1
|
Rice M, Nuovo GJ, Sawant D, Mishra A, Tili E. Comparison of Neuroinflammation Induced by Hyperphosphorylated Tau Protein Versus Ab42 in Alzheimer's Disease. Mol Neurobiol 2024; 61:4589-4601. [PMID: 38105410 DOI: 10.1007/s12035-023-03822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
Both neurofibrillary tangles and senile plaques are associated with inflammation in Alzheimer's disease (AD). Their relative degree of induced neuroinflammation, however, is not well established. Mouse models of AD that expressed either human Aβ42 (n = 7) or human hyperphosphorylated tau protein alone (n = 3), wild type (n = 10), and human AD samples (n = 29 with 18 controls) were studied. The benefit of using mouse models that possess only human tau or amyloid-b is that it allows for the individual evaluation of how each protein affects neuroinflammation, something not possible in human tissue. Three indicators of neuroinflammation were examined: TLRs/RIG1 expression, the density of astrocytes and microglial cells, and well-established mediators of neuroinflammation (IL6, TNFα, IL1β, and CXCL10). There was a statistically significant increase in neuroinflammation with all three variables in the mouse models with human tau only as compared to human Aβ42 only or wild-type mice (each at p < 0.0001). Only the Aβ42 5xFAD mice (n = 4) showed statistically higher neuroinflammation versus wild type (p = 0.0030). The human AD tissues were segregated into Aβ42 only or hyperphosphorylated tau protein with Aβ42. The latter areas showed increased neuroinflammation with each of the three variables compared to the areas with only Aβ42. Of the TLRs and RIG-1, TLR8 was significantly elevated in both the mouse model and human AD and only in areas with the abnormal tau protein. It is concluded that although Aβ42 and hyperphosphorylated tau protein can each induce inflammation, the latter protein is associated with a much stronger neuroinflammatory response vis-a-vis a significantly greater activated microglial response.
Collapse
Affiliation(s)
| | | | | | | | - Esmerina Tili
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
3
|
Azbazdar Y, Poyraz YK, Ozalp O, Nazli D, Ipekgil D, Cucun G, Ozhan G. High-fat diet feeding triggers a regenerative response in the adult zebrafish brain. Mol Neurobiol 2023; 60:2486-2506. [PMID: 36670270 DOI: 10.1007/s12035-023-03210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) includes a range of liver conditions ranging from excess fat accumulation to liver failure. NAFLD is strongly associated with high-fat diet (HFD) consumption that constitutes a metabolic risk factor. While HFD has been elucidated concerning its several systemic effects, there is little information about its influence on the brain at the molecular level. Here, by using a high-fat diet (HFD)-feeding of adult zebrafish, we first reveal that excess fat uptake results in weight gain and fatty liver. Prolonged exposure to HFD induces a significant increase in the expression of pro-inflammation, apoptosis, and proliferation markers in the liver and brain tissues. Immunofluorescence analyses of the brain tissues disclose stimulation of apoptosis and widespread activation of glial cell response. Moreover, glial activation is accompanied by an initial decrease in the number of neurons and their subsequent replacement in the olfactory bulb and the telencephalon. Long-term consumption of HFD causes activation of Wnt/β-catenin signaling in the brain tissues. Finally, fish fed an HFD induces anxiety, and aggressiveness and increases locomotor activity. Thus, HFD feeding leads to a non-traumatic brain injury and stimulates a regenerative response. The activation mechanisms of a regeneration response in the brain can be exploited to fight obesity and recover from non-traumatic injuries.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095-1662, USA
| | - Yusuf Kaan Poyraz
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Ozgun Ozalp
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Department of Molecular Life Sciences, University of Zurich, CH-8057, Zurich, Switzerland
| | - Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Dogac Ipekgil
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
| | - Gokhan Cucun
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 3640 76021, Karlsruhe, Postfach, Germany
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, 35340, Izmir, Turkey.
