10.1016/j.neo.2022.100871] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the most aggressive and lethal malignancies worldwide with an urgent need for new diagnostic and therapeutic strategies. One major risk factor for PDAC is the pre-indication of chronic pancreatitis (CP), which represents highly inflammatory pancreatic tissue. Kallikreins (KLKs) are secreted serine proteases that play an important role in various cancers as components of the tumor microenvironment. Previous studies of KLKs in solid tumors largely relied on either transcriptomics or immunodetection. We present one of the first targeted mass spectrometry profiling of kallikrein proteases in PDAC, CP, and normal pancreas. We show that KLK6 and KLK10 are significantly upregulated in PDAC (n=14) but not in CP (n=7) when compared to normal pancreas (n=16), highlighting their specific intertwining with malignancy. Additional explorative proteome profiling identified 5936 proteins in our pancreatic cohort and observed disease-specific proteome rearrangements in PDAC and CP. As such, PDAC features an enriched proteome motif for extracellular matrix (ECM) and cell adhesion while there is depletion of mitochondrial energy metabolism proteins, reminiscent of the Warburg effect. Although often regarded as a PDAC hallmark, the ECM fingerprint was also observed in CP, alongside with a prototypical inflammatory proteome motif as well as with an increased wound healing process and proteolytic activity, thereby possibly illustrating tissue autolysis. Proteogenomic analysis based on publicly accessible data sources identified 112 PDAC-specific and 32 CP-specific single amino acid variants, which among others affect KRAS and ANKHD1. Our study emphasizes the diagnostic potential of kallikreins and provides novel insights into proteomic characteristics of PDAC and CP.
Collapse
Affiliation(s)
- Janina Werner
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick Bernhard
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Niko Pinter
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| | - Prama Pallavi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Eberhard
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Felix Rückert
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Surgical Department, Diakonissen-Stiftungs-Krankenhaus Speyer, Paul-Egell-Straße 33, Speyer D-67346, Germany.
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Freiburg, Germany
| |
Collapse
|
8
|
Gui M, Zhao B, Huang J, Chen E, Qu H, Mao E. Pathogenesis and Therapy of Coagulation Disorders in Severe Acute Pancreatitis. J Inflamm Res 2023; 16:57-67. [PMID: 36636248 PMCID: PMC9831125 DOI: 10.2147/jir.s388216] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/12/2022] [Indexed: 01/07/2023] Open
Abstract
Ischemia superimposed upon pancreatic edema leads to acute necrotizing pancreatitis. One possible mechanism contributing to ischemia is intravascular thrombogenesis since fibrin deposits have been detected in pancreatic capillaries by electron microscope. Current experimental and clinical data provided compelling evidence that the disorders in the blood coagulation system play a critical role in the pathogenesis of severe acute pancreatitis (SAP). This leads to microcirculatory failure of intra- and extrapancreatic organs and multiple organ failure and increases the case fatality rate. However, the mechanism of coagulopathy underlying SAP is not yet clear, although some anticoagulant drugs have entered clinical practice showing improvement in prognosis. Thus, enhanced understanding of the process might improve the treatment strategies with safety and high efficacy. Herein, the pathogenesis of the coagulation system of SAP was reviewed with a focus on the coagulation pathway, intercellular interactions, and complement system, thereby illustrating some anticoagulant therapies and potential therapeutic targets.
Collapse
Affiliation(s)
- Menglu Gui
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bing Zhao
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China,Correspondence: Enqiang Mao, Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, People’s Republic of China, Tel +86 13501747906, Email
| |
Collapse
|
9
|
Complement and Fungal Dysbiosis as Prognostic Markers and Potential Targets in PDAC Treatment. Curr Oncol 2022; 29:9833-9854. [PMID: 36547187 PMCID: PMC9777542 DOI: 10.3390/curroncol29120773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still hampered by a dismal prognosis. A better understanding of the tumor microenvironment within the pancreas and of the factors affecting its composition is of utmost importance for developing new diagnostic and treatment tools. In this context, the complement system plays a prominent role. Not only has it been shown to shape a T cell-mediated immune response, but it also directly affects proliferation and apoptosis of the tumor cells, influencing angiogenesis, metastatic spread and therapeutic resistance. This makes complement proteins appealing not only as early biomarkers of PDAC development, but also as therapeutic targets. Fungal dysbiosis is currently the new kid on the block in tumorigenesis with cancer-associated mycobiomes extracted from several cancer types. For PDAC, colonization with the yeast Malassezia seems to promote cancer progression, already in precursor lesions. One responsible mechanism appears to be complement activation via the lectin pathway. In the present article, we review the role of the complement system in tumorigenesis, presenting observations that propose it as the missing link between fungal dysbiosis and PDAC development. We also present the results of a small pilot study supporting the crucial interplay between the complement system and Malassezia colonization in PDAC pathogenesis.
