1
|
Sun D, Wang K, Chen Y, Zhang B, Tang J, Luo W, Liu J, Yu S. Immunological characteristics of CD103 +CD161 + T lymphocytes on chronic rhinosinusitis with nasal polyps. Cell Immunol 2024; 401-402:104842. [PMID: 38897020 DOI: 10.1016/j.cellimm.2024.104842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNPs) is a heterogeneous disease characterized by local inflammation of the upper airway and sinus mucosa. T cell-mediated immune responses play irreplaceable roles in the pathogenesis of nasal polyps. CD161+ T cells have been implicated in the pathology of several diseases through cytokine production and cytotoxic activity. However, the immunological characteristics of CD161+ T cells in nasal mucosa are still not well understood, particularly in CRSwNPs. Our research revealed a notable enrichment of CD161+ T cells in nasal tissues compared to peripheral blood, with a significantly more infiltration of CD161+ T cells in CRSwNPs compared to control nasal samples. Phenotypical analysis found that CD161+ T cells predominantly co-expressed tissue-resident memory surface markers CD103, CD69, and CD45RO. CD161+CD103+ T cells demonstrated complicated effector functions, marked by elevated levels of PD-1, CTLA-4, IL-17, and IFN-γ and diminished expression of FoxP3 and CD25. Interestingly, despite CD161+ T cells was more abundant in polyp tissues compared to normal control tissues, and then further categorizing polyp samples into distinct groups based on clinical characteristics, only the recurrent CRSwNP group showed a significant reduction in CD161+CD8+ T cells compared to the primary CRSwNP group. This finding suggested the necessity for further research to comprehensively understand the underlying mechanisms and the broader significance of CD161+ T cells in the advancement and relapse of CRSwNPs.
Collapse
Affiliation(s)
- Danqi Sun
- Institute of Translational Medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, China; Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Kai Wang
- Department of Otolaryngology, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, China
| | - Youmou Chen
- The General Hospital of Western Theater Command, No. 270, Rongdu Avenue, Chengdu 610083, China
| | - Beiying Zhang
- Institute of Translational Medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, China
| | - Jun Tang
- Department of Otolaryngology, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, China
| | - Wei Luo
- Institute of Translational Medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, China
| | - Jia Liu
- Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Sifei Yu
- Institute of Translational Medicine, The First People's Hospital of Foshan, 81 Lingnan Road, Foshan 528000, China.
| |
Collapse
|
2
|
Honing DY, Luiten RM, Matos TR. Regulatory T Cell Dysfunction in Autoimmune Diseases. Int J Mol Sci 2024; 25:7171. [PMID: 39000278 PMCID: PMC11241405 DOI: 10.3390/ijms25137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs), a suppressive subpopulation of T cells, are potent mediators of peripheral tolerance, responsible for immune homeostasis. Many autoimmune diseases exhibit disruptions in Treg function or quantity, resulting in an imbalance between protective and pathogenic immune cells. Selective expansion or manipulation of Tregs is a promising therapeutic approach for autoimmune diseases. However, the extensive diversity of Treg subpopulations and the multiple approaches used for Treg identification leads to high complexity, making it difficult to develop a successful treatment capable of modulating Tregs. In this review, we describe the suppressive mechanisms, subpopulations, classification, and identification methodology for Tregs, and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dionne Y Honing
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Sanofi, 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
3
|
Starskaia I, Valta M, Pietilä S, Suomi T, Pahkuri S, Kalim UU, Rasool O, Rydgren E, Hyöty H, Knip M, Veijola R, Ilonen J, Toppari J, Lempainen J, Elo LL, Lahesmaa R. Distinct cellular immune responses in children en route to type 1 diabetes with different first-appearing autoantibodies. Nat Commun 2024; 15:3810. [PMID: 38714671 PMCID: PMC11076468 DOI: 10.1038/s41467-024-47918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/12/2024] [Indexed: 05/10/2024] Open
Abstract
Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.
Collapse
Grants
- 1-SRA-2016-342-M-R, 1-SRA-2019-732-M-B, 3-SRA-2020-955-S-B JDRF
- BMH4-CT98-3314 European Commission (EC)
- Academy of Finland (292538, 292335, 294337, 319280, 31444, 319280, 329277, 331790, 310561, 314443, 329278, 335434, 335611 and 341342), Novo Nordisk Foundation, Centre of Excellence in Molecular Systems Immunology and Physiology Research 2012-2017 [Decision No 250114]; Special Research Funds for University Hospitals in Finland; Diabetes Research Foundation, Finland; European Foundation for the Study of Diabetes; Päivikki and Sakari Sohlberg Foundation; Pediatric Research Foundation. Business Finland, the Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, the Finnish Cancer Foundation, InFLAMES Flagship Programme of the Academy of Finland, Diabetes Wellness Suomi, the Finnish cultural foundation. the European Research Council ERC (677943), the Finnish Medical Foundation, the Finnish Pediatric Research Foundation and the Hospital Districht of South-West Finland.
Collapse
Affiliation(s)
- Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Milla Valta
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sirpa Pahkuri
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Emilie Rydgren
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, Research Unit of Clinical Medicine, Medical Research Centre, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland.
- Clinical Microbiology, Turku University Hospital, Turku, Finland.
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
4
|
Nijhuis L, Swart JF, Prakken BJ, van Loosdregt J, Vastert SJ. The clinical and experimental treatment of Juvenile Idiopathic Arthritis. Clin Exp Immunol 2023; 213:276-287. [PMID: 37074076 PMCID: PMC10571000 DOI: 10.1093/cei/uxad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/02/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children and comprises of multiple subtypes. The most relevant disease subtypes, grouped upon current insight in disease mechanisms, are nonsystemic (oligo- and polyarticular) JIA and systemic JIA (sJIA). In this review, we summarize some of the main proposed mechanisms of disease in both nonsystemic and sJIA and discuss how current therapeutic modalities target some of the pathogenic immune pathways. Chronic inflammation in nonsystemic JIA is the result of a complex interplay between effector and regulatory immune cell subsets, with adaptive immune cells, specifically T-cell subsets and antigen-presenting cells, in a central role. There is, however, also innate immune cell contribution. SJIA is nowadays recognized as an acquired chronic inflammatory disorder with striking autoinflammatory features in the first phase of the disease. Some sJIA patients develop a refractory disease course, with indications for involvement of adaptive immune pathways as well. Currently, therapeutic strategies are directed at suppressing effector mechanisms in both non-systemic and sJIA. These strategies are often not yet optimally tuned nor timed to the known active mechanisms of disease in individual patients in both non-systemic and sJIA. We discuss current treatment strategies in JIA, specifically the 'Step-up' and 'Treat to Target approach' and explore how increased insight into the biology of disease may translate into future more targeted strategies for this chronic inflammatory disease at relevant time points: preclinical disease, active disease, and clinically inactive disease.