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, 35340, Izmir, Turkey.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey.
| |
Collapse
|
4
|
Muok L, Liu C, Chen X, Esmonde C, Arthur P, Wang X, Singh M, Driscoll T, Li Y. Inflammatory Response and Exosome Biogenesis of Choroid Plexus Organoids Derived from Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:7660. [PMID: 37108817 PMCID: PMC10146825 DOI: 10.3390/ijms24087660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3β inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.
Collapse
Affiliation(s)
- Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Chang Liu
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06268, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Tristan Driscoll
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
5
|
Sonkodi B. Psoriasis, Is It a Microdamage of Our "Sixth Sense"? A Neurocentric View. Int J Mol Sci 2022; 23:11940. [PMID: 36233237 PMCID: PMC9569707 DOI: 10.3390/ijms231911940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022] Open
Abstract
Psoriasis is considered a multifactorial and heterogeneous systemic disease with many underlying pathologic mechanisms having been elucidated; however, the pathomechanism is far from entirely known. This opinion article will demonstrate the potential relevance of the somatosensory Piezo2 microinjury-induced quad-phasic non-contact injury model in psoriasis through a multidisciplinary approach. The primary injury is suggested to be on the Piezo2-containing somatosensory afferent terminals in the Merkel cell−neurite complex, with the concomitant impairment of glutamate vesicular release machinery in Merkel cells. Part of the theory is that the Merkel cell−neurite complex contributes to proprioception; hence, to the stretch of the skin. Piezo2 channelopathy could result in the imbalanced control of Piezo1 on keratinocytes in a clustered manner, leading to dysregulated keratinocyte proliferation and differentiation. Furthermore, the author proposes the role of mtHsp70 leakage from damaged mitochondria through somatosensory terminals in the initiation of autoimmune and autoinflammatory processes in psoriasis. The secondary phase is harsher epidermal tissue damage due to the primary impaired proprioception. The third injury phase refers to re-injury and sensitization with the derailment of healing to a state when part of the wound healing is permanently kept alive due to genetical predisposition and environmental risk factors. Finally, the quadric damage phase is associated with the aging process and associated inflammaging. In summary, this opinion piece postulates that the primary microinjury of our “sixth sense”, or the Piezo2 channelopathy of the somatosensory terminals contributing to proprioception, could be the principal gateway to pathology due to the encroachment of our preprogrammed genetic encoding.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Sciences, 1123 Budapest, Hungary
| |
Collapse
|
6
|
Yousef MH, Salama M, El-Fawal HAN, Abdelnaser A. Selective GSK3β Inhibition Mediates an Nrf2-Independent Anti-inflammatory Microglial Response. Mol Neurobiol 2022; 59:5591-5611. [PMID: 35739410 PMCID: PMC9395457 DOI: 10.1007/s12035-022-02923-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) is associated with the proinflammatory phenotype of microglia and has been shown to act in concert with nuclear factor kappa B (NF-κB). GSK3 is also a suppressor of nuclear factor erythroid 2-related factor 2 (Nrf2), the principal regulator of redox homeostasis. Agreeing with the oxidative paradigm of aging, Nrf2 is often deregulated in parainflammatory and neurodegenerative diseases. In this study, we aimed to explore a multimodal disease-modifying utility of GSK3 inhibition, beyond neuronal proteopathologies. Furthermore, we aimed to underscore the difference in therapeutic value between the two GSK3 paralogs by isoform-selective chemical inhibition. The anti-inflammatory effects of paralog-selective GSK3 inhibitors were evaluated as a function of the reductive capacity of each to mitigate LPS-induced activation of SIM-A9 microglia. The Griess method was employed to detect the nitrate-lowering capacity of selective GSK3 inhibition. Real-time PCR was used to assess post-treatment expression levels of pro-inflammatory markers and antioxidant genes; pro-inflammatory cytokines were assayed by ELISA. Nuclear lysates of treated cells were examined for Nrf2 and NF-κB accumulation by immunoblotting. Finally, to infer whether the counter-inflammatory activity of GSK3 inhibition was Nrf2-dependent, DsiRNA-mediated knockdown of Nrf2 was attempted. Results from our experiments reveal a superior anti-inflammatory and anti-oxidative efficacy for GSK3β-selective inhibition, compared to GSK3α-selective and non-selective pan-inhibition; hence, use of selective GSK3β inhibitors is likely to be more propitious than non-selective dual inhibitors administered at comparable doses. Moreover, our results suggest that the anti-inflammatory effects of GSK3 inhibition are not Nrf2 dependent.
Collapse
Affiliation(s)
- Mohamed H Yousef
- School of Sciences and Engineering, Biotechnology Graduate Program, The American University in Cairo, P.O. Box: 74, Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box: 74, Cairo, Egypt
| | - Hassan A N El-Fawal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box: 74, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box: 74, Cairo, Egypt.
| |
Collapse
|
7
|
Castillo C, Saez-Orellana F, Godoy PA, Fuentealba J. Microglial Activation Modulated by P2X4R in Ischemia and Repercussions in Alzheimer's Disease. Front Physiol 2022; 13:814999. [PMID: 35283778 PMCID: PMC8904919 DOI: 10.3389/fphys.2022.814999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/12/2022] [Indexed: 01/01/2023] Open
Abstract
There are over 80 million people currently living who have had a stroke. The ischemic injury in the brain starts a cascade of events that lead to neuronal death, inducing neurodegeneration which could lead to Alzheimer's disease (AD). Cerebrovascular diseases have been suggested to contribute to AD neuropathological changes, including brain atrophy and accumulation of abnormal proteins such as amyloid beta (Aβ). In patients older than 60 years, the incidence of dementia a year after stroke was significantly increased. Nevertheless, the molecular links between stroke and dementia are not clearly understood but could be related to neuroinflammation. Considering that activated microglia has a central role, there are brain-resident innate immune cells and are about 10-15% of glial cells in the adult brain. Their phagocytic activity is essential for synaptic homeostasis in different areas, such as the hippocampus. These cells polarize into phenotypes or subtypes: the pro-inflammatory M1 phenotype, or the immunosuppressive M2 phenotype. Phenotype M1 is induced by classical activation, where microglia secrete a high level of pro- inflammatory factors which can cause damage to the surrounding neuronal cells. Otherwise, M2 phenotype is the major effector cell with the potential to counteract pro-inflammatory reactions and promote repair genes expression. Moreover, after the classical activation, an anti-inflammatory and a repair phase are initiated to achieve tissue homeostasis. Recently it has been described the concepts of homeostatic and reactive microglia and they had been related to major AD risk, linking to a multifunctional microglial response to Aβ plaques and pathophysiology markers related, such as intracellular increased calcium. The upregulation and increased activity of purinergic receptors activated by ADP/ATP, specially P2X4R, which has a high permeability to calcium and is mainly expressed in microglial cells, is observed in diseases related to neuroinflammation, such as neuropathic pain and stroke. Thus, P2X4R is associated with microglial activation. P2X4R activation drives microglia motility via the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. Also, these receptors are involved in inflammatory-mediated prostaglandin E2 (PGE2) production and induce a secretion and increase the expression of BDNF and TNF-α which could be a link between pathologies related to aging and neuroinflammation.