Collapse
|
10
|
Hwang WL, Jagadeesh KA, Guo JA, Hoffman HI, Yadollahpour P, Reeves JW, Mohan R, Drokhlyansky E, Van Wittenberghe N, Ashenberg O, Farhi SL, Schapiro D, Divakar P, Miller E, Zollinger DR, Eng G, Schenkel JM, Su J, Shiau C, Yu P, Freed-Pastor WA, Abbondanza D, Mehta A, Gould J, Lambden C, Porter CBM, Tsankov A, Dionne D, Waldman J, Cuoco MS, Nguyen L, Delorey T, Phillips D, Barth JL, Kem M, Rodrigues C, Ciprani D, Roldan J, Zelga P, Jorgji V, Chen JH, Ely Z, Zhao D, Fuhrman K, Fropf R, Beechem JM, Loeffler JS, Ryan DP, Weekes CD, Ferrone CR, Qadan M, Aryee MJ, Jain RK, Neuberg DS, Wo JY, Hong TS, Xavier R, Aguirre AJ, Rozenblatt-Rosen O, Mino-Kenudson M, Castillo CFD, Liss AS, Ting DT, Jacks T, Regev A. Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment. Nat Genet 2022; 54:1178-1191. [PMID: 35902743 PMCID: PMC10290535 DOI: 10.1038/s41588-022-01134-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.
Collapse
Affiliation(s)
- William L Hwang
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karthik A Jagadeesh
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jimmy A Guo
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Hannah I Hoffman
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT MD/PhD and Health Sciences and Technology Program, Harvard Medical School, Boston, MA, USA
| | - Payman Yadollahpour
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Rahul Mohan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Orr Ashenberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Denis Schapiro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Institute for Computational Biomedicine and Institute of Pathology, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | - George Eng
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Schenkel
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer Su
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carina Shiau
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patrick Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William A Freed-Pastor
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Arnav Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua Gould
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Devan Phillips
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marina Kem
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clifton Rodrigues
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Debora Ciprani
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Roldan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piotr Zelga
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vjola Jorgji
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zackery Ely
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | - Jay S Loeffler
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David P Ryan
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colin D Weekes
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin J Aryee
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rakesh K Jain
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Edwin L. Steele Laboratory for Tumor Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennifer Y Wo
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore S Hong
- Center for Systems Biology and Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J Aguirre
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Andrew S Liss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Ting
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
11
|
Diego-González L, Fernández-Carrera A, Igea A, Martínez-Pérez A, Real Oliveira MECD, Gomes AC, Guerra C, Barbacid M, González-Fernández Á, Simón-Vázquez R. Combined Inhibition of FOSL-1 and YAP Using siRNA-Lipoplexes Reduces the Growth of Pancreatic Tumor. Cancers (Basel) 2022; 14:3102. [PMID: 35804874 PMCID: PMC9265026 DOI: 10.3390/cancers14133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic cancer evades most of the current therapies and there is an urgent need for new treatments that could efficiently eliminate this aggressive tumor, such as the blocking of routes driving cell proliferation. In this work, we propose the use of small interfering RNA (siRNA) to inhibit the combined expression of FOSL-1 and YAP, two signaling proteins related with tumor cell proliferation and survival. To improve the efficacy of cell transfection, DODAB:MO (1:2) liposomes were used as siRNA nanocarriers, forming a complex denominated siRNA-lipoplexes. Liposomes and lipoplexes (carrying two siRNA for each targeted protein, or the combination of four siRNAs) were physico-chemically and biologically characterized. They showed very good biocompatibility and stability. The efficient targeting of FOSL-1 and YAP expression at both mRNA and protein levels was first proved in vitro using mouse pancreatic tumoral cell lines (KRASG12V and p53 knockout), followed by in vivo studies using subcutaneous allografts on mice. The peri-tumoral injection of lipoplexes lead to a significant decrease in the tumor growth in both Athymic Nude-Foxn1nu and C57BL/6 mice, mainly in those receiving the combination of four siRNAs, targeting both YAP and FOSL-1. These results open a new perspective to overcome the fast tumor progression in pancreatic cancer.
Collapse
Affiliation(s)
- Lara Diego-González
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Andrea Fernández-Carrera
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Ana Igea
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Amparo Martínez-Pérez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | | | - Andreia C. Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Carmen Guerra
- CNIO (Centro Nacional de Investigaciones Oncológicas), Experimental Oncology Group, 28029 Madrid, Spain; (C.G.); (M.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mariano Barbacid
- CNIO (Centro Nacional de Investigaciones Oncológicas), Experimental Oncology Group, 28029 Madrid, Spain; (C.G.); (M.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; (L.D.-G.); (A.F.-C.); (A.I.); (A.M.-P.); (Á.G.-F.)
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain
| |
Collapse
|
12
|
Hussain N, Das D, Pramanik A, Pandey MK, Joshi V, Pramanik KC. Targeting the complement system in pancreatic cancer drug resistance: a novel therapeutic approach. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:317-327. [PMID: 35800364 PMCID: PMC9255240 DOI: 10.20517/cdr.2021.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer is ranked as the fourth leading cause of cancer-related mortality and is predicted to become the second leading cause of cancer-related death by 2030. The cause of this high mortality rate is due to pancreatic ductal adenocarcinoma's rapid progression and metastasis, and development of drug resistance. Today, cancer immunotherapy is becoming a strong candidate to not only treat various cancers but also to combat against chemoresistance. Studies have suggested that complement system pathways play an important role in cancer progression and chemoresistance, especially in pancreatic cancer. A recent report also suggested that several signaling pathways play an important role in causing chemoresistance in pancreatic cancer, major ones including nuclear factor kappa B, signal transducer and activator of transcription 3, c-mesenchymal-epithelial transition factor, and phosphoinositide-3-kinase/protein kinase B. In addition, it has also been proven that the complement system has a very active role in establishing the tumor microenvironment, which would aid in promoting tumorigenesis, progression, metastasis, and recurrence. Interestingly, it has been shown that the downstream products of the complement system directly upregulate inflammatory mediators, which in turn activate these chemo-resistant pathways. Therefore, targeting complement pathways could be an innovative approach to combat against pancreatic cancer drugs resistance. In this review, we have discussed the role of complement system pathways in pancreatic cancer drug resistance and a special focus on the complement as a therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Naushair Hussain
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| | - Deea Das
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| | - Atreyi Pramanik
- Department of Education, South College, Knoxville, TN 37902, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Vivek Joshi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Wyomissing, PA 19610, USA
| | - Kartick C. Pramanik
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| |
Collapse
|
13
|
Vazquez SE, Mann SA, Bodansky A, Kung AF, Quandt Z, Ferré EMN, Landegren N, Eriksson D, Bastard P, Zhang SY, Liu J, Mitchell A, Mandel-Brehm C, Miao B, Sowa G, Zorn K, Chan AY, Shimizu C, Tremoulet A, Lynch K, Wilson MR, Kampe O, Dobbs K, Delmonte OM, Notarangelo LD, Burns JC, Casanova JL, Lionakis MS, Torgerson TR, Anderson MS, DeRisi JL. Autoantibody discovery across monogenic, acquired, and COVID19-associated autoimmunity with scalable PhIP-Seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.23.485509. [PMID: 35350199 PMCID: PMC8963698 DOI: 10.1101/2022.03.23.485509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phage Immunoprecipitation-Sequencing (PhIP-Seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-Seq for autoantigen discovery, including our previous work (Vazquez et al. 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls. Here, we develop and validate a high throughput extension of PhIP-seq in various etiologies of autoimmune and inflammatory diseases, including APS1, IPEX, RAG1/2 deficiency, Kawasaki Disease (KD), Multisystem Inflammatory Syndrome in Children (MIS-C), and finally, mild and severe forms of COVID19. We demonstrate that these scaled datasets enable machine-learning approaches that result in robust prediction of disease status, as well as the ability to detect both known and novel autoantigens, such as PDYN in APS1 patients, and intestinally expressed proteins BEST4 and BTNL8 in IPEX patients. Remarkably, BEST4 antibodies were also found in 2 patients with RAG1/2 deficiency, one of whom had very early onset IBD. Scaled PhIP-Seq examination of both MIS-C and KD demonstrated rare, overlapping antigens, including CGNL1, as well as several strongly enriched putative pneumonia-associated antigens in severe COVID19, including the endosomal protein EEA1. Together, scaled PhIP-Seq provides a valuable tool for broadly assessing both rare and common autoantigen overlap between autoimmune diseases of varying origins and etiologies.
Collapse
Affiliation(s)
- Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Diabetes Center, University of California, San Francisco, San Francisco, United States
- School of Medicine, University of California, San Francisc, San Francisco, CA, USA
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Aaron Bodansky
- Department of Pediatric Critical Care Medicine, University of California, San Francisco, San Francisco, United State
| | - Andrew F Kung
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Zoe Quandt
- Department of Medicine, University of California, San Francisc, San Francisco, United States
- Diabetes Center, University of California, San Francisco, San Francisco, United States
| | - Elise M N Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Nils Landegren
- Department of Medicine (Solna), Karolinska University Hospital, Karolinska Institutet, Stockholm 17176, Sweden
- Science for life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala 75237, Sweden
| | - Daniel Eriksson
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- University of Paris, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University of Paris, Imagine Institute, Paris, France, EU
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, San Francisco, United States
| | - Anthea Mitchell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| | - Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Brenda Miao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Gavin Sowa
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey Zorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Alice Y Chan
- Department of Pediatrics, Division of Pediatric allergy, immunology, bone and marrow transplantation, Division of Pediatric Rheumatology, University of California, San Francisco, San Francisco, United States
| | - Chisato Shimizu
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Adriana Tremoulet
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Kara Lynch
- Zuckerberg San Francisco General, San Francisco, CA 94110, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael R Wilson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Olle Kampe
- Department of Clinical Science and KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center of Molecular Medicine, and Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jane C Burns
- Kawasaki Disease Research Center, Rady Children's Hospital and Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France, EU
- University of Paris, Imagine Institute, Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH)
| | - Troy R Torgerson
- Seattle Children's Research Institute, Seattle, United States
- Department of Pediatrics, University of Washington, Seattle, United States
- Current address: Allen Institute for Immunology, Seattle, United States
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, United States
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
- Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
14
|
Lee MJ, Na K, Shin H, Kim CY, Cho JY, Kang CM, Kim SH, Kim H, Choi HJ, Lee CK, Bae S, Son S, Paik YK. Early Diagnostic Ability of Human Complement Factor B in Pancreatic Cancer Is Partly Linked to Its Potential Tumor-Promoting Role. J Proteome Res 2021; 20:5315-5328. [PMID: 34766501 DOI: 10.1021/acs.jproteome.1c00805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although plasma complement factor B (CFB, NX_P00751), both alone and in combination with CA19-9 (i.e., the ComB-CAN), previously exhibited a reliable diagnostic ability for pancreatic cancer (PC), its detectability of the early stages and the cancer detection mechanism remained elusive. We first evaluated the diagnostic accuracy of ComB-CAN using plasma samples from healthy donors (HDs), patients with chronic pancreatitis (CP), and patients with different PC stages (I/II vs III/IV). An analysis of the area under the curve (AUC) by PanelComposer using logistic regression revealed that ComB-CAN has a superior diagnostic ability for early-stage PC (97.1.% [95% confidence interval (CI): (97.1-97.2)]) compared with CFB (94.3% [95% CI: 94.2-94.4]) or CA19-9 alone (34.3% [95% CI: 34.1-34.4]). In the comparisons of all stages of patients with PC vs CP and HDs, the AUC values of ComB-CAN, CFB, and CA19-9 were 0.983 (95% CI: 0.983-0.983), 0.950 (95% CI: 0.950-0.951), and 0.873 (95% CI: 0.873-0.874), respectively. We then investigated the molecular mechanism underlying the detection of early-stage PC by using stable cell lines of CFB knockdown and CFB overexpression. A global transcriptomic analysis coupled to cell invasion assays of both CFB-modulated cell lines suggested that CFB plays a tumor-promoting role in PC, which likely initiates the PI3K-AKT cancer signaling pathway. Thus our study establishes ComB-CAN as a reliable early diagnostic marker for PC that can be clinically applied for early PC screening in the general public.
Collapse
Affiliation(s)
- Min Jung Lee
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Keun Na
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Heon Shin
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | | | | | | | | | | | - Sumi Bae
- JW Bioscience Corp., 2477, Nambusunhwan-ro, Seocho-gu, Seoul 06725, South Korea
| | - Sunghwa Son
- JW Holdings Corp., 2477, Nambusunhwan-ro, Seocho-gu, Seoul 06725, South Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| |
Collapse
|
15
|
Kemp SB, Steele NG, Carpenter ES, Donahue KL, Bushnell GG, Morris AH, The S, Orbach SM, Sirihorachai VR, Nwosu ZC, Espinoza C, Lima F, Brown K, Girgis AA, Gunchick V, Zhang Y, Lyssiotis CA, Frankel TL, Bednar F, Rao A, Sahai V, Shea LD, Crawford HC, Pasca di Magliano M. Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages. Life Sci Alliance 2021; 4:e202000935. [PMID: 33782087 PMCID: PMC8091600 DOI: 10.26508/lsa.202000935] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is accompanied by reprogramming of the local microenvironment, but changes at distal sites are poorly understood. We implanted biomaterial scaffolds, which act as an artificial premetastatic niche, into immunocompetent tumor-bearing and control mice, and identified a unique tumor-specific gene expression signature that includes high expression of C1qa, C1qb, Trem2, and Chil3 Single-cell RNA sequencing mapped these genes to two distinct macrophage populations in the scaffolds, one marked by elevated C1qa, C1qb, and Trem2, the other with high Chil3, Ly6c2 and Plac8 In mice, expression of these genes in the corresponding populations was elevated in tumor-associated macrophages compared with macrophages in the normal pancreas. We then analyzed single-cell RNA sequencing from patient samples, and determined expression of C1QA, C1QB, and TREM2 is elevated in human macrophages in primary tumors and liver metastases. Single-cell sequencing analysis of patient blood revealed a substantial enrichment of the same gene signature in monocytes. Taken together, our study identifies two distinct tumor-associated macrophage and monocyte populations that reflects systemic immune changes in pancreatic ductal adenocarcinoma patients.
Collapse
Affiliation(s)
- Samantha B Kemp
- Departments of Molecular and Cellular Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nina G Steele
- Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eileen S Carpenter
- Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | | | - Grace G Bushnell
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron H Morris
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie The
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Sophia M Orbach
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Zeribe C Nwosu
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Fatima Lima
- Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Valerie Gunchick
- Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Yaqing Zhang
- Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L Frankel
- Surgery, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Filip Bednar
- Surgery, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Arvind Rao
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Howard C Crawford
- Cancer Biology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marina Pasca di Magliano
- Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cancer Biology, University of Michigan, Ann Arbor, MI, USA
- Surgery, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Linders J, Madhi R, Mörgelin M, King BC, Blom AM, Rahman M. Complement Component 3 Is Required for Tissue Damage, Neutrophil Infiltration, and Ensuring NET Formation in Acute Pancreatitis. Eur Surg Res 2021; 61:163-176. [PMID: 33508837 DOI: 10.1159/000513845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are known to play an important role in the pathophysiology of acute pancreatitis (AP). Activation of the complement cascade has been shown to occur in AP. The aim of this study was to examine whether complement component 3 is involved in the generation of NETs in AP. METHODS AP was induced in wild-type and C3-deficient mice by retrograde infusion of taurocholate into the pancreatic duct. Blood, lung, and pancreas tissue were collected and MPO activity was determined in lung and pancreas tissue. Histological examination of the inflamed pancreas was performed. Plasma levels of CXCL2, MMP-9, IL-6, and DNA-histone complexes as well as pancreatic levels of CXCL1 and CXCL2 were determined by use of enzyme-linked immunosorbent assay. NETs were detected in the pancreas by electron microscopy. The amount of MPO and citrullinated histone 3 in neutrophils isolated from bone marrow was examined using flow cytometry. RESULTS In C3-deficient mice, challenge with taurocholate yielded much fewer NETs in the pancreatic tissue compared with wild-type controls. Taurocholate-induced blood levels of amylase, tissue injury, and neutrophil recruitment in the pancreas were markedly reduced in the mice lacking C3. Furthermore, MPO levels in the lung, and plasma levels of IL-6, MMP-9, and CXCL2 were significantly lower in the C3-deficient mice compared to wild-type mice after the induction of AP. In vitro studies revealed that neutrophils from C3-deficient mice had normal NET-forming ability and recombinant C3a was not capable of directly inducing NETs formation in the wild-type neutrophils. CONCLUSION C3 plays an important role in the pathophysiology of AP as it is necessary for the recruitment of neutrophils into the pancreas and ensuring NETs formation. Targeting C3 could hence be a potential strategy to ameliorate local damage as well as remote organ dysfunction in AP.
Collapse
Affiliation(s)
- Johan Linders
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Raed Madhi
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | | | - Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden,
| |
Collapse
|
17
|
O'Rourke MB, Sahni S, Samra J, Mittal A, Molloy MP. Data independent acquisition of plasma biomarkers of response to neoadjuvant chemotherapy in pancreatic ductal adenocarcinoma. J Proteomics 2020; 231:103998. [PMID: 33027703 DOI: 10.1016/j.jprot.2020.103998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The detection of disease-related plasma biomarkers has challenged the proteomic community for years. Attractive features for plasma proteomics includes the ease of collection and small volume needed for analysis, but on the other hand, the presence of highly abundant proteins complicates sample preparation procedures and reduces dynamic range. Data independent acquisition label free quantitation (DIA-LFQ) by mass spectrometry partly overcomes the dynamic range issue; however, generating the peptide spectral reference libraries that allow extensive analysis of the plasma proteome can be a slow and expensive task which is unattainable for many laboratories. We investigated the re-purposing of publically available plasma proteome datasets and the impact on peptide/protein detection for DIA-LFQ. We carried out these studies in the context of identifying putative biomarkers of response to neoadjuvant chemotherapy (NAC) for pancreatic ductal adenocarcinoma, as no useful plasma biomarkers have been clinically adopted. We demonstrated the benefit in searching DIA data against multiple spectral libraries to show that complement proteins were linked to NAC response in PDAC patients, confirming previous observations of the prognostic utility of complement following adjuvant chemotherapy. Our workflow demonstrates that DIA-LFQ can be readily applied in the oncology setting for the putative assignment of clinically relevant plasma biomarkers. STATEMENT OF SIGNIFICANCE: The proteomic mass spectrometry analysis of undepleted, unfractionated human plasma has benefits for sample throughput but remains challenging to obtain deep coverage. This work evaluated the re-purposing of open source peptide mass spectrometry data from human plasma to create spectral reference libraries for use in Data independent acquisition (DIA). We showed how seeding in locally acquired data to integrate iRT peptides into spectral libraries increased identification confidence by facilitating querying of multiple libraries. This workflow was applied to the discovery of putative plasma biomarkers for response to neoadjuvant chemotherapy (NAC) in pancreatic ductal adenocarcinoma patients. There is a paucity of prior information in the literature on this topic and we show that good responder patients have reduced levels of complement proteins.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, Royal North Shore Hospital, The University of Sydney, Australia
| | - Sumit Sahni
- Bill Walsh Translational Cancer Laboratory, Kolling Institute, Royal North Shore Hospital, The University of Sydney, Australia
| | - Jaswinder Samra
- Upper GI Surgical Unit, Royal North Shore Hospital, Sydney, Australia
| | - Anubhav Mittal
- Upper GI Surgical Unit, Royal North Shore Hospital, Sydney, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, Royal North Shore Hospital, The University of Sydney, Australia.
| |
Collapse
|
18
|
Jean-Marie EM, Cho JJ, Trevino JG. A case report of recurrent acute pancreatitis associated with life threatening atypical hemolytic uremic syndrome. Medicine (Baltimore) 2020; 99:e19731. [PMID: 32481360 DOI: 10.1097/md.0000000000019731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy defined by the sudden onset of hemolytic anemia, thrombocytopenia, and acute kidney injury (AKI). HUS is categorized as either typical, caused by Shiga toxin-producing Escherichia coli infection, or atypical HUS (aHUS), usually complement mediated or secondary to systemic disease. We describe a rare case of aHUS in an adult male patient with recurrent acute pancreatitis. PATIENT CLINICAL FINDINGS A 32-year-old Caucasian male presented to our institution for his third episode of alcohol-induced pancreatitis. He presented with abdominal pain, elevated lipase and pancreatic inflammation on computed tomography consistent with acute pancreatitis. While admitted, he developed sudden onset severe thrombocytopenia, AKI and hemolytic anemia. DIAGNOSIS, THERAPEUTIC INTERVENTIONS, OUTCOMES Peripheral blood smear, haptoglobin and hemoglobin level confirmed microangiopathic hemolytic anemia. Worsening anemia, thrombocytopenia and AKI were consistent with the diagnosis of aHUS. The patient's pancreatitis resolved with supportive measures, but resolution of significant thrombocytopenia and AKI was not achieved until administration of eculizumab, a complement inhibiting therapy. Eculizumab therapy provided dramatic improvement in this patient, with platelet count increasing from a low of 11,000 to >100,000 within 48 hours of therapy. Creatinine and hemoglobin levels returned to baseline within 3 weeks. CONCLUSION Recurrent pancreatitis is suggested as the etiology of atypical HUS in this patient and this condition should be recognized and treated in a timely manner for optimal clinical outcomes.
Collapse
Affiliation(s)
| | - Jonathan J Cho
- Department of Surgery, University of Florida Health Sciences Center
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Jose G Trevino
- Department of Surgery, University of Florida Health Sciences Center
| |
Collapse
|
19
|
Żorniak M, Beyer G, Mayerle J. Risk Stratification and Early Conservative Treatment of Acute Pancreatitis. Visc Med 2019; 35:82-89. [PMID: 31192241 PMCID: PMC6514505 DOI: 10.1159/000497290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a potentially life-threatening common gastrointestinal disorder with increasing incidence around the globe. Although the majority of cases will take an uneventful, mild course, a fraction of patients is at risk of moderately severe or severe pancreatitis which is burdened with substantial morbidity and mortality. Early identification of patients at risk of a severe disease course and an adopted treatment strategy are crucial to avoid adverse outcomes. SUMMARY In this review we summarize the most recent concepts of severity grading in patients diagnosed with AP by adopting recommendations of current guidelines and discussing them in the context of the available literature. The severity of AP depends on the presence of local and/or systemic complications and organ failure. To predict the severity early in the disease course, host-specific factors (age, comorbidities, body mass index), clinical risk factors (biochemical and physiological parameters and scoring systems), as well as the response to initial therapy need to be considered and revisited in the short term. Depending on the individual risk and comorbidity the initial treatment can be guided, which will be discussed in the second part of this review. KEY MESSAGE Predicting the severity of AP and adapting the individual treatment strategy requires multidimensional risk assessment and close observation during the early phase of AP development.
Collapse
Affiliation(s)
- Michał Żorniak
- Department of Gastroenterology, Medical University of Silesia, Katowice, Poland
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Auxiliary activation of the complement system and its importance for the pathophysiology of clinical conditions. Semin Immunopathol 2017; 40:87-102. [PMID: 28900700 PMCID: PMC5794838 DOI: 10.1007/s00281-017-0646-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Activation and regulation of the cascade systems of the blood (the complement system, the coagulation/contact activation/kallikrein system, and the fibrinolytic system) occurs via activation of zymogen molecules to specific active proteolytic enzymes. Despite the fact that the generated proteases are all present together in the blood, under physiological conditions, the activity of the generated proteases is controlled by endogenous protease inhibitors. Consequently, there is remarkable little crosstalk between the different systems in the fluid phase. This concept review article aims at identifying and describing conditions where the strict system-related control is circumvented. These include clinical settings where massive amounts of proteolytic enzymes are released from tissues, e.g., during pancreatitis or post-traumatic tissue damage, resulting in consumption of the natural substrates of the specific proteases and the available protease inhibitor. Another example of cascade system dysregulation is disseminated intravascular coagulation, with canonical activation of all cascade systems of the blood, also leading to specific substrate and protease inhibitor elimination. The present review explains basic concepts in protease biochemistry of importance to understand clinical conditions with extensive protease activation.
Collapse
|