Collapse
Affiliation(s)
- L Nijhuis
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J F Swart
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - B J Prakken
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - J van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| | - S J Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of pediatric rheumatology & immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Maeda K, Tanioka T, Takahashi R, Watanabe H, Sueki H, Takimoto M, Hashimoto SI, Ikeo K, Miwa Y, Kasama T, Iwamoto S. MCAM+CD161- Th17 Subset Expressing CD83 Enhances Tc17 Response in Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1867-1881. [PMID: 37186262 DOI: 10.4049/jimmunol.2200530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Recent studies have highlighted the pathogenic roles of IL-17-producing CD8+ T cells (T-cytotoxic 17 [Tc17]) in psoriasis. However, the underlying mechanisms of Tc17 induction remain unclear. In this study, we focused on the pathogenic subsets of Th17 and their mechanism of promotion of Tc17 responses. We determined that the pathogenic Th17-enriched fraction expressed melanoma cell adhesion molecule (MCAM) and CCR6, but not CD161, because this subset produced IL-17A abundantly and the presence of these cells in the peripheral blood of patients has been correlated with the severity of psoriasis. Intriguingly, the serial analysis of gene expression revealed that CCR6+MCAM+CD161-CD4+ T cells displayed the gene profile for adaptive immune responses, including CD83, which is an activator for CD8+ T cells. Coculture assay with or without intercellular contact between CD4+ and CD8+ T cells showed that CCR6+MCAM+CD161-CD4+ T cells induced the proliferation of CD8+ T cells in a CD83-dependent manner. However, the production of IL-17A by CD8+ T cells required exogenous IL-17A, suggesting that intercellular contact via CD83 and the production of IL-17A from activated CD4+ T cells elicit Tc17 responses. Intriguingly, the CD83 expression was enhanced in the presence of IL-15, and CD83+ cells stimulated with IL-1β, IL-23, IL-15, and IL-15Rα did not express FOXP3. Furthermore, CCR6+MCAM+CD161-CD4+ T cells expressing CD83 were increased in the peripheral blood of patients, and the CD83+ Th17-type cells accumulated in the lesional skin of psoriasis. In conclusion, pathogenic MCAM+CD161- Th17 cells may be involved in the Tc17 responses via IL-17A and CD83 in psoriasis.
Collapse
Affiliation(s)
- Kohei Maeda
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiro Tanioka
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Rei Takahashi
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Hideaki Watanabe
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Hirohiko Sueki
- Department of Dermatology, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Yusuke Miwa
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Kasama
- Department of Internal Medicine, Division of Rheumatology, Showa University School of Medicine, Tokyo, Japan
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology, and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
6
|
Povoleri GAM, Durham LE, Gray EH, Lalnunhlimi S, Kannambath S, Pitcher MJ, Dhami P, Leeuw T, Ryan SE, Steel KJA, Kirkham BW, Taams LS. Psoriatic and rheumatoid arthritis joints differ in the composition of CD8+ tissue-resident memory T cell subsets. Cell Rep 2023; 42:112514. [PMID: 37195862 PMCID: PMC10790246 DOI: 10.1016/j.celrep.2023.112514] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/21/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023] Open
Abstract
CD69+CD103+ tissue-resident memory T (TRM) cells are important drivers of inflammation. To decipher their role in inflammatory arthritis, we apply single-cell, high-dimensional profiling to T cells from the joints of patients with psoriatic arthritis (PsA) or rheumatoid arthritis (RA). We identify three groups of synovial CD8+CD69+CD103+ TRM cells: cytotoxic and regulatory T (Treg)-like TRM cells are present in both PsA and RA, while CD161+CCR6+ type 17-like TRM cells with a pro-inflammatory cytokine profile (IL-17A+TNFα+IFNγ+) are specifically enriched in PsA. In contrast, only one population of CD4+CD69+CD103+ TRM cells is detected and at similarly low frequencies in both diseases. Type 17-like CD8+ TRM cells have a distinct transcriptomic signature and a polyclonal, but distinct, TCR repertoire. Type 17-like cells are also enriched in CD8+CD103- T cells in PsA compared with RA. These findings illustrate differences in the immunopathology of PsA and RA, with a particular enrichment for type 17 CD8+ T cells in the PsA joint.
Collapse
Affiliation(s)
- Giovanni A M Povoleri
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Lucy E Durham
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Elizabeth H Gray
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Shichina Kannambath
- BRC Genomics Core, NIHR Biomedical Research Center, Guy's and St Thomas' NHS Foundation Trust and King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Pawan Dhami
- BRC Genomics Core, NIHR Biomedical Research Center, Guy's and St Thomas' NHS Foundation Trust and King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Thomas Leeuw
- Immunology & Inflammation Research TA, Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65926 Frankfurt am Main, Germany
| | - Sarah E Ryan
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Kathryn J A Steel
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK
| | - Bruce W Kirkham
- Rheumatology Department, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology (CIBCI), Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London SE1 1UL, UK.