Collapse
Affiliation(s)
- Carolina Castillo
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Francisco Saez-Orellana
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Pamela Andrea Godoy
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratory of Screening of Neuroactive Compounds, Department of Physiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
8
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
9
|
Fang HS, Chao CY, Wang CC, Fan WL, Huang PJ, Fung HC, Wu YR. Association of AXIN1 With Parkinson's Disease in a Taiwanese Population. J Mov Disord 2021; 15:33-37. [PMID: 34781631 PMCID: PMC8820876 DOI: 10.14802/jmd.21073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022] Open
Abstract
Objective A meta-analysis of locus-based genome-wide association studies recently identified a relationship between AXIN1 and Parkinson’s disease (PD). Few studies of Asian populations, however, have reported such a genetic association. The influences of rs13337493, rs758033, and rs2361988, three PD-associated genetic variants of AXIN1, were investigated in the present study because AXIN1 is related to Wnt/β-catenin signaling. Methods A total of 2,418 individuals were enrolled in our Taiwanese cohort for analysis of the genotypic and allelic frequency. Polymerase chain reaction–restriction fragment length polymorphism analysis was employed for rs13337493 genotyping, and the Agena MassARRAY platform (Agena Bioscience, San Diego, CA, USA) was used for rs758033 and rs2361988 genotyping in 672 patients with PD and 392 controls. Taiwan Biobank data of another 1,354 healthy controls were subjected to whole-genome sequencing performed using Illumina platforms at approximately 30× average depth. Results Our results revealed that rs758033 {odds ratios [OR] (95% confidence interval [CI]) = 0.267 [0.064, 0.795], p = 0.014} was associated with the risk of PD, and there was a trend toward a protective effect of rs2361988 (OR [95% CI] = 0.296 [0.071, 0.884], p = 0.026) under the recessive model. The TT genotype of rs758033 (OR [95% CI] = 0.271 [0.065, 0.805], p = 0.015) and the CC genotype of rs2361988 (OR [95% CI] = 0.305 [0.073, 0.913], p = 0.031) were less common in the PD group than in the non-PD group. Conclusion Our findings indicate that the rs758033 and rs2361988 polymorphisms of AXIN1 may affect the risk of PD in the Taiwanese population.
Collapse
Affiliation(s)
- Hwa-Shin Fang
- Division of General Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chih-Ying Chao
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Department of Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Po-Jung Huang
- Department of Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hon-Chung Fung
- Fu Jen Faculty of Theology of St. Robert Bellarmine, Fu Jen University Clinic Taiwan, New Taipei, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Department of Neurology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Kasthuriarachchi TDW, Harasgama JC, Lee S, Kwon H, Wan Q, Lee J. Cytosolic β-catenin is involved in macrophage M2 activation and antiviral defense in teleosts: Delineation through molecular characterization of β-catenin homolog from redlip mullet (Planiliza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2021; 118:228-240. [PMID: 34284111 DOI: 10.1016/j.fsi.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
β-catenin is a structural protein that makes the cell-cell connection in adherence junctions. Besides the structural functions, it also plays a role as a central transducer of the canonical Wnt signaling cascade, regulating nearly four hundred genes related to various cellular processes. Recently the immune functions of β-catenin during pathogenic invasion have gained more attention. In the present study, we elucidated the immune function of fish β-catenin by identifying and characterizing the β-catenin homolog (PhCatβ) from redlip mullet, Planiliza haematocheila. The complete open reading frame of PhCatβ consists of 2352 bp, which encodes a putative β-catenin homolog (molecular weight: 85.7 kDa). Multiple sequence alignment analysis revealed that β-catenin is highly conserved in vertebrates. Phylogenetic reconstruction demonstrated the close evolutionary relationship between PhCatβ and other fish β-catenin counterparts. The tissue distribution analysis showed the highest mRNA expression of PhCatβ in heart tissues of the redlip mullet under normal physiological conditions. While in response to pathogenic stress, the PhCatβ transcription level was dramatically increased in the spleen and gill tissues. The overexpression of PhCatβ stimulated M2 polarization and cell proliferation of murine RAW 264.7 macrophage. In fish cells, the overexpression of PhCatβ resulted in a significant upregulation of antiviral gene transcription and vice versa. Moreover, the overexpression of PhCatβ could inhibit the replication of VHSV in FHM cells. Our results strongly suggest that PhCatβ plays a role in macrophage activation and antiviral immune response in redlip mullet.
Collapse
Affiliation(s)
- T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- National Fishery Product Quality Management Service, Busan, 49111, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
11
|
de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells 2021; 10:cells10102581. [PMID: 34685563 PMCID: PMC8533897 DOI: 10.3390/cells10102581] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Most AD patients develop the disease in late life, named late onset AD (LOAD). Currently, the most recognized explanation for AD pathology is the amyloid cascade hypothesis. It is assumed that amyloid beta (Aβ) aggregation and deposition are critical pathogenic processes in AD, leading to the formation of amyloid plaques, as well as neurofibrillary tangles, neuronal cell death, synaptic degeneration, and dementia. In LOAD, the causes of Aβ accumulation and neuronal loss are not completely clear. Importantly, the blood–brain barrier (BBB) disruption seems to present an essential role in the induction of neuroinflammation and consequent AD development. In addition, we propose that the systemic inflammation triggered by conditions like metabolic diseases or infections are causative factors of BBB disruption, coexistent inflammatory cascade and, ultimately, the neurodegeneration observed in AD. In this regard, the use of anti-inflammatory molecules could be an interesting strategy to treat, delay or even halt AD onset and progression. Herein, we review the inflammatory cascade and underlying mechanisms involved in AD pathogenesis and revise the anti-inflammatory effects of compounds as emerging therapeutic drugs against AD.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - Ewa Kucharska
- Faculty of Education, Institute of Educational Sciences, Jesuit University Ignatianum in Krakow, 31-501 Krakow, Poland;
| | - Michelle Lima Garcez
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil;
| | - Matheus Scarpatto Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center, UTHealth, The University of Texas Houston, Houston, TX 77030, USA
- Graduate Program in Health Sciences, Translational Psychiatry Laboratory, University of Southern Santa Catarina (UNESC), Criciuma 88806-000, Brazil
| | - Ines Moreno-Gonzalez
- Department of Cell Biology, Faculty of Sciences, University of Malaga, IBIMA, 29010 Malaga, Spain;
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 29010 Malaga, Spain
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Josiane Budni
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Neurologia Experimental, Universidade do Extremo Sul Catarinense, Criciuma 88806-000, Brazil
- Correspondence: ; Tel.: +55-48431-2539
| |
Collapse
|
12
|
Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021; 24:648. [PMID: 34278470 PMCID: PMC8299209 DOI: 10.3892/mmr.2021.12287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Tissues have remarkable natural capabilities to regenerate for the purpose of physiological turnover and repair of damage. Adult mesenchymal stem cells (MSCs) are well known for their unique self-renewal ability, pluripotency, homing potential, paracrine effects and immunomodulation. Advanced research of the unique properties of MSCs have opened up new horizons for tissue regenerative therapies. However, certain drawbacks of the application of MSCs, such as the low survival rate of transplanted MSCs, unsatisfactory efficiency and even failure to regenerate under an unbalanced microenvironment, are concerning with regards to their wider therapeutic applications. The activity of stem cells is mainly regulated by the anatomical niche; where they are placed during their clinical and therapeutic applications. Crosstalk between various niche signals maintains MSCs in homeostasis, in which the WNT signaling pathway plays vital roles. Several external or internal stimuli have been reported to interrupt the normal bioactivity of stem cells. The irreversible tissue loss that occurs during infection at the site of tissue grafting suggests an inhibitory effect mediated by microbial infections within MSC niches. In addition, MSC-seeded tissue engineering success is difficult in various tissues, when sites of injury are under the effects of a severe infection despite the immunomodulatory properties of MSCs. In the present review, the current understanding of the way in which WNT signaling regulates MSC activity modification under physiological and pathological conditions was summarized. An effort was also made to illustrate parts of the underlying mechanism, including the inflammatory factors and their interactions with the regulatory WNT signaling pathway, aiming to promote the clinical translation of MSC-based therapy.
Collapse
Affiliation(s)
- Qingtao Zhang
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Jian Yu
- Department of Stomatology, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| | - Qiuqiu Chen
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Honghai Yan
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310085, P.R. China
| | - Wenjing Luo
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Wang H, Chen MH, Chen W, Zhang JG, Qin SC. Roles and mechanisms of phospholipid transfer protein in the development of Alzheimer's disease. Psychogeriatrics 2021; 21:659-667. [PMID: 33851473 DOI: 10.1111/psyg.12685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/20/2023]
Abstract
Phospholipid transfer protein (PLTP) is a complex glycosylated protein that mediates the transfer of phospholipids, unesterified cholesterol, diacylglycerides, specific apolipoproteins, and tocopherols between different classes of lipoproteins as well as between lipoproteins and cells. Many studies have associated PLTP with a variety of lipid metabolic diseases. However, recent studies have indicated that PLTP is highly expressed in the brain of vertebrate and may be related to many central nervous system diseases, such as Alzheimer's disease. Here, we review the data and report the role and mechanisms PLTP in Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Mei-Hua Chen
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Ji-Guo Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Shu-Cun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong; Institute of Atherosclerosis, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| |
Collapse
|
14
|
Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, Yamato H, Yotsumoto K, Tanaka U, Taketomi T, Uchiumi T, Le AD, Shi S, Nishimura F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater 2021; 122:306-324. [PMID: 33359765 PMCID: PMC7897289 DOI: 10.1016/j.actbio.2020.12.046] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cell (MSC)–derived exosome plays a central role in the cell-free therapeutics involving MSCs and the contents can be customized under disease-associated microenvironments. However, optimal MSC-preconditioning to enhance its therapeutic potential is largely unknown. Here, we show that preconditioning of gingival tissue-derived MSCs (GMSCs) with tumor necrosis factor-alpha (TNF-α) is ideal for the treatment of periodontitis. TNF-α stimulation not only increased the amount of exosome secreted from GMSCs, but also enhanced the exosomal expression of CD73, thereby inducing anti-inflammatory M2 macrophage polarization. The effect of GMSC-derived exosomes on inflammatory bone loss were examined by ligature-induced periodontitis model in mice. Local injection of GMSC-derived exosomes significantly reduced periodontal bone resorption and the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and these effects were further enhanced by preconditioning of GMSCs with TNF-α. Thus, GMSC-derived exosomes also exhibited anti-osteoclastogenic activity. Receptor activator of NF-κB ligand (RANKL) expression was regulated by Wnt5a in periodontal ligament cells (PDLCs), and exosomal miR-1260b was found to target Wnt5a-mediated RANKL pathway and inhibit its osteoclastogenic activity. These results indicate that significant ability of the TNF-α-preconditioned GMSC-derived exosomes to regulate inflammation and osteoclastogenesis paves the way for establishment of a therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Yuki Nakao
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Xiaoxing Kou
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Chider Chen
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Dawei Liu
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; Department of Orthodontics, Peking University School and Stomatology, Peking, China
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Chikako Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroaki Yamato
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Karen Yotsumoto
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Urara Tanaka
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takaharu Taketomi
- Dental and Oral Medical Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, PA, USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA; South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong, China
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
15
|
Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:13. [PMID: 33407720 PMCID: PMC7788901 DOI: 10.1186/s13046-020-01808-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Background Tumour-associated macrophages (TAMs) in the tumour microenvironment (TME) can promote the progression of hepatocellular carcinoma (HCC). Some tumours can be suppressed by targeting Wnt2b in tumour cells. However, the role of Wnt2b in HCC is still unknown. In particular, the role of Wnt2b-mediated signal activation in macrophage polarization in the HCC microenvironment, and the regulatory effect between Wnt and glycolysis in TAMs has not been described. Methods The expression of Wnt2b in TAMs was detected by qPCR and immunofluorescence. Wnt2b/β-catenin interference in HCC-TAMs was performed by lentivirus carrying targeted shRNA or TLR9 agonist. Markers related to macrophage polarization and the changes of key glycolytic enzymes expression were detected by flow cytometry and qPCR. ECAR was analysed by Seahorse analyser. MTT assay, wound healing assay, western blotting were used to evaluate the promoting effect of different HCC-TAMs on the proliferation, migration and EMT of HCC in vitro. Tumour cells and different HCC-TAMs were injected via subcutaneously into immunodeficient mice to assess the effects of CpG ODN, Wnt2b, or β-catenin on HCC-TAMs in tumour growth in vivo. Results Polarization-promoting factors derived from HCC cells upregulated the expression of Wnt2b in macrophages, which promoted the polarization of TAMs to M2-like macrophages by activating Wnt2b/β-catenin/c-Myc signalling. Furthermore, this process was associated with the activation of glycolysis in HCC-TAMs. These HCC-TAMs could promote the development of EMT, proliferation, and migration of HCC. In addition to silencing Wnt2b or β-catenin expression, TLR9 agonist CpG ODN downregulated the level of glycolysis and inhibited the M2 polarization of HCC-TAMs, reversing the tumour-promoting effects of TAMs in vitro and vivo. Conclusions As a potential target for HCC therapy, Wnt2b may play an important regulatory role for the functions of TAMs in the TME. Moreover, the TLR9 agonist CpG ODN might act as a Wnt2b signal inhibitor and can potentially be employed for HCC therapy by disturbing Wnt2b/β-catenin/c-Myc and inhibiting glycolysis in HCC-TAMs.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
16
|
Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT Signaling Is a Key Player in Alzheimer's Disease. Handb Exp Pharmacol 2021; 269:357-382. [PMID: 34486097 DOI: 10.1007/164_2021_532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular processes regulated by WNT signaling have been mainly studied during embryonic development and cancer. In the last two decades, the role of WNT in the adult central nervous system has been the focus of interest in our laboratory. In this chapter, we will be summarized β-catenin-dependent and -independent WNT pathways, then we will be revised WNT signaling function at the pre- and post-synaptic level. Concerning Alzheimer's disease (AD) initially, we found that WNT/β-catenin signaling activation exerts a neuroprotective mechanism against the amyloid β (Αβ) peptide toxicity. Later, we found that WNT/β-catenin participates in Tau phosphorylation and in learning and memory. In the last years, we demonstrated that WNT/β-catenin signaling is instrumental in the amyloid precursor protein (APP) processing and that WNT/β-catenin dysfunction results in Aβ production and aggregation. We highlight the importance of WNT/β-catenin signaling dysfunction in the onset of AD and propose that the loss of WNT/β-catenin signaling is a triggering factor of AD. The WNT pathway is therefore positioned as a therapeutic target for AD and could be a valid concept for improving AD therapy. We think that metabolism and inflammation will be relevant when defining future research in the context of WNT signaling and the neurodegeneration associated with AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Laboratory of Neurobiology of Aging, Facultad de Medicina y Ciencia, Universidad de San Sebastián, Sede Los Leones, Santiago, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
17
|
Aghaizu ND, Jin H, Whiting PJ. Dysregulated Wnt Signalling in the Alzheimer's Brain. Brain Sci 2020; 10:E902. [PMID: 33255414 PMCID: PMC7761504 DOI: 10.3390/brainsci10120902] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signalling system is essential for both the developing and adult central nervous system. It regulates numerous cellular functions ranging from neurogenesis to blood brain barrier biology. Dysregulated Wnt signalling can thus have significant consequences for normal brain function, which is becoming increasingly clear in Alzheimer's disease (AD), an age-related neurodegenerative disorder that is the most prevalent form of dementia. AD exhibits a range of pathophysiological manifestations including aberrant amyloid precursor protein processing, tau pathology, synapse loss, neuroinflammation and blood brain barrier breakdown, which have been associated to a greater or lesser degree with abnormal Wnt signalling. Here we provide a comprehensive overview of the role of Wnt signalling in the CNS, and the research that implicates dysregulated Wnt signalling in the ageing brain and in AD pathogenesis. We also discuss the opportunities for therapeutic intervention in AD via modulation of the Wnt signalling pathway, and highlight some of the challenges and the gaps in our current understanding that need to be met to enable that goal.
Collapse
Affiliation(s)
- Nozie D. Aghaizu
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Hanqing Jin
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Paul J. Whiting
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
- ARUK Drug Discovery Institute (DDI), University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
18
|
Parca L, Truglio M, Biagini T, Castellana S, Petrizzelli F, Capocefalo D, Jordán F, Carella M, Mazza T. Pyntacle: a parallel computing-enabled framework for large-scale network biology analysis. Gigascience 2020; 9:giaa115. [PMID: 33084878 PMCID: PMC7576925 DOI: 10.1093/gigascience/giaa115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Some natural systems are big in size, complex, and often characterized by convoluted mechanisms of interaction, such as epistasis, pleiotropy, and trophism, which cannot be immediately ascribed to individual natural events or biological entities but that are often derived from group effects. However, the determination of important groups of entities, such as genes or proteins, in complex systems is considered a computationally hard task. RESULTS We present Pyntacle, a high-performance framework designed to exploit parallel computing and graph theory to efficiently identify critical groups in big networks and in scenarios that cannot be tackled with traditional network analysis approaches. CONCLUSIONS We showcase potential applications of Pyntacle with transcriptomics and structural biology data, thereby highlighting the outstanding improvement in terms of computational resources over existing tools.
Collapse
Affiliation(s)
- Luca Parca
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Mauro Truglio
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Stefano Castellana
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Francesco Petrizzelli
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
- Department of Experimental Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Daniele Capocefalo
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Ferenc Jordán
- Balaton Limnological Institute, Centre for Ecological Research Klebelsberg Kuno 3, 8237 Tihany, Hungary
| | - Massimo Carella
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Medical Genetics, Viale Padre Pio 7d, 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
19
|
Fei YX, Zhu JP, Zhao B, Yin QY, Fang WR, Li YM. XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Res Bull 2020; 164:269-288. [PMID: 32916221 DOI: 10.1016/j.brainresbull.2020.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
10-O-(N, N-dimethylaminoethyl) ginkgolide B methanesulfonate (XQ-1H), a novel analog of ginkgolide B, has been preliminarily recognized to show bioactivities against ischemia-induced injury. However, the underlying mechanism still remains to be fully elucidated. The aim of this study was to investigate the effect of XQ-1H against cerebral ischemia/reperfusion injury (CIRI) from the perspective of blood brain barrier (BBB) protection, and explore whether the underlying mechanism is associated with Wnt/GSK3β/β-catenin signaling pathway activation. The therapeutic effects of XQ-1H were evaluated in mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and in immortalized mouse cerebral endothelial cells (bEnd.3) challenged by oxygen and glucose deprivation/reoxygenation (OGD/R). Results showed that treatment with XQ-1H improved neurological behavior, reduced brain infarction volume, diminished edema, and attenuated the disruption of BBB in vivo. In vitro, XQ-1H increased cell viability and maintained the barrier function of bEnd.3 monolayer after OGD/R. Moreover, the protection of XQ-1H was accompanied with activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins. Notably, the protection of XQ-1H was abolished by Wnt/GSK3β/β-catenin inhibitor XAV939 or β-catenin siRNA, indicating XQ-1H exerted protection in a Wnt/GSK3β/β-catenin dependent profile. In summary, XQ-1H attenuated brain injury and maintained BBB integrity after CIRI, and the possible underlying mechanism may be related to the activation of Wnt/GSK3β/β-catenin pathway and upregulation of tight junction proteins.
Collapse
Affiliