1
|
Xia T, Zhou Y, An J, Cui Z, Zhong X, Cui T, Lv B, Zhao X, Gao X. Benefit delayed immunosenescence by regulating CD4 +T cells: A promising therapeutic target for aging-related diseases. Aging Cell 2024; 23:e14317. [PMID: 39155409 PMCID: PMC11464113 DOI: 10.1111/acel.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
CD4+T cells play a notable role in immune protection at different stages of life. During aging, the interaction between the body's internal and external environment and CD4+T cells results in a series of changes in the CD4+T cells pool making it involved in immunosenescence. Many studies have extensively examined the subsets and functionality of CD4+T cells within the immune system, highlighted their pivotal role in disease pathogenesis, progression, and therapeutic interventions. However, the underlying mechanism of CD4+T cells senescence and its intricate association with diseases remains to be elucidated and comprehensively understood. By summarizing the immunosenescent progress and network of CD4+T cell subsets, we reveal the crucial role of CD4+T cells in the occurrence and development of age-related diseases. Furthermore, we provide new insights and theoretical foundations for diseases targeting CD4+T cell subsets aging as a treatment focus, offering novel approaches for therapy, especially in infections, cancers, autoimmune diseases, and other diseases in the elderly.
Collapse
Affiliation(s)
- Tingting Xia
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Zhou
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiayao An
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tianyi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
2
|
Li D, Liang T, Hutchins LE, Wolfarth AA, Ferrando-Martinez S, Lee BH, Ho M. rhIL-7-hyFc, a long-acting interleukin-7, improves efficacy of CAR-T cell therapy in solid tumors. J Immunother Cancer 2024; 12:e008989. [PMID: 39043602 PMCID: PMC11268061 DOI: 10.1136/jitc-2024-008989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T-cell (CAR-T) therapy has achieved remarkable remission in patients with B-cell malignancies. However, its efficacy in treating solid tumors remains limited. Here, we investigated a combination therapy approach using an engineered long-acting interleukin (IL)-7 (rhIL-7-hyFc or NT-I7) and CAR-T cells targeting three antigens, glypican-2 (GPC2), glypican-3 (GPC3), and mesothelin (MSLN), against multiple solid tumor types including liver cancer, neuroblastoma, ovarian cancer, and pancreatic cancer in mice. METHODS CAR-T cells targeting GPC2, GPC3, and MSLN were used in combination with NT-I7 to assess the anticancer activity. Xenograft tumor models, including the liver cancer orthotopic model, were established using NOD scid gamma mice engrafted with cell lines derived from hepatocellular carcinoma, neuroblastoma, ovarian cancer, and pancreatic cancer. The mice were monitored by bioluminescence in vivo tumor imaging and tumor volume measurement using a caliper. Immunophenotyping of CAR-T cells on NT-I7 stimulation was evaluated for memory markers, exhaust markers, and T-cell signaling molecules by flow cytometry and western blotting. RESULTS Compared with the IL-2 combination, preclinical evaluation of NT-I7 exhibited regression of solid tumors via enhanced occupancy of CD4+ CAR-T, improved T-cell expansion, reduced exhaustion markers (programmed cell death protein 1 or PD-1 and lymphocyte-activation gene 3 or LAG-3) expression, and increased generation of stem cell-like memory CAR-T cells. The STAT5 pathway was demonstrated to be downstream of NT-I7 signaling, mediated by increased expression of the IL-7 receptor expression in CAR-T cells. Furthermore, CAR-T cells improved efficacy against tumors with low antigen density when combined with NT-I7 in mice, presenting an avenue for patients with heterogeneous antigenic profiles. CONCLUSION This study provides a rationale for NT-I7 plus CAR-T cell combination therapy for solid tumors in humans.
Collapse
Affiliation(s)
- Dan Li
- National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | | | | - Mitchell Ho
- National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Kumar S, Bodhale N, Patra SK, Sarode A, Zhao L, Sarkar A, Saha B. Interleukin-7 potentiates MAPK10-elicited host-protective vaccine against Leishmania donovani. Cytokine 2024; 174:156475. [PMID: 38134556 DOI: 10.1016/j.cyto.2023.156475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Leishmania donovani causes the potentially fatal disease visceral leishmaniasis for which neither a vaccine nor an adjuvant for human use exists. Although interleukin-7 (IL-7) is implicated in CD4+ T-cell response stabilization, its anti-leishmanial function is uncertain. Therefore, we examined whether IL-7 would potentiate the efficacy of Leishmania major-expressed MAPK10 (LmjMAPK10; M10)-elicited anti-leishmanial host-protective response. We observed that aligning with IL-7R expression, IL-7 increased IFN-γ-secreting TH1 cell but reduced IL-4-producing TH2 cells and production of IL-10 and TGF-β effectuating anti-leishmanial functions in susceptible BALB/c mouse-derived macrophages. Co-culturing IL-7-pre-treated L. donovani-infected macrophages with L. donovani-infected BALB/c-derived T cells induced IFN-γ-dominated TH1 type anti-leishmanial function. IL-7 treatment of L. donovani-infected BALB/c mice significantly reduced splenic and hepatic parasite loads. Co-culturing CD4+ T cells from IL to 7-treated mice with L. donovani-infected macrophages reduced amastigote numbers suggesting IL-7-elicited host-protective effector T cells. Priming BALB/c with M10 + IL-7 reduced the splenic parasite burden more effectively than that was observed in M10-primed mice. An enhanced protection against L. donovani infection was accompanied by enhanced IL-12 and IFN-γ, but suppressed IL-10 and IL-4, response and host-protective TH1 and memory T cells. These results indicate IL-7-induced leishmanial antigen-specific memory T cell response that protects a susceptible host against L. donovani infection.
Collapse
Affiliation(s)
- Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | | | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | - Ling Zhao
- Ling Zhao, Huazhong Agricultural University, Wuhan 430070, China
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024. India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India; Trident Academy of Creative Technology, Bhubaneswar 751024. India.
| |
Collapse
|
4
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Guo N, Li N, Jia L, Jiang Q, Schreurs M, van Unen V, de Sousa Lopes SMC, Vloemans AA, Eggermont J, Lelieveldt B, Staal FJT, de Miranda NFCC, Pascutti MF, Koning F. Immune subset-committed proliferating cells populate the human foetal intestine throughout the second trimester of gestation. Nat Commun 2023; 14:1318. [PMID: 36899020 PMCID: PMC10006174 DOI: 10.1038/s41467-023-37052-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The intestine represents the largest immune compartment in the human body, yet its development and organisation during human foetal development is largely unknown. Here we show the immune subset composition of this organ during development, by longitudinal spectral flow cytometry analysis of human foetal intestinal samples between 14 and 22 weeks of gestation. At 14 weeks, the foetal intestine is mainly populated by myeloid cells and three distinct CD3-CD7+ ILC, followed by rapid appearance of adaptive CD4+, CD8+ T and B cell subsets. Imaging mass cytometry identifies lymphoid follicles from week 16 onwards in a villus-like structure covered by epithelium and confirms the presence of Ki-67+ cells in situ within all CD3-CD7+ ILC, T, B and myeloid cell subsets. Foetal intestinal lymphoid subsets are capable of spontaneous proliferation in vitro. IL-7 mRNA is detected within both the lamina propria and the epithelium and IL-7 enhances proliferation of several subsets in vitro. Overall, these observations demonstrate the presence of immune subset-committed cells capable of local proliferation in the developing human foetal intestine, likely contributing to the development and growth of organized immune structures throughout most of the 2nd trimester, which might influence microbial colonization upon birth.
Collapse
Affiliation(s)
- Nannan Guo
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Na Li
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,State Key Laboratory of Zoonotic Diseases, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Jia
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Qinyue Jiang
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Mette Schreurs
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | | | | | - Jeroen Eggermont
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - M Fernanda Pascutti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
6
|
Puente-Marin S, Dietrich F, Achenbach P, Barcenilla H, Ludvigsson J, Casas R. Intralymphatic glutamic acid decarboxylase administration in type 1 diabetes patients induced a distinctive early immune response in patients with DR3DQ2 haplotype. Front Immunol 2023; 14:1112570. [PMID: 36817467 PMCID: PMC9933867 DOI: 10.3389/fimmu.2023.1112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
GAD-alum given into lymph nodes to Type 1 diabetes (T1D) patients participating in a multicenter, randomized, placebo-controlled double-blind study seemed to have a positive effect for patients with DR3DQ2 haplotype, who showed better preservation of C-peptide than the placebo group. Here we compared the immunomodulatory effect of GAD-alum administered into lymph nodes of patients with T1D versus placebo with focus on patients with DR3DQ2 haplotype. Methods GAD autoantibodies, GADA subclasses, GAD65-induced cytokine secretion (Luminex panel) and proliferation of peripheral mononuclear cells were analyzed in T1D patients (n=109) who received either three intra-lymphatic injections (one month apart) with 4 µg GAD-alum and oral vitamin D supplementation (2000 IE daily for 120 days), or placebo. Results Higher GADA, GADA subclasses, GAD65-induced proliferation and cytokine secretion was observed in actively treated patients after the second injection of GAD-alum compared to the placebo group. Following the second injection of GAD-alum, actively treated subjects with DR3DQ2 haplotype had higher GAD65-induced secretion of several cytokine (IL4, IL5, IL7, IL10, IL13, IFNγ, GM-CSF and MIP1β) and proliferation compared to treated individuals without DR3DQ2. Stratification of samples from GAD-alum treated patients according to C-peptide preservation at 15 months revealed that "good responder" individuals with better preservation of C-peptide secretion, independently of the HLA haplotype, had increased GAD65-induced proliferation and IL13 secretion at 3 months, and a 2,5-fold increase of IL5 and IL10 as compared to "poor responders". The second dose of GAD-alum also induced a more pronounced cytokine secretion in "good responders" with DR3DQ2, compared to few "good responders" without DR3DQ2 haplotype. Conclusion Patients with DR3DQ2 haplotype had a distinct early cellular immune response to GAD-alum injections into the lymph node, and predominant GAD65-induced IL13 secretion and proliferation that seems to be associated with a better clinical outcome. If confirmed in the ongoing larger randomized double-blind placebo-controlled clinical trial (DIAGNODE-3), including only patients carrying DR3DQ2 haplotype, these results might be used as early surrogate markers for clinical efficacy.
Collapse
Affiliation(s)
- Sara Puente-Marin
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Fabrícia Dietrich
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany,Technical University Munich, School of Medicine, Forschergruppe Diabetes at Klinikum rechts der Isar, Munich, Germany
| | - Hugo Barcenilla
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,Crown Princess Victoria Children´s Hospital, Linköping University, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,*Correspondence: Rosaura Casas,
| |
Collapse
|
7
|
Monitoring of the Forgotten Immune System during Critical Illness-A Narrative Review. Medicina (B Aires) 2022; 59:medicina59010061. [PMID: 36676685 PMCID: PMC9866378 DOI: 10.3390/medicina59010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
Immune organ failure is frequent in critical illness independent of its cause and has been acknowledged for a long time. Most patients admitted to the ICU, whether featuring infection, trauma, or other tissue injury, have high levels of alarmins expression in tissues or systemically which then activate innate and adaptive responses. Although necessary, this response is frequently maladaptive and leads to organ dysfunction. In addition, the counter-response aiming to restore homeostasis and repair injury can also be detrimental and contribute to persistent chronic illness. Despite intensive research on this topic in the last 40 years, the immune system is not routinely monitored in critical care units. In this narrative review we will first discuss the inflammatory response after acute illness and the players of maladaptive response, focusing on neutrophils, monocytes, and T cells. We will then go through commonly used biomarkers, like C-reactive protein, procalcitonin and pancreatic stone protein (PSP) and what they monitor. Next, we will discuss the strengths and limitations of flow cytometry and related techniques as an essential tool for more in-depth immune monitoring and end with a presentation of the most promising cell associated markers, namely HLA-DR expression on monocytes, neutrophil expression of CD64 and PD-1 expression on T cells. In sum, immune monitoring critically ill patients is a forgotten and missing piece in the monitoring capacity of intensive care units. New technology, including bed-side equipment and in deep cell phenotyping using emerging multiplexing techniques will likely allow the definition of endotypes and a more personalized care in the future.
Collapse
|
8
|
Soluble factors from TLR4- or TCR-activated cells contribute to stability of the resting phenotype and increase the expression of CXCR4 of human memory CD4 T cells. Immunol Res 2022; 71:388-403. [PMID: 36539634 DOI: 10.1007/s12026-022-09345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
It has been proposed that cytokines can induce activation of resting T cells in an antigen-independent manner. However, experimental conditions have included the use of fetal serum and nanogram concentrations of added cytokines. To evaluate the effect of cytokines and chemokines generated by activated immune cells on the phenotypic profile of human memory CD4 T cells, the cells were cultured in FBS-free conditions in the presence of IL-15 and 5% of hAB serum and incubated with conditioned medium (CM) obtained from PBMC activated through the TCR using anti-CD3/CD28/CD2 antibodies (TCR-CM) or through TLR4 using bacterial LPS (TLR4-CM). Cytokines and chemokines present in the CMs were evaluated by ProcartaPlex immunoassay. Cell viability, proliferation, and surface markers were determined by flow cytometry on day 2, 5, and 8 of culture. Cell viability was maintained by TLR4-CM plus IL-15 for 8 days but decreased in the presence of the TCR-CM plus IL-15. In combination with IL-15, the TLR4-CM, but not the TCR-CM, maintained the expression of CD3 and CD4 stable. Both conditions stabilized the expression of CD45RO and CCR5. Thus, the TLR4-CM better supported the viability and stability of the memory phenotype. None of the CMs induced proliferation or expression of activation markers; however, they induced an increased expression of CXCR4. This study indicates that resting memory CD4 T cells are not activated by, but may be sensitive to soluble factors produced by antigen or PAMP-stimulated cells, which may contribute to their homeostasis and favor the CXCR4 expression.
Collapse
|
9
|
Liu H, Zheng J, Liao A. The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Front Immunol 2022; 13:988130. [PMID: 36225914 PMCID: PMC9549360 DOI: 10.3389/fimmu.2022.988130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022] Open
Abstract
The immune microenvironment at the maternal-fetal interface was determined by the crosstalk between the trophoblast and maternal-derived cells, which dynamically changed during the whole gestation. Trophoblasts act as innate immune cells and dialogue with maternal-derived cells to ensure early embryonic development, depending on the local immune microenvironment. Therefore, dysfunctions in trophoblasts and maternal decidual cells contribute to pregnancy complications, especially recurrent pregnancy loss in early pregnancy. Since many unknown regulatory factors still affect the complex immune status, exploring new potential aspects that could influence early pregnancy is essential. RNA methylation plays an important role in contributing to the transcriptional regulation of various cells. Sufficient studies have shown the crucial roles of N6-methyladenosine (m6A)- and m6A-associated- regulators in embryogenesis during implantation. They are also essential in regulating innate and adaptive immune cells and the immune response and shaping the local and systemic immune microenvironment. However, the function of m6A modifications at the maternal-fetal interface still lacks wide research. This review highlights the critical functions of m6A in early embryonic development, summarizes the reported research on m6A in regulating immune cells and tumor immune microenvironment, and identifies the potential value of m6A modifications in shaping trophoblasts, decidual immune cells, and the microenvironment at the maternal-fetal interface. The m6A modifications are more likely to contribute to embryogenesis, placentation and shape the immune microenvironment at the maternal-fetal interface. Uncovering these crucial regulatory mechanisms could provide novel therapeutic targets for RNA methylation in early pregnancy.
Collapse
Affiliation(s)
- Hong Liu
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Affiliated in Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Affiliated in Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zheng, ; Aihua Liao,
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zheng, ; Aihua Liao,
| |
Collapse
|
10
|
Cavalcanti NV, Palmeira P, Jatene MB, de Barros Dorna M, Carneiro-Sampaio M. Early Thymectomy Is Associated With Long-Term Impairment of the Immune System: A Systematic Review. Front Immunol 2021; 12:774780. [PMID: 34899730 PMCID: PMC8656688 DOI: 10.3389/fimmu.2021.774780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Congenital heart diseases (CHDs) are diagnosed in approximately 9 in 1,000 newborns, and early cardiac corrective surgery often requires partial or complete thymectomy. As the long-term effect of early thymectomy on the subsequent development of the immune system in humans has not been completely elucidated, the present study aimed to evaluate the effects of thymus removal on the functional capacity of the immune system after different periods. Methods A systematic review of the literature was performed using MEDLINE, EMBASE, LILACS and Scopus. The inclusion criteria were original studies that analyzed any component of the immune system in patients with CHD who had undergone thymectomy during cardiac surgery in the first years of life. The results were evaluated for the quality of evidence. Results Twenty-three studies were selected and showed that patients who underwent a thymectomy in the first years of life tended to exhibit important alterations in the T cell compartment, such as fewer total T cells, CD4+, CD8+, naïve and CD31+ T cells, lower TRECs, decreased diversity of the TCR repertoire and higher peripheral proliferation (increased Ki-67 expression) than controls. However, the numbers of memory T cells and Treg cells differed across the selected studies. Conclusions Early thymectomy, either partial or complete, may be associated with a reduction in many T cell subpopulations and TCR diversity, and these alterations may persist during long-term follow-up. Alternative solutions should be studied, either in the operative technique with partial preservation of the thymus or through the autograft of fragments of the gland. Systematic Review Registration Prospero [157188].
Collapse
Affiliation(s)
- Nara Vasconcelos Cavalcanti
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Patrícia Palmeira
- Laboratory of Clinical Investigation LIM-36, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Marcelo Biscegli Jatene
- Pediatric Cardiovascular Surgery Department, Heart Institute, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Mayra de Barros Dorna
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil.,Laboratory of Clinical Investigation LIM-36, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
11
|
Wienecke LM, Cohen S, Bauersachs J, Mebazaa A, Chousterman BG. Immunity and inflammation: the neglected key players in congenital heart disease? Heart Fail Rev 2021; 27:1957-1971. [PMID: 34855062 PMCID: PMC8636791 DOI: 10.1007/s10741-021-10187-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/23/2022]
Abstract
Although more than 90% of children born with congenital heart disease (CHD) survive into adulthood, patients face significantly higher and premature morbidity and mortality. Heart failure as well as non-cardiac comorbidities represent a striking and life-limiting problem with need for new treatment options. Systemic chronic inflammation and immune activation have been identified as crucial drivers of disease causes and progression in various cardiovascular disorders and are promising therapeutic targets. Accumulating evidence indicates an inflammatory state and immune alterations in children and adults with CHD. In this review, we highlight the implications of chronic inflammation, immunity, and immune senescence in CHD. In this context, we summarize the impact of infant open-heart surgery with subsequent thymectomy on the immune system later in life and discuss the potential role of comorbidities and underlying genetic alterations. How an altered immunity and chronic inflammation in CHD influence patient outcomes facing SARS-CoV-2 infection is unclear, but requires special attention, as CHD could represent a population particularly at risk during the COVID-19 pandemic. Concluding remarks address possible clinical implications of immune changes in CHD and consider future immunomodulatory therapies.
Collapse
Affiliation(s)
- Laura M Wienecke
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30621, Hannover, Germany.
- Department of Anaesthesiology and Critical Care, Lariboisière University Hospital, DMU Parabol, AP-HP, Paris, France.
- Inserm U942 MASCOT, Université de Paris, Paris, France.
- Department of Cardiology, Angiology and Respiratory Medicine, Heidelberg University Hospital, Heidelberg, Germany.
| | - Sarah Cohen
- Congenital Heart Diseases Department, M3C Hospital Marie Lannelongue, Université Paris-Saclay, Plessis-Robinson, Paris, France
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30621, Hannover, Germany
| | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care, Lariboisière University Hospital, DMU Parabol, AP-HP, Paris, France
- Inserm U942 MASCOT, Université de Paris, Paris, France
| | - Benjamin G Chousterman
- Department of Anaesthesiology and Critical Care, Lariboisière University Hospital, DMU Parabol, AP-HP, Paris, France
- Inserm U942 MASCOT, Université de Paris, Paris, France
| |
Collapse
|
12
|
Lee JY, Lee K, Koh B. Identification of new IL-7Rα small-molecule agonists: a multi-computational approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:719-729. [PMID: 34431428 DOI: 10.1080/1062936x.2021.1969684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Interleukin 7 (IL-7) is an essential cytokine that acts as a potent growth factor of T-cells and supports the growth of B-cell precursors. IL-7 binds to a heterodimeric receptor consisting of an IL-7 receptor alpha (IL-7Rα) and the common gamma chain receptor (γc) which is shared with IL-2, IL-4, IL-9, IL-15 and IL-21. The discovery of small-molecule agonists of cytokines would be of great pharmaceutical interest with the increasing scientific rationale. In this study, a series of molecular modelling methods, including field-based pharmacophore virtual screening, protein-protein docking and molecular dynamics simulations, led to the identification of two compounds (i.e. 1 and 2) of different classes that exhibit enhanced agonistic effects by activating the IL-7 signalling cascade. One of these compounds was selected as a hit and represents the first small-molecule agonist of IL-7Rα with single-digit micromolar activity. Moreover, the prediction model of the active compound to the IL-7Rα/γc interaction complex provides insight into the binding of a small-molecule agonist to its receptor.
Collapse
Affiliation(s)
- J-Y Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - K Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - B Koh
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Kielsen K, Oostenbrink LVE, von Asmuth EGJ, Jansen-Hoogendijk AM, van Ostaijen-Ten Dam MM, Ifversen M, Heilmann C, Schilham MW, van Halteren AGS, Bredius RGM, Lankester AC, Jol-van der Zijde CM, van Tol MJD, Müller K. IL-7 and IL-15 Levels Reflect the Degree of T Cell Depletion during Lymphopenia and Are Associated with an Expansion of Effector Memory T Cells after Pediatric Hematopoietic Stem Cell Transplantation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2828-2838. [PMID: 34108260 DOI: 10.4049/jimmunol.2001077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Differentially and functionally distinct T cell subsets are involved in the development of complications after allogeneic hematopoietic stem cell transplantation (HSCT), but little is known about factors regulating their recovery after HSCT. In this study, we investigated associations between immune-regulating cytokines, T cell differentiation, and clinical outcomes. We included 80 children undergoing allogeneic HSCT for acute leukemia using bone marrow or peripheral blood stem cells grafted from a matched sibling or unrelated donor. Cytokines (IL-7, IL-15, IL-18, SCF, IL-6, IL-2, and TNF-α) and active anti-thymocyte globulin (ATG) levels were longitudinally measured along with extended T cell phenotyping. The cytokine profiles showed a temporary rise in IL-7 and IL-15 during lymphopenia, which was strongly dependent on exposure to active ATG. High levels of IL-7 and IL-15 from graft infusion to day +30 were predictive of slower T cell recovery during the first 2 mo post-HSCT; however, because of a major expansion of memory T cell stages, only naive T cells remained decreased after 3 mo (p < 0.05). No differential effect was seen on polarization of CD4+ T cells into Th1, Th2, or Th17 cells or regulatory T cells. Low levels of IL-7 and IL-15 at day +14 were associated with acute graft-versus-host disease grades II-IV in ATG-treated patients (p = 0.0004 and p = 0.0002, respectively). Children with IL-7 levels comparable to healthy controls at day +14 post-HSCT were less likely to develop EBV reactivation posttransplant. These findings suggest that quantification of IL-7 and IL-15 may be useful as biomarkers in assessing the overall T cell depletion and suggest a potential for predicting complications after HSCT.
Collapse
Affiliation(s)
- Katrine Kielsen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; .,Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; and
| | - Lisa V E Oostenbrink
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik G J von Asmuth
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Anja M Jansen-Hoogendijk
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique M van Ostaijen-Ten Dam
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Marianne Ifversen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carsten Heilmann
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marco W Schilham
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid G S van Halteren
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Robbert G M Bredius
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Cornelia M Jol-van der Zijde
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten J D van Tol
- Laboratory of Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Klaus Müller
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; and
| |
Collapse
|
14
|
Garrido-Rodríguez V, Herrero-Fernández I, Castro MJ, Castillo A, Rosado-Sánchez I, Galvá MI, Ramos R, Olivas-Martínez I, Bulnes-Ramos Á, Cañizares J, Leal M, Pacheco YM. Immunological features beyond CD4/CD8 ratio values in older individuals. Aging (Albany NY) 2021; 13:13443-13459. [PMID: 34038386 PMCID: PMC8202849 DOI: 10.18632/aging.203109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022]
Abstract
The CD4/CD8 T-cell ratio is emerging as a relevant marker of evolution for many pathologies and therapies. We aimed to explore immunological features beyond CD4/CD8 ratio values in older subjects (>65 years old) who were classified as having lower (<1.4), intermediate (1.4-2), or higher (>2) ratio values. The lower group showed a lower thymic output (sj/β-TREC ratio) and frequency of naïve T-cells, concomitant with increased mature T-cells. In these subjects, the CD4 T-cell subset was enriched in CD95+ but depleted of CD98+ cells. The regulatory T-cell (Treg) compartment was enriched in CTLA-4+ cells. The CD8 T-cell pool exhibited increased frequencies of CD95+ cells but decreased frequencies of integrin-β7+ cells. Interestingly, in the intermediate group, the CD4 pool showed greater differences than the CD8 pool, mostly for cellular senescence. Regarding inflammation, only hsCRP was elevated in the lower group; however, negative correlations between the CD4/CD8 ratio and β2-microglobulin and sCD163 were detected. These subjects displayed trends of more comorbidities and less independence in daily activities. Altogether, our data reveal different thymic output and immune profiles for T-cells across CD4/CD8 ratio values that can define immune capabilities, affecting health status in older individuals. Thus, the CD4/CD8 ratio may be used as an integrative marker of biological age.
Collapse
Affiliation(s)
- Vanesa Garrido-Rodríguez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Inés Herrero-Fernández
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - María José Castro
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Ana Castillo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Isaac Rosado-Sánchez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | | | | | - Israel Olivas-Martínez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | - Ángel Bulnes-Ramos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| | | | - Manuel Leal
- Immunovirology Unit, Internal Medicine Service, Viamed Hospital, Santa Ángela de la Cruz, Seville, Spain
| | - Yolanda María Pacheco
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Seville, Spain
| |
Collapse
|
15
|
Chang H, Cong H, Wang H, Du L, Tian DC, Ma Y, Xu Y, Wang Y, Yin L, Zhang X. Thymic Involution and Altered Naive CD4 T Cell Homeostasis in Neuromyelitis Optica Spectrum Disorder. Front Immunol 2021; 12:645277. [PMID: 34335563 PMCID: PMC8322781 DOI: 10.3389/fimmu.2021.645277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Circulating T helper cells with a type 17-polarized phenotype (TH17) and expansion of aquaporin-4 (AQP4)-specific T cells are frequently observed in patients with neuromyelitis optica spectrum disorder (NMOSD). However, naive T cell populations, which give rise to T helper cells, and the primary site of T cell maturation, namely the thymus, have not been studied in these patients. Here, we report the alterations of naive CD4 T cell homeostasis and the changes in thymic characteristics in NMOSD patients. Flow cytometry was performed to investigate the naive CD4+ T cell subpopulations in 44 NMOSD patients and 21 healthy controls (HC). On immunological evaluation, NMOSD patients exhibited increased counts of CD31+thymic naive CD4+ T cells and CD31-cental naive CD4+ T cells along with significantly higher fraction and absolute counts of peripheral blood CD45RA+ CD62L+ naive CD4+ T cells. Chest computed tomography (CT) images of 60 NMOSD patients and 65 HCs were retrospectively reviewed to characterize the thymus in NMOSD. Thymus gland of NMOSD patients exhibited unique morphological characteristics with respect to size, shape, and density. NMOSD patients showed exacerbated age-dependent thymus involution than HC, which showed a significant association with disease duration. These findings broaden our understanding of the immunological mechanisms that drive severe disease in NMOSD.
Collapse
Affiliation(s)
- Haoxiao Chang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hengri Cong
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huabing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Cai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuetao Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yupeng Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing, China
- *Correspondence: Linlin Yin, ; Xinghu Zhang,
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Linlin Yin, ; Xinghu Zhang,
| |
Collapse
|
16
|
Crépin T, Legendre M, Carron C, Vachey C, Courivaud C, Rebibou JM, Ferrand C, Laheurte C, Vauchy C, Gaiffe E, Saas P, Ducloux D, Bamoulid J. Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol Dial Transplant 2020; 35:624-632. [PMID: 30202981 DOI: 10.1093/ndt/gfy276] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) are more prone to develop premature age-related diseases. Data on immune senescence are scarce in CKD populations, except in end-stage renal disease and dialysis. We designed a longitudinal prospective study to evaluate immune senescence at different CKD stages and its influence on CKD patient outcomes. METHODS Clinical and biological data collections were performed on 222 patients at different CKD stages [1-2 (n = 85), 4 (n = 53) and 5 (n = 84)]. Immune senescence biomarkers were measured by cytometry on T cells (CD28, CD57, CD45RA, CD31, γH2A.X) or by quantitative polymerase chain reaction [relative telomere length (RTL)] on peripheral blood mononuclear cells and analysed according to CKD stages and outcomes. RESULTS CKD was associated with an increase in immune senescence and inflammation biomarkers, as follows: low thymic output (197 ± 25 versus 88 ± 13 versus 73 ± 21 CD4+CD45RA+CD31+ T cells/mm3), an increased proportion of terminally differentiated T cells (CD8+CD28-CD57+) (24 ± 18 versus 32 ± 17 versus 35 ± 19%) restricted to cytomegalovirus-positive patients, telomere shortening (1.11 ± 0.36 versus 0.78 ± 0.24 versus 0.97 ± 0.21 telomere:single copy ratio) and an increase in C-reactive protein levels [median 2.9 (range 1.8-4.9) versus 5.1 (27-9.6) versus 6.2 (3.4-10.5) mg/L]. In multivariate analysis, shorter RTL was associated with death {hazard ratio [HR] 4.12 [95% confidence interval (CI) 1.44-11.75]}. Low thymic output was associated with infections [HR 1.79 (95% CI (1.34-9.58)] and terminally differentiated CD8+ T-cell expansion with a risk of cardiovascular events [CEs; HR 4.86 (95% CI 1.72-13.72)]. CONCLUSION CKD was associated with premature immune ageing. Each of these alterations increased the risk of specific age-related diseases, such as RTL and death, thymic function and infections and terminally differentiated CD8+ T-cell expansion and CEs.
Collapse
Affiliation(s)
- Thomas Crépin
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France
| | - Clémence Carron
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France
| | - Clément Vachey
- CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| | - Cécile Courivaud
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Jean-Michel Rebibou
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France
| | - Christophe Ferrand
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC-1431/UMR1098, Besançon, France
| | - Caroline Laheurte
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC-1431/UMR1098, Besançon, France
| | - Charline Vauchy
- CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| | - Emilie Gaiffe
- CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| | - Philippe Saas
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, INSERM CIC-1431/UMR1098, Besançon, France
| | - Didier Ducloux
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| | - Jamal Bamoulid
- INSERM, UMR1098, Federation Hospitalo-Universitaire, INCREASE, Besançon, France.,University of Bourgogne-Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon and Dijon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France.,CHU Besançon, CIC Biothérapie, INSERM CIC-1431, Besançon, France
| |
Collapse
|
17
|
Coppola C, Hopkins B, Huhn S, Du Z, Huang Z, Kelly WJ. Investigation of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4 + T Cells. Int J Mol Sci 2020; 21:E7814. [PMID: 33105566 PMCID: PMC7659484 DOI: 10.3390/ijms21217814] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023] Open
Abstract
While CAR-T therapy is a growing and promising area of cancer research, it is limited by high cost and the difficulty of consistently culturing T-cells to therapeutically relevant concentrations ex-vivo. Cytokines IL-2, IL-7 and IL-15 have been found to stimulate the growth of T cells, however, the optimized combination of these three cytokines for T cell proliferation is unknown. In this study, we designed an integrated experimental and modeling approach to optimize cytokine supplementation for rapid expansion in clinical applications. We assessed the growth data for statistical improvements over no cytokine supplementation and used a systems biology approach to identify genes with the highest magnitude of expression change from control at several time points. Further, we developed a predictive mathematical model to project the growth rate for various cytokine combinations, and investigate genes and reactions regulated by cytokines in activated CD4+ T cells. The most favorable conditions from the T cell growth study and from the predictive model align to include the full range of IL-2 and IL-7 studied, and at lower levels of IL-15 (6 ng/mL or 36 ng/mL). The highest growth rates were observed where either IL-2 or IL-7 was at the highest concentration tested (15 ng/mL for IL-2 and 80 ng/mL for IL-7) while the other was at the lowest (1 ng/mL for IL-2 and 6 ng/mL for IL-7), or where both IL-2 and IL-7 concentrations are moderate-corresponding to condition keys 200, 020, and 110 respectively. This suggests a synergistic interaction of IL-2 and IL-7 with regards to promoting optimal proliferation and survival of the activated CD4+ T cells. Transcriptomic data analysis identified the genes and transcriptional regulators up/down-regulated by each of the cytokines IL-2, IL-7, and IL-15. It was found that the genes with persistent expressing changes were associated with major pathways involved in cell growth and proliferation. In addition to influencing T cell metabolism, the three cytokines were found to regulate specific genes involved in TCR, JAK/STAT, MAPK, AKT and PI3K-AKT signaling. The developed Fuzzy model that can predict the growth rate of activated CD4+ T cells for various combinations of cytokines, along with identified optimal cytokine cocktails and important genes found in transcriptomic data, can pave the way for optimizing activated CD4 T cells by regulating cytokines in the clinical setting.
Collapse
Affiliation(s)
- Canaan Coppola
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA; (C.C.); (B.H.)
| | - Brooks Hopkins
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA; (C.C.); (B.H.)
| | - Steven Huhn
- Cell/Gene Therapy and Biologics Development, Merck & Co., Kenilworth, NJ 07033, USA; (S.H.); (Z.D.)
| | - Zhimei Du
- Cell/Gene Therapy and Biologics Development, Merck & Co., Kenilworth, NJ 07033, USA; (S.H.); (Z.D.)
| | - Zuyi Huang
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA; (C.C.); (B.H.)
| | - William J. Kelly
- Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA; (C.C.); (B.H.)
| |
Collapse
|
18
|
Ikomey GM, Mbakam CH, Assoumou MCO, Brandon JG, Mesembe M, Mbamyah EL, Murphy E, Tagny CT. Cytokine levels of interleukin-2 and 7 amongst antiretroviral therapy success and failure HIV patients attending the University Teaching Hospital, Yaoundé, Cameroon. ACTA ACUST UNITED AC 2020; 14:11-19. [PMID: 33732414 DOI: 10.4314/ijbcs.v14i1.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Immune reconstitution complications (IRC) are a major problem faced by HIV treated patients world wide. Interleukin (IL)-2 and IL-7 play vital roles in peripheral T-cell homeostasis. Our study objective was to measure and compare the blood plasma levels of IL-2 and IL-7 amongst antiretroviral therapy (ART) patients attending the Yaoundé University Teaching Hospital, Cameroon. METHODS We performed a cross-sectional study with 296 HIV positive patients enrolled between July 2017 and May 2018 at the Yaoundé University Teaching Hospital. IL-2, IL-7, T-cell profile counts and plasma viral load were measured on whole blood specimens. Data obtained were analyzed using Graph Pad Prism 5.0 and Epi info 7.0. Software. RESULTS IL-2 and IL-7 plasma concentration levels were higher in patients with ART failure compared to ART success, with a mean SD of 19.4±8 and 17.1±6 pg /ml, 35.26±11 and 21.5±5 pg/ml, with p < 0.001 and < 0.001. There was a direct and significant correlation between viral load, IL-2 and IL-7 with p values = 0.028, and 0.020, respectively. There was an association between IL-2, IL-7 and viral load in relation to the duration on treatment (DT), with p values = 0.003 (R2=0.041, CI= 0.069 - 0.34) ,0.017 (R2=0.027, CI=-0.30 - 0.030), and 0.001 (R2=0.048, CI=-0.047-0.76). CONCLUSION Considering that limited surrogate markers are availiable for monitoring immune reconstitution and high associated mortality rates, IL-2 and IL-7 could be a good immunological predictor for ART failure and success in HIV infected individuals.
Collapse
Affiliation(s)
- George Mondinde Ikomey
- Center for the studies and control of communicable Diseases (CSCCD), Faculty of Medicine and Biological Sciences (FMBS), University of Yaoundé, Cameroon
| | - Cedric Happi Mbakam
- Center for the studies and control of communicable Diseases (CSCCD), Faculty of Medicine and Biological Sciences (FMBS), University of Yaoundé, Cameroon
| | - Marie Claire Okomo Assoumou
- Center for the studies and control of communicable Diseases (CSCCD), Faculty of Medicine and Biological Sciences (FMBS), University of Yaoundé, Cameroon
| | - Jacobs Graeme Brandon
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Martha Mesembe
- Center for the studies and control of communicable Diseases (CSCCD), Faculty of Medicine and Biological Sciences (FMBS), University of Yaoundé, Cameroon
| | - Emilia Lyonga Mbamyah
- Center for the studies and control of communicable Diseases (CSCCD), Faculty of Medicine and Biological Sciences (FMBS), University of Yaoundé, Cameroon
| | - Edward Murphy
- University of California, San Francisco and Vitalant Research Institute, USA
| | | |
Collapse
|
19
|
Virgilio MC, Collins KL. The Impact of Cellular Proliferation on the HIV-1 Reservoir. Viruses 2020; 12:E127. [PMID: 31973022 PMCID: PMC7077244 DOI: 10.3390/v12020127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a chronic infection that destroys the immune system in infected individuals. Although antiretroviral therapy is effective at preventing infection of new cells, it is not curative. The inability to clear infection is due to the presence of a rare, but long-lasting latent cellular reservoir. These cells harboring silent integrated proviral genomes have the potential to become activated at any moment, making therapy necessary for life. Latently-infected cells can also proliferate and expand the viral reservoir through several methods including homeostatic proliferation and differentiation. The chromosomal location of HIV proviruses within cells influences the survival and proliferative potential of host cells. Proliferating, latently-infected cells can harbor proviruses that are both replication-competent and defective. Replication-competent proviral genomes contribute to viral rebound in an infected individual. The majority of available techniques can only assess the integration site or the proviral genome, but not both, preventing reliable evaluation of HIV reservoirs.
Collapse
Affiliation(s)
- Maria C. Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathleen L. Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Mold JE, Réu P, Olin A, Bernard S, Michaëlsson J, Rane S, Yates A, Khosravi A, Salehpour M, Possnert G, Brodin P, Frisén J. Cell generation dynamics underlying naive T-cell homeostasis in adult humans. PLoS Biol 2019; 17:e3000383. [PMID: 31661488 PMCID: PMC6818757 DOI: 10.1371/journal.pbio.3000383] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/23/2019] [Indexed: 01/07/2023] Open
Abstract
Thymic involution and proliferation of naive T cells both contribute to shaping the naive T-cell repertoire as humans age, but a clear understanding of the roles of each throughout a human life span has been difficult to determine. By measuring nuclear bomb test–derived 14C in genomic DNA, we determined the turnover rates of CD4+ and CD8+ naive T-cell populations and defined their dynamics in healthy individuals ranging from 20 to 65 years of age. We demonstrate that naive T-cell generation decreases with age because of a combination of declining peripheral division and thymic production during adulthood. Concomitant decline in T-cell loss compensates for decreased generation rates. We investigated putative mechanisms underlying age-related changes in homeostatic regulation of CD4+ naive T-cell turnover, using mass cytometry to profile candidate signaling pathways involved in T-cell activation and proliferation relative to CD31 expression, a marker of thymic proximity for the CD4+ naive T-cell population. We show that basal nuclear factor κB (NF-κB) phosphorylation positively correlated with CD31 expression and thus is decreased in peripherally expanded naive T-cell clones. Functionally, we found that NF-κB signaling was essential for naive T-cell proliferation to the homeostatic growth factor interleukin (IL)-7, and reduced NF-κB phosphorylation in CD4+CD31− naive T cells is linked to reduced homeostatic proliferation potential. Our results reveal an age-related decline in naive T-cell turnover as a putative regulator of naive T-cell diversity and identify a molecular pathway that restricts proliferation of peripherally expanded naive T-cell clones that accumulate with age. Our pool of naive T cells is critical for protection against new infections and cancers. By measuring remnant 14C from 1960s nuclear bomb blasts that has been incorporated into cellular DNA, this study defines the average age of the naive T-cell pool in healthy adults, revealing the slow, regulated turnover of the naive T-cell pool, supporting its maintenance for a human lifetime.
Collapse
Affiliation(s)
- Jeff E. Mold
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Pedro Réu
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Axel Olin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Samuel Bernard
- Institut Camille Jordan, CNRS UMR 5208, University of Lyon, Villeurbanne, France
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sanket Rane
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Andrew Yates
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
- Institute of Infection, Immunity & Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Azadeh Khosravi
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Mehran Salehpour
- Department of Physics and Astronomy, Ion Physics, Uppsala University, Uppsala, Sweden
| | - Göran Possnert
- Department of Physics and Astronomy, Ion Physics, Uppsala University, Uppsala, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
21
|
Couture A, Garnier A, Docagne F, Boyer O, Vivien D, Le-Mauff B, Latouche JB, Toutirais O. HLA-Class II Artificial Antigen Presenting Cells in CD4 + T Cell-Based Immunotherapy. Front Immunol 2019; 10:1081. [PMID: 31156634 PMCID: PMC6533590 DOI: 10.3389/fimmu.2019.01081] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
CD4+ T cells differentiate into various T helper subsets characterized by distinct cytokine secreting profiles that confer them effector functions adapted to a variety of infectious or endogenous threats. Regulatory CD4+ T cells are another specialized subset that plays a fundamental role in the maintenance of immune tolerance to self-antigens. Manipulating effector or regulatory CD4+ T cells responses is a promising immunotherapy strategy for, respectively, chronical viral infections and cancer, or severe autoimmune diseases and transplantation. Adoptive cell therapy (ACT) is an emerging approach that necessitates defining robust and efficient methods for the in vitro expansion of antigen-specific T cells then infused into patients. To address this challenge, artificial antigen presenting cells (AAPCs) have been developed. They constitute a reliable and easily usable platform to stimulate and amplify antigen-specific CD4+ T cells. Here, we review the recent advances in understanding the functions of CD4+ T cells in immunity and in immune tolerance, and their use for ACT. We also describe the characteristics of different AAPC models and the way to improve their stimulating functions. Finally, we discuss the potential interest of these AAPCs, both as fundamental tools to decipher CD4+ T cell responses and as reagents to generate clinical grade antigen-specific CD4+ T cells for immunotherapy.
Collapse
Affiliation(s)
- Alexandre Couture
- UNIROUEN, Inserm U1245, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
| | - Anthony Garnier
- Inserm U1237, Physiopathology and Imaging of Neurological Disorders, Caen University Hospital, Caen, France
| | - Fabian Docagne
- Inserm U1237, Physiopathology and Imaging of Neurological Disorders, Caen University Hospital, Caen, France
| | - Olivier Boyer
- Department of Immunology and Biotherapy, Inserm U1234, Institute for Research and Innovation in Biomedicine, UNIROUEN, Rouen University Hospital, Normandie University, Rouen, France
| | - Denis Vivien
- Inserm U1237, Physiopathology and Imaging of Neurological Disorders, Caen University Hospital, Caen, France
- Department of Clinical Research, Caen University Hospital, Caen, France
| | - Brigitte Le-Mauff
- Inserm U1237, Physiopathology and Imaging of Neurological Disorders, Caen University Hospital, Caen, France
- Department of Immunology and Immunopathology, Caen University Hospital, Caen, France
| | - Jean-Baptiste Latouche
- UNIROUEN, Inserm U1245, Institute for Research and Innovation in Biomedicine, Normandie University, Rouen, France
- Department of Genetics, Rouen University Hospital, Rouen, France
| | - Olivier Toutirais
- Inserm U1237, Physiopathology and Imaging of Neurological Disorders, Caen University Hospital, Caen, France
- Department of Immunology and Immunopathology, Caen University Hospital, Caen, France
- French Blood Service (Etablissement Français du Sang), Caen, France
| |
Collapse
|
22
|
Rb-Silva R, Nobrega C, Azevedo C, Athayde E, Canto-Gomes J, Ferreira I, Cheynier R, Yates AJ, Horta A, Correia-Neves M. Thymic Function as a Predictor of Immune Recovery in Chronically HIV-Infected Patients Initiating Antiretroviral Therapy. Front Immunol 2019; 10:25. [PMID: 30804925 PMCID: PMC6370619 DOI: 10.3389/fimmu.2019.00025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Poor immunological responders (PIR) are HIV-infected patients with virologic suppression upon antiretroviral therapy (ART) but persistently low CD4+ T cell counts. Early identification of PIR is important given their higher morbimortality compared to adequate immune responders (AIR). In this study, 33 patients severely lymphopenic at ART onset, were followed for at least 36 months, and classified as PIR or AIR using cluster analysis grounded on their CD4+ T cell count trajectories. Based on a variety of immunological parameters, we built predictive models of PIR/AIR outcome using logistic regression. All PIR had CD4+ T cell counts consistently below 500 cells/μL, while all AIR reached this threshold. AIR showed a higher percentage of recent thymic emigrants among CD4+ T cells; higher numbers of sj-TRECs and greater sj/β TREC ratios; and significant increases in thymic volume from baseline to 12 months of ART. We identified mathematical models that correctly predicted PIR/AIR outcome after 36 months of therapy in 77-87% of the cases, based on observations made until 2-6 months after ART onset. This study highlights the importance of thymic activity in the immune recovery of severely lymphopenic patients, and may help to select the patients that will benefit from closer follow-up or novel therapeutic approaches.
Collapse
Affiliation(s)
- Rita Rb-Silva
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Onco-Hematology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Claudia Nobrega
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cecilia Azevedo
- Department of Mathematics and Applications, School of Sciences, University of Minho, Braga, Portugal.,Center of Mathematics, University of Minho, Braga, Portugal
| | - Emilia Athayde
- Department of Mathematics and Applications, School of Sciences, University of Minho, Braga, Portugal.,Center of Mathematics, University of Minho, Braga, Portugal
| | - João Canto-Gomes
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ivo Ferreira
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rémi Cheynier
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Department of Infection, Immunity and Inflammation, Université Paris Decartes, Paris, France
| | - Andrew J Yates
- Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
| | - Ana Horta
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Infectious Diseases, Centro Hospitalar do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Population Health Research Domain, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Advances and highlights in primary immunodeficiencies in 2017. J Allergy Clin Immunol 2018; 142:1041-1051. [PMID: 30170128 DOI: 10.1016/j.jaci.2018.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
This manuscript reviews selected topics in primary immunodeficiency diseases (PIDDs) published in 2017. These include (1) the role of follicular T cells in the differentiation of B cells and development of optimal antibody responses; (2) impaired nuclear factor κB subunit 1 signaling in the pathogenesis of common variable immunodeficiency, revealing an association between impaired B-cell maturation and development of inflammatory conditions; (3) autoimmune and inflammatory manifestations in patients with PIDDs in T- and B-cell deficiencies, as well as in neutrophil disorders; (4) newly described gene defects causing PIDDs, including exostosin-like 3 (EXTL3), TNF-α-induced protein 3 (TNFAIP3 [A20]), actin-related protein 2/3 complex-subunit 1B (ARPC1B), v-Rel avian reticuloendotheliosis viral oncogene homolog A (RELA), hypoxia upregulated 1 (HYOU1), BTB domain and CNC homolog 2 (BACH2), CD70, and CD55; (5) use of rapamycin and the phosphoinositide 3-kinase inhibitor leniolisib to reduce autoimmunity and regulate B-cell function in the activated phosphoinositide 3-kinase δ syndrome; (6) improved outcomes in hematopoietic stem cell transplantation for severe combined immunodeficiency (SCID) in the last decade, with an overall 2-year survival of 90% in part caused by early diagnosis through implementation of universal newborn screening; (7) demonstration of the efficacy of lentiviral vector-mediated gene therapy for patients with adenosine deaminase-deficient SCID; (8) the promise of gene editing for PIDDs using CRISPR/Cas9 and zinc finger nuclease technology for SCID and chronic granulomatous disease; and (9) the efficacy of thymus transplantation in Europe, although associated with an unexpected high incidence of autoimmunity. The remarkable progress in the understanding and management of PIDDs reflects the current interest in this area and continues to improve the care of immunodeficient patients.
Collapse
|
24
|
Silva SL, Albuquerque A, Amaral AJ, Li QZ, Mota C, Cheynier R, Victorino RMM, Pereira-Santos MC, Sousa AE. Autoimmunity and allergy control in adults submitted to complete thymectomy early in infancy. PLoS One 2017; 12:e0180385. [PMID: 28686710 PMCID: PMC5501530 DOI: 10.1371/journal.pone.0180385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/14/2017] [Indexed: 02/06/2023] Open
Abstract
The contribution of the decline in thymic activity for the emergence of autoimmunity is still debatable. Immune-competent adults submitted to complete thymectomy early in life provide a unique model to address this question. We applied here strict criteria to identify adults lacking thymic activity based on sjTREC levels, to exclude thymic rebound and/or ectopic thymuses. In agreement, they featured severe naïve CD4 T-cell depletion and contraction of T-cell receptor diversity. Notwithstanding this, there was neither increased incidence of autoimmune disease in comparison with age-matched controls nor significant changes in their IgG/IgA/IgM/IgE autoreactivity profiles, as assessed through extensive arrays. We reasoned that the observed relative preservation of the regulatory T-cell compartment, including maintenance of naïve regulatory CD4 T-cells, may contribute to limit the emergence of autoimmunity upon thymectomy. Our findings have implications in other clinical settings with impaired thymic activity, and are particularly relevant to studies of autoimmunity in ageing.
Collapse
Affiliation(s)
- Susana L. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
- Clinica Universitária de Imunoalergologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte. Lisboa, Portugal
| | - Adriana Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| | - Andreia J. Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Catarina Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
- Clinica Universitária de Medicina 2, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte. Lisboa, Portugal
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation department, Institut Cochin, INSERM, U1016, Paris, France
- Centre National de la Recherche Scientifique, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Rui M. M. Victorino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
- Clinica Universitária de Medicina 2, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte. Lisboa, Portugal
| | | | - Ana E. Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
- * E-mail:
| |
Collapse
|
25
|
Albuquerque AS, Fernandes SM, Tendeiro R, Cheynier R, Lucas M, Silva SL, Victorino RMM, Sousa AE. Major CD4 T-Cell Depletion and Immune Senescence in a Patient with Chronic Granulomatous Disease. Front Immunol 2017; 8:543. [PMID: 28553289 PMCID: PMC5425576 DOI: 10.3389/fimmu.2017.00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/24/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic granulomatous disease (CGD) results from primary defects in phagocytic reactive oxygen species (ROS) production. T-cell evaluation is usually neglected during patients’ follow-up, although T-cell depletion has been reported in CGD through unknown mechanisms. We describe here a 36-year-old patient with X-linked CGD with severe CD4 T-cell depletion <200 CD4 T-cells/μl, providing insights into the mechanisms that underlie T-cell loss in the context of oxidative burst defects. In addition to the typical infections, the patient featured a progressive T-cell loss associated with persistent lymphocyte activation, expansion of interleukin (IL)-17-producing CD4 T-cells, and impaired thymic activity, leading to a reduced replenishment of the T-cell pool. A relative CD4 depletion was also found at the gut mucosal level, although no bias to IL-17-production was documented. This immunological pattern of exhaustion of immune resources favors prompt, potentially curative, therapeutic interventions in CGD patients, namely, stem-cell transplantation or gene therapy. Moreover, this clinical case raises new research questions on the interplay of ROS production and T-cell homeostasis and immune senescence.
Collapse
Affiliation(s)
- Adriana S Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiência Primárias de Lisboa, Lisbon, Portugal
| | - Susana M Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rita Tendeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation Department, Institut Cochin, INSERM, U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Margarida Lucas
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Susana L Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiência Primárias de Lisboa, Lisbon, Portugal.,Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rui M M Victorino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiência Primárias de Lisboa, Lisbon, Portugal.,Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Imunodeficiência Primárias de Lisboa, Lisbon, Portugal
| |
Collapse
|