| |
Collapse
|
7
|
Bian W, Li Y, Sun F, Sun X, Li R, Xia C, Fu J, Zhang Y, Chen S, Liu Y. Immune phenotype changes in IgG4-related disease: CD161 + Treg and Foxp3 + Treg. Clin Rheumatol 2023; 42:1113-1124. [PMID: 36567407 DOI: 10.1007/s10067-022-06445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aimed to characterize the alterations in the immune phenotypes and explore the potential relevance to pathogenesis in IgG4-RD. METHODS Forty-two IgG4-RD patients and thirty-eight healthy controls were recruited in this study. Peripheral immunocompetent cells including T cells, CD4 + T cells, CD8 + T cells, B cells, NK cells CD4 + CD45RA + T cells (naïve T cells), CD4 + CD25 - / + Foxp3 - T cells (Teff), CD4 + CD25hiCD127lowCD161 + T cells (CD161 + Treg), CD4 + CD25hiFoxp3 + T cells (Foxp3 + Treg), CD4 + CD4RA-CXCR5 + PD1 + CCR7low T cells (pTfh), T helper (Th) 1, Th2, and Th17 before and after treatment were immunophenotyped by flow cytometry. RESULTS Compared with healthy controls, IgG4-RD patients showed higher proportions of NK (20.1% vs 13.6%, p < 0.01), Th1 (CD4 + IFN-γ + : 17.9% vs 14.2%, p = 0.061; TNF-α: 43.7% vs 36.7%, p < 0.05), Th2 (CD4 + IL-4 + : 2.4% vs 1.3%, p < 0.0001), CD161 + Treg (14.9% vs 11.6%, p < 0.01), pTfh (3.2% vs 2.4%, p < 0.05), and Foxp3 + Treg (8.3% vs 7.0%, p < 0.01) and lower proportions of B lymphocytes (8.4% vs 13.1%, p < 0.001), Teff (91.6% vs 92.6%, p < 0.01), and naïve Th cells (19.9% vs 32.1%, p < 0.01) before treatment. Foxp3 + Treg percentage decreased significantly after treatment (8.6% vs 6.9%, p < 0.05). Both serum C3 (r = - 0.6374, p < 0.01) and C4 (r = - 0.6174, p < 0.01) levels were in negative correlation with CD161 + Treg. The eosinophil percentage was positively correlated with Foxp3 + Treg (r = 0.5435, p < 0.05). Serum IgE level was positively correlated with Th2 (r = 0.5545, p < 0.05). There was a positive correlation between CD161 + Treg and pTfh (r = 0.4974, p < 0.05) while a negative correlation between Th2 and B cells (r = - 0.4925, p < 0.05). CONCLUSION Immune phenotypes were altered in IgG4-RD. Treg/Teff balance was shifted toward Treg in IgG4-RD. CD161 + Treg was likely to be involved in the pathogenesis of IgG4-RD. Key Points •Immune phenotypes were altered in B cells, T cells, and NK cells in IgG4-RD. •Treg/Teff balance was shifted toward Treg in IgG4-RD. •CD161+ Treg maybe play a proinflammatory role in IgG4-RD.
Collapse
Affiliation(s)
- Wenjie Bian
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Feng Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Ru Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Changsheng Xia
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Jiangnan Fu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Yuxin Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Shuang Chen
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China
| | - Yanying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11, Xizhimen South Street, Beijing, 100044, China.
- Department of Rheumatology and Immunology, Beijing Friendship Hospital, Capital Medical University, 95, Yongan Road, Beijing, 100050, China.
| |
Collapse
|
8
|
Mijnheer G, Servaas NH, Leong JY, Boltjes A, Spierings E, Chen P, Lai L, Petrelli A, Vastert S, de Boer RJ, Albani S, Pandit A, van Wijk F. Compartmentalization and persistence of dominant (regulatory) T cell clones indicates antigen skewing in juvenile idiopathic arthritis. eLife 2023; 12:79016. [PMID: 36688525 PMCID: PMC9995115 DOI: 10.7554/elife.79016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Autoimmune inflammation is characterized by tissue infiltration and expansion of antigen-specific T cells. Although this inflammation is often limited to specific target tissues, it remains yet to be explored whether distinct affected sites are infiltrated with the same, persistent T cell clones. Here, we performed CyTOF analysis and T cell receptor (TCR) sequencing to study immune cell composition and (hyper-)expansion of circulating and joint-derived Tregs and non-Tregs in juvenile idiopathic arthritis (JIA). We studied different joints affected at the same time, as well as over the course of relapsing-remitting disease. We found that the composition and functional characteristics of immune infiltrates are strikingly similar between joints within one patient, and observed a strong overlap between dominant T cell clones, especially Treg, of which some could also be detected in circulation and persisted over the course of relapsing-remitting disease. Moreover, these T cell clones were characterized by a high degree of sequence similarity, indicating the presence of TCR clusters responding to the same antigens. These data suggest that in localized autoimmune disease, there is autoantigen-driven expansion of both Teffector and Treg clones that are highly persistent and are (re)circulating. These dominant clones might represent interesting therapeutic targets.
Collapse
Affiliation(s)
- Gerdien Mijnheer
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Nila Hendrika Servaas
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Jing Yao Leong
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the AcademiaSingaporeSingapore
| | - Arjan Boltjes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Phyllis Chen
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the AcademiaSingaporeSingapore
| | - Liyun Lai
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the AcademiaSingaporeSingapore
| | - Alessandra Petrelli
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Sebastiaan Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
- Pediatric Immunology & Rheumatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Rob J de Boer
- Theoretical Biology, Utrecht UniversityUtrechtNetherlands
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, the AcademiaSingaporeSingapore
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
9
|
Pouw JNJ, Nordkamp MAMMO, van Kempen TT, Concepcion ANA, van Laar JMJ, van Wijk FF, Spierings JJ, Leijten EFAE, Boes MM. Regulatory T cells in psoriatic arthritis: an IL-17A-producing, Foxp3 intCD161 + RORγt + ICOS + phenotype, that associates with the presence of ADAMTSL5 autoantibodies. Sci Rep 2022; 12:20675. [PMID: 36450783 PMCID: PMC9712434 DOI: 10.1038/s41598-022-24924-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
In psoriatic arthritis (PsA), predisposing class I HLA alleles, the presence of synovial clonally proliferated CD8 + T cells and autoantibodies all point towards the loss of immune tolerance. However, the key mechanisms that lead to immune dysregulation are not fully understood. In other types of inflammatory arthritis, T regulatory cell (Treg) dysfunction and plasticity at sites of inflammation were suggested to negatively affect peripheral tolerance. We here addressed if Treg variances associate with psoriatic disease. We collected clinical data, sera and peripheral blood mononuclear cells from 13 healthy controls, 21 psoriasis and 21 PsA patients. In addition, we obtained synovial fluid mononuclear cells from 6 PsA patients. We studied characteristics of CD4 + CD25 + CD127loFoxp3 + Tregs by flow cytometry and used ELISA to quantify antibodies against ADAMTSL5, a recently discovered autoantigen in psoriatic disease. In comparison with their circulating counterparts, Tregs from inflamed joints express increased levels of ICOS, CTLA-4 and TIGIT. Furthermore, synovial fluid-derived Tregs have a distinct phenotype, characterized by IL-17A production and upregulation of CD161 and RORγt. We identified a subset of Tregs with intermediate Foxp3 expression as the major cytokine producer. Furthermore, ICOS + Tregs associate with PsA disease activity as measured by PASDAS. Lastly, we observed that presence of the Foxp3int Tregs associates with an increased abundance of anti-ADAMTSL5 autoantibodies. Tregs derived from the inflammatory environment of inflamed PsA joints exhibit a distinct phenotype, which associates with loss of peripheral immune tolerance in psoriatic disease.
Collapse
Affiliation(s)
- J. N. Juliëtte Pouw
- grid.5477.10000000120346234Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, H03.103, P.O. Box 85500, 3508 GA Utrecht, The Netherlands ,grid.5477.10000000120346234Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - M. A. M. Michel Olde Nordkamp
- grid.5477.10000000120346234Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - T. Tessa van Kempen
- grid.440506.30000 0000 9631 4629Biomedical Laboratory Sciences, Avans University of Applied Sciences, 4800 RA Breda, The Netherlands
| | - A. N. Arno Concepcion
- grid.5477.10000000120346234Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, H03.103, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - J. M. Jacob van Laar
- grid.5477.10000000120346234Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, H03.103, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - F. Femke van Wijk
- grid.5477.10000000120346234Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, The Netherlands
| | - J. Julia Spierings
- grid.5477.10000000120346234Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, H03.103, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - E. F. A. Emmerik Leijten
- grid.452818.20000 0004 0444 9307Department of Rheumatology, Sint Maartenskliniek, 6500 GM Nijmegen, The Netherlands
| | - M. Marianne Boes
- grid.5477.10000000120346234Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, The Netherlands ,grid.5477.10000000120346234Department of Pediatric Immunology, Wilhelmina Children’s Hospital, Utrecht University, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
10
|
Park HJ, Lee SW, Park YH, Kim TC, Van Kaer L, Hong S. CD1d-independent NK1.1+ Treg cells are IL2-inducible Foxp3+ T cells co-expressing immunosuppressive and cytotoxic molecules. Front Immunol 2022; 13:951592. [PMID: 36177042 PMCID: PMC9513232 DOI: 10.3389/fimmu.2022.951592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Treg) play pivotal roles in maintaining self-tolerance and preventing immunological diseases such as allergy and autoimmunity through their immunosuppressive properties. Although Treg cells are heterogeneous populations with distinct suppressive functions, expression of natural killer (NK) cell receptors (NKR) by these cells remains incompletely explored. Here we identified that a small population of Foxp3+CD4+ Treg cells in mice expresses the NK1.1 NKR. Furthermore, we found that rare NK1.1+ subpopulations among CD4+ Treg cells develop normally in the spleen but not the thymus through CD1d-independent pathways. Compared with NK1.1- conventional Treg cells, these NK1.1+ Treg cells express elevated Treg cell phenotypic hallmarks, pro-inflammatory cytokines, and NK cell-related cytolytic mediators. Our results suggest that NK1.1+ Treg cells are phenotypically hybrid cells sharing functional properties of both NK and Treg cells. Interestingly, NK1.1+ Treg cells preferentially expanded in response to recombinant IL2 stimulation in vitro, consistent with their increased IL2Rαβ expression. Moreover, DO11.10 T cell receptor transgenic NK1.1+ Treg cells were expanded in an ovalbumin antigen-specific manner. In the context of lipopolysaccharide-induced systemic inflammation, NK1.1+ Treg cells downregulated immunosuppressive molecules but upregulated TNFα production, indicating their plastic adaptation towards a more pro-inflammatory rather than regulatory phenotype. Collectively, we propose that NK1.1+ Treg cells might play a unique role in controlling inflammatory immune responses such as infection and autoimmunity.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
11
|
Thangavelu G, Andrejeva G, Bolivar-Wagers S, Jin S, Zaiken MC, Loschi M, Aguilar EG, Furlan SN, Brown CC, Lee YC, Hyman CM, Feser CJ, Panoskaltsis-Mortari A, Hippen KL, MacDonald KP, Murphy WJ, Maillard I, Hill GR, Munn DH, Zeiser R, Kean LS, Rathmell JC, Chi H, Noelle RJ, Blazar BR. Retinoic acid signaling acts as a rheostat to balance Treg function. Cell Mol Immunol 2022; 19:820-833. [PMID: 35581350 PMCID: PMC9243059 DOI: 10.1038/s41423-022-00869-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/14/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability. However, it is unknown how RA receptor signaling in Tregs influences these processes in vivo. Herein, we employed mouse models in which RA signaling is silenced by the expression of the dominant negative receptor (DN) RARα in all T cells. Despite the fact that DNRARα conventional T cells are hypofunctional, Tregs had increased CD25 expression, STAT5 pathway activation, mTORC1 signaling and supersuppressor function. Furthermore, DNRARα Tregs had increased inhibitory molecule expression, amino acid transporter expression, and metabolic fitness and decreased antiapoptotic proteins. Supersuppressor function was observed when wild-type mice were treated with a pharmacologic pan-RAR antagonist. Unexpectedly, Treg-specific expression of DNRARα resulted in distinct phenotypes, such that a single allele of DNRARα in Tregs heightened their suppressive function, and biallelic expression led to loss of suppression and autoimmunity. The loss of Treg function was not cell intrinsic, as Tregs that developed in a noninflammatory milieu in chimeric mice reconstituted with DNRARα and wild-type bone marrow maintained the enhanced suppressive capacity. Fate mapping suggested that maintaining Treg stability in an inflammatory milieu requires RA signaling. Our findings indicate that RA signaling acts as a rheostat to balance Treg function in inflammatory and noninflammatory conditions in a dose-dependent manner.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Gabriela Andrejeva
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Bolivar-Wagers
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sujeong Jin
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael C Zaiken
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Loschi
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan G Aguilar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Scott N Furlan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chrysothemis C Brown
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Chi Lee
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Cameron McDonald Hyman
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Colby J Feser
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Keli L Hippen
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kelli P MacDonald
- Department of Immunology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Centre, Freiburg, Germany
| | - Leslie S Kean
- Boston Children's Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jeffrey C Rathmell
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Bruce R Blazar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Rajendeeran A, Tenbrock K. Regulatory T cell function in autoimmune disease. J Transl Autoimmun 2022; 4:100130. [PMID: 35005594 PMCID: PMC8716637 DOI: 10.1016/j.jtauto.2021.100130] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are characterized by a failure of tolerance to own body components resulting in tissue damage. Regulatory T cells are gatekeepers of tolerance. This review focusses on the function and pathophysiology of regulatory T cells in the context of autoimmune diseases including rheumatoid and juvenile idiopathic arthritis as well as systemic lupus erythematosus with an overview over current and future therapeutic options to boost Treg function. Regulatory T cells are critical mediators of immune tolerance and critically depend on external IL-2. Tregs are expanded during inflammation, where the local milieu enhances resistance to suppression in T effector cells. Human Tregs are characterized by different markers, which hampers the comparability of studies in patients with autoimmunity.
Collapse
Affiliation(s)
- Anandi Rajendeeran
- RWTH Aachen University, Department of Pediatrics, Pediatric Rheumatology, Pauwelsstr 30, 52074, Aachen, Germany
| | - Klaus Tenbrock
- RWTH Aachen University, Department of Pediatrics, Pediatric Rheumatology, Pauwelsstr 30, 52074, Aachen, Germany
| |
Collapse
|
13
|
Duurland CL, Santegoets SJ, Abdulrahman Z, Loof NM, Sturm G, Wesselink TH, Arens R, Boekestijn S, Ehsan I, van Poelgeest MIE, Finotello F, Hackl H, Trajanoski Z, Ten Dijke P, Braud VM, Welters MJP, van der Burg SH. CD161 expression and regulation defines rapidly responding effector CD4+ T cells associated with improved survival in HPV16-associated tumors. J Immunother Cancer 2022; 10:e003995. [PMID: 35039463 PMCID: PMC8765066 DOI: 10.1136/jitc-2021-003995] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Expression of killer cell lectin-like receptor B1 (KLRB1), the gene encoding the cell surface molecule CD161, is associated with favorable prognosis in many cancers. CD161 is expressed by several lymphocyte populations, but its role and regulation on tumor-specific CD4+ T cells is unknown. METHODS We examined the clinical impact of CD4+CD161+ T cells in human papillomavirus (HPV)16+ oropharyngeal squamous cell carcinoma (OPSCC), analyzed their contribution in a cohort of therapeutically vaccinated patients and used HPV16-specific CD4+CD161+ tumor-infiltrating lymphocytes and T cell clones for in-depth mechanistic studies. RESULTS Central and effector memory CD4+ T cells express CD161, but only CD4+CD161+ effector memory T cells (Tem) are associated with improved survival in OPSCC. Therapeutic vaccination activates and expands type 1 cytokine-producing CD4+CD161+ effector T cells. The expression of CD161 is dynamic and follows a pattern opposite of the checkpoint molecules PD1 and CD39. CD161 did not function as an immune checkpoint molecule as demonstrated using multiple experimental approaches using antibodies to block CD161 and gene editing to knockout CD161 expression. Single-cell transcriptomics revealed KLRB1 expression in many T cell clusters suggesting differences in their activation. Indeed, CD4+CD161+ effector cells specifically expressed the transcriptional transactivator SOX4, known to enhance T cell receptor (TCR) signaling via CD3ε. Consistent with this observation, CD4+CD161+ cells respond more vigorously to limiting amounts of cognate antigen in presence of interleukin (IL)-12 and IL-18 compared to their CD161- counterparts. The expression of CD161/KLRB1 and SOX4 was downregulated upon TCR stimulation and this effect was boosted by transforming growth factor (TGF)β1. CONCLUSION High levels of CD4+CD161+ Tem are associated with improved survival and our data show that CD161 is dynamically regulated by cell intrinsic and extrinsic factors. CD161 expressing CD4+ T cells rapidly respond to suboptimal antigen stimulation suggesting that CD161, similar to SOX4, is involved in the amplification of TCR signals in CD4+ T cells.
Collapse
Affiliation(s)
- Chantal L Duurland
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ziena Abdulrahman
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikki M Loof
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tom H Wesselink
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne Boekestijn
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
- Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Veronique M Braud
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d'Azur, UMR7275, 06560 Valbonne, Sophia Antipolis, France
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Simone D, Penkava F, Ridley A, Sansom S, Al-Mossawi MH, Bowness P. Single cell analysis of spondyloarthritis regulatory T cells identifies distinct synovial gene expression patterns and clonal fates. Commun Biol 2021; 4:1395. [PMID: 34907325 PMCID: PMC8671562 DOI: 10.1038/s42003-021-02931-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in controlling inflammation and limiting autoimmunity, but their phenotypes at inflammatory sites in human disease are poorly understood. We here analyze the single-cell transcriptome of >16,000 Tregs obtained from peripheral blood and synovial fluid of two patients with HLA-B27+ ankylosing spondylitis and three patients with psoriatic arthritis, closely related forms of inflammatory spondyloarthritis. We identify multiple Treg clusters with distinct transcriptomic profiles, including, among others, a regulatory CD8+ subset expressing cytotoxic markers/genes, and a Th17-like RORC+ Treg subset characterized by IL-10 and LAG-3 expression. Synovial Tregs show upregulation of interferon signature and TNF receptor superfamily genes, and marked clonal expansion, consistent with tissue adaptation and antigen contact respectively. Individual synovial Treg clones map to different clusters indicating cell fate divergence. Finally, we demonstrate that LAG-3 directly inhibits IL-12/23 and TNF secretion by patient-derived monocytes, a mechanism with translational potential in SpA. Our detailed characterization of Tregs at an important inflammatory site illustrates the marked specialization of Treg subpopulations.
Collapse
Affiliation(s)
- Davide Simone
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Frank Penkava
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Anna Ridley
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Stephen Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - M Hussein Al-Mossawi
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
15
|
Julé AM, Hoyt KJ, Wei K, Gutierrez-Arcelus M, Taylor ML, Ng J, Lederer JA, Case SM, Chang MH, Cohen EM, Dedeoglu F, Hazen MM, Hausmann JS, Halyabar O, Janssen E, Lo J, Lo MS, Meidan E, Roberts JE, Son MBF, Sundel RP, Lee PY, Chatila T, Nigrovic PA, Henderson LA. Th1 polarization defines the synovial fluid T cell compartment in oligoarticular juvenile idiopathic arthritis. JCI Insight 2021; 6:e149185. [PMID: 34403374 PMCID: PMC8492302 DOI: 10.1172/jci.insight.149185] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Oligoarticular juvenile idiopathic arthritis (oligo JIA) is the most common form of chronic inflammatory arthritis in children, yet the cause of this disease remains unknown. To understand immune responses in oligo JIA, we immunophenotyped synovial fluid T cells with flow cytometry, bulk RNA-Seq, single-cell RNA-Seq (scRNA-Seq), DNA methylation studies, and Treg suppression assays. In synovial fluid, CD4+, CD8+, and γδ T cells expressed Th1-related markers, whereas Th17 cells were not enriched. Th1 skewing was prominent in CD4+ T cells, including Tregs, and was associated with severe disease. Transcriptomic studies confirmed a Th1 signature in CD4+ T cells from synovial fluid. The regulatory gene expression signature was preserved in Tregs, even those exhibiting Th1 polarization. These Th1-like Tregs maintained Treg-specific methylation patterns and suppressive function, supporting the stability of this Treg population in the joint. Although synovial fluid CD4+ T cells displayed an overall Th1 phenotype, scRNA-Seq uncovered heterogeneous effector and regulatory subpopulations, including IFN-induced Tregs, peripheral helper T cells, and cytotoxic CD4+ T cells. In conclusion, oligo JIA is characterized by Th1 polarization that encompasses Tregs but does not compromise their regulatory identity. Targeting Th1-driven inflammation and augmenting Treg function may represent important therapeutic approaches in oligo JIA.
Collapse
Affiliation(s)
- Amélie M. Julé
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kacie J. Hoyt
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Maria L. Taylor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, and
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Siobhan M. Case
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret H. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ezra M. Cohen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa M. Hazen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Hausmann
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mindy S. Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Esra Meidan
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan E. Roberts
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Beth F. Son
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert P. Sundel
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal Chatila
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Wyrożemski Ł, Qiao SW. Immunobiology and conflicting roles of the human CD161 receptor in T cells. Scand J Immunol 2021; 94:e13090. [PMID: 35611672 DOI: 10.1111/sji.13090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/29/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
Human C-type lectin-like CD161 is a type-II transmembrane protein expressed on the surface of various lymphocytes across innate and adaptive immune systems. CD161+ T cells displayed enhanced ability to produce cytokines and were shown to be enriched in the gut. Independently of function, CD161 was used as marker of innate-like T cells and marker of IL-17-producing cells. The function of CD161 is still not fully understood. In T cells, CD161 was proposed to act as co-signalling receptor that influence T-cell receptor-dependent responses. However, conflicting studies were published demonstrating lack of agreement over the role of CD161 during T-cell activation. In this review, we outline phenotypical and functional consequences of CD161 expression in T cells. We provide critical discussion over the most pressing issues including in depth evaluation of the literature concerning CD161 putative co-signalling properties.
Collapse
Affiliation(s)
- Łukasz Wyrożemski
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Gao Y, Dunlap G, Elahee M, Rao DA. Patterns of T-Cell Phenotypes in Rheumatic Diseases From Single-Cell Studies of Tissue. ACR Open Rheumatol 2021; 3:601-613. [PMID: 34255929 PMCID: PMC8449042 DOI: 10.1002/acr2.11296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
High-dimensional analyses of tissue samples from patients with rheumatic diseases are providing increasingly detailed descriptions of the immune cell populations that infiltrate tissues in different rheumatic diseases. Here we review key observations emerging from high-dimensional analyses of T cells within tissues in different rheumatic diseases, highlighting common themes across diseases as well as distinguishing features. Single-cell RNA sequencing analyses capture several dimensions of T-cell states, yet surprisingly, these analyses generally have not demonstrated distinct clusters of paradigmatic T-cell effector subsets, such as T helper (Th) 1, Th2, and Th17 cells. Rather, global transcriptomics robustly identify both proliferating T cells and regulatory T cells and have also helped to reveal new effector subsets in inflamed tissues, including T peripheral helper cells and granzyme K+ T cells. Further characterization of the T-cell populations that accumulate within target tissues should enable more precise targeting of biologic therapies and accelerate development of more specific biomarkers to track activity of relevant immune pathways in patients with rheumatic diseases.
Collapse
Affiliation(s)
- Yidan Gao
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Garrett Dunlap
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehreen Elahee
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Deepak A Rao
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
|
19
|
Engler JB, Heckmann NF, Jäger J, Gold SM, Friese MA. Pregnancy Enables Expansion of Disease-Specific Regulatory T Cells in an Animal Model of Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:1743-1752. [PMID: 31444265 DOI: 10.4049/jimmunol.1900611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Disease activity of autoimmune disorders such as multiple sclerosis and its mouse model experimental autoimmune encephalomyelitis (EAE) is temporarily suppressed by pregnancy. However, whether disease amelioration is due to nonspecific immunomodulation or mediated by Ag-specific regulation of disease-causing conventional T cells (Tcon) and immunosuppressive regulatory T cells (Tregs) remains elusive. In the current study, we systematically analyzed changes of the TCRβ repertoire driven by EAE and pregnancy using TCR sequencing. We demonstrate that EAE, but not pregnancy, robustly increased TCR repertoire clonality in both peripheral Tcon and Treg. Notably, pregnancy was required for the expansion of Treg harboring the dominant EAE-associated TRBV13-2 chain and increased the frequency of EAE-associated clonotypes within the Treg compartment. Our findings indicate that pregnancy supports the expansion of Treg clonotypes that are equipped to recognize EAE-associated Ags. These Treg are thereby particularly suited to control corresponding encephalitogenic Tcon responses and likely contribute to pregnancy-associated protection in autoimmunity.
Collapse
Affiliation(s)
- Jan Broder Engler
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nina F Heckmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jan Jäger
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany.,Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany; and.,Medizinische Klinik mit Schwerpunkt Psychosomatik, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany;
| |
Collapse
|
20
|
Mijnheer G, van Wijk F. T-Cell Compartmentalization and Functional Adaptation in Autoimmune Inflammation: Lessons From Pediatric Rheumatic Diseases. Front Immunol 2019; 10:940. [PMID: 31143175 PMCID: PMC6520654 DOI: 10.3389/fimmu.2019.00940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammatory diseases are characterized by a disturbed immune balance leading to recurring episodes of inflammation in specific target tissues, such as the joints in juvenile idiopathic arthritis. The tissue becomes infiltrated by multiple types of immune cell, including high numbers of CD4 and CD8 T-cells, which are mostly effector memory cells. Locally, these T-cells display an environment-adapted phenotype, induced by inflammation- and tissue-specific instructions. Some of the infiltrated T-cells may become tissue resident and play a role in relapses of inflammation. Adaptation to the environment may lead to functional (re)programming of cells and altered cellular interactions and responses. For example, specifically at the site of inflammation both CD4 and CD8 T-cells can become resistant to regulatory T-cell-mediated regulation. In addition, CD8 and CD4 T-cells show a unique profile with pro- and anti-inflammatory features coexisting in the same compartment. Also regulatory T-cells are neither homogeneous nor static in nature and show features of functional differentiation, and plasticity in inflammatory environments. Here we will discuss the recent insights in T-cell functional specialization, regulation, and clonal expansion in local (tissue) inflammation.
Collapse
Affiliation(s)
- Gerdien Mijnheer
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
21
|
Hoeppli RE, Pesenacker AM. Targeting Tregs in Juvenile Idiopathic Arthritis and Juvenile Dermatomyositis-Insights From Other Diseases. Front Immunol 2019; 10:46. [PMID: 30740105 PMCID: PMC6355674 DOI: 10.3389/fimmu.2019.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are believed to be dysfunctional in autoimmunity. Juvenile idiopathic arthritis (JIA) and juvenile dermatomyositis (JDM) result from a loss of normal immune regulation in specific tissues such as joints or muscle and skin, respectively. Here, we discuss recent findings in regard to Treg biology in oligo-/polyarticular JIA and JDM, as well as what we can learn about Treg-related disease mechanism, treatment and biomarkers in JIA/JDM from studies of other diseases. We explore the potential use of Treg immunoregulatory markers and gene signatures as biomarkers for disease course and/or treatment success. Further, we discuss how Tregs are affected by several treatment strategies already employed in the therapy of JIA and JDM and by alternative immunotherapies such as anti-cytokine or co-receptor targeting. Finally, we review recent successes in using Tregs as a treatment target with low-dose IL-2 or cellular immunotherapy. Thus, this mini review will highlight our current understanding and identify open questions in regard to Treg biology, and how recent findings may advance biomarkers and new therapies for JIA and JDM.
Collapse
Affiliation(s)
- Romy E Hoeppli
- Department of Surgery, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Anne M Pesenacker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
22
|
Copland A, Bending D. Foxp3 Molecular Dynamics in Treg in Juvenile Idiopathic Arthritis. Front Immunol 2018; 9:2273. [PMID: 30333832 PMCID: PMC6175987 DOI: 10.3389/fimmu.2018.02273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022] Open
Abstract
Since the identification of the regulatory T-cell (Treg)-associated transcription factor Foxp3, there have been intensive research efforts to understand its biology and roles in maintaining immune homeostasis. It is well established that thymic selection of a repertoire of self-reactive Foxp3+ T-cells provides an essential mechanism to minimize reactions to self-antigens in the periphery, and thus aid in the prevention of autoimmunity. It is clear from both genetic and immunological analyses of juvenile idiopathic arthritis (JIA) patients that T-cells have a strong role to play in both the initiation and propagation of disease. The current paradigm is to view autoimmunity as a consequence of an imbalance between inflammatory and immunoregulatory mechanisms. This view has led to the assigning of cells and inflammatory mediators to different classes based on their assumed pro- or anti-inflammatory roles. This is typically reported as ratios of effector T-cells to Treg cells. Problematically, many analyses are based on static “snapshots-in-time,” even though both mouse models and human patient studies have highlighted the dynamic nature of Foxp3+ T-cells in vivo, which can exhibit plasticity and time-dependent functional states. In this review, we discuss the role of Foxp3 dynamics in the control of T-cell responses in childhood arthritis, by reviewing evidence in humans and relevant mouse models of inflammatory disease. Whilst the cellular dynamics of Treg have been well evaluated—leading to standard data outputs such as frequency, quantity and quality (often assessed by in vitro suppressive capacity)—we discuss how recent insights into the molecular dynamics of Foxp3 transcription and its post-translational control may open up tantalizing new avenues for immunotherapies to treat autoimmune arthritis.
Collapse
Affiliation(s)
- Alastair Copland
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Santegoets SJ, van Ham VJ, Ehsan I, Charoentong P, Duurland CL, van Unen V, Höllt T, van der Velden LA, van Egmond SL, Kortekaas KE, de Vos van Steenwijk PJ, van Poelgeest MIE, Welters MJP, van der Burg SH. The Anatomical Location Shapes the Immune Infiltrate in Tumors of Same Etiology and Affects Survival. Clin Cancer Res 2018; 25:240-252. [PMID: 30224343 DOI: 10.1158/1078-0432.ccr-18-1749] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE The tumor immune microenvironment determines clinical outcome. Whether the original tissue in which a primary tumor develops influences this microenvironment is not well understood. EXPERIMENTAL DESIGN We applied high-dimensional single-cell mass cytometry [Cytometry by Time-Of-Flight (CyTOF)] analysis and functional studies to analyze immune cell populations in human papillomavirus (HPV)-induced primary tumors of the cervix (cervical carcinoma) and oropharynx (oropharyngeal squamous cell carcinoma, OPSCC). RESULTS Despite the same etiology of these tumors, the composition and functionality of their lymphocytic infiltrate substantially differed. Cervical carcinoma displayed a 3-fold lower CD4:CD8 ratio and contained more activated CD8+CD103+CD161+ effector T cells and less CD4+CD161+ effector memory T cells than OPSCC. CD161+ effector cells produced the highest cytokine levels among tumor-specific T cells. Differences in CD4+ T-cell infiltration between cervical carcinoma and OPSCC were reflected in the detection rate of intratumoral HPV-specific CD4+ T cells and in their impact on OPSCC and cervical carcinoma survival. The peripheral blood mononuclear cell composition of these patients, however, was similar. CONCLUSIONS The tissue of origin significantly affects the overall shape of the immune infiltrate in primary tumors.
Collapse
Affiliation(s)
- Saskia J Santegoets
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vanessa J van Ham
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pornpimol Charoentong
- Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Chantal L Duurland
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent van Unen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Höllt
- Department of Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands.,Computer Graphics and Visualization Group, Delft University of Technology, Delft, the Netherlands
| | - Lilly-Ann van der Velden
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Sylvia L van Egmond
- Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Kim E Kortekaas
- Department of Gynaecology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Marij J P Welters
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
24
|
Ohl K, Nickel H, Moncrieffe H, Klemm P, Scheufen A, Föll D, Wixler V, Schippers A, Wagner N, Wedderburn LR, Tenbrock K. The transcription factor CREM drives an inflammatory phenotype of T cells in oligoarticular juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2018; 16:39. [PMID: 29925386 PMCID: PMC6011589 DOI: 10.1186/s12969-018-0253-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory effector T cells trigger inflammation despite increased numbers of Treg cells in the synovial joint of patients suffering from juvenile idiopathic arthritis (JIA). The cAMP response element (CREM)α is known to play a major role in regulation of T cells in SLE, colitis, and EAE. However, its role in regulation of effector T cells within the inflammatory joint is unknown. METHODS CREM expression was analyzed in synovial fluid cells from oligoarticular JIA patients by flow cytometry. Peripheral blood mononuclear cells were incubated with synovial fluid and analyzed in the presence and absence of CREM using siRNA experiments for T cell phenotypes. To validate the role of CREM in vivo, ovalbumin-induced T cell dependent arthritis experiments were performed. RESULTS CREM is highly expressed in synovial fluid T cells and its expression can be induced by treating healthy control PBMCs with synovial fluid. Specifically, CREM is more abundant in CD161+ subsets, than CD161- subsets, of T cells and contributes to cytokine expression by these cells. Finally, development of ovalbumin-induced experimental arthritis is ameliorated in mice with adoptively transferred CREM-/- T cells. CONCLUSION In conclusion, our study reveals that beyond its role in SLE T cells CREM also drives an inflammatory phenotype of T cells in JIA.
Collapse
Affiliation(s)
- Kim Ohl
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Helge Nickel
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Halima Moncrieffe
- 0000 0000 9025 8099grid.239573.9Center for Autoimmune Genomics & Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,0000 0001 2179 9593grid.24827.3bDepartment of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Patricia Klemm
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Anja Scheufen
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Dirk Föll
- 0000 0004 0551 4246grid.16149.3bDepartment of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - Viktor Wixler
- 0000 0001 2172 9288grid.5949.1Institute of Virology, Westfaelische Wilhelms University, 48149 Muenster, Germany
| | - Angela Schippers
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Norbert Wagner
- 0000 0001 0728 696Xgrid.1957.aDepartment of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Lucy R. Wedderburn
- Arthritis Research UK Centre for Adolescent Rheumatology at UCL UCLH and GOSH, London, UK ,0000000121901201grid.83440.3bUCL GOS Institute of Child Health, University College London, London, UK ,0000 0001 2116 3923grid.451056.3NIHR- Great Ormond Street Hospital Biomedical Research Centre (BRC), London, UK
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany.
| |
Collapse
|
25
|
Wang C, Liu Z, Xu Z, Wu X, Zhang D, Zhang Z, Wei J. The role of chemokine receptor 9/chemokine ligand 25 signaling: From immune cells to cancer cells. Oncol Lett 2018; 16:2071-2077. [PMID: 30008902 PMCID: PMC6036326 DOI: 10.3892/ol.2018.8896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/15/2018] [Indexed: 02/05/2023] Open
Abstract
Chemokine ligand 25 (CCL25) and chemokine receptor 9 (CCR9) are important regulators of migration, proliferation and apoptosis in leukocytes and cancer cells. Blocking of the CCR9/CCL25 signal has been demonstrated to be a potential novel cancer therapy. Research into CCR9 and CCL25 has revealed their associated upstream and downstream signaling pathways; CCR9 is regulated by several immunological factors, including NOTCH, interleukin 2, interleukin 4 and retinoic acid. NOTCH in particular, has been revealed to be a crucial upstream regulator of CCR9. Furthermore, proteins including matrix metalloproteinases, P-glycoprotein, Ezrin/Radixin/Moesin and Livin are regulated via phosphatidylinositol-3 kinase/protein kinase B, which are in turn stimulated by CCR9/CCL25. This is a review of the current literature on the functions and signaling pathways of CCR9/CCL25.
Collapse
Affiliation(s)
- Cong Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai 810001, P.R. China
| | - Zhenghuan Liu
- Department of Urology, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhihui Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Xian Wu
- Department of Ultrasound, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongyang Zhang
- Department of Ultrasound, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ziqi Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, P.R. China
| | - Jianqin Wei
- The University of Miami Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL 33136, USA
| |
Collapse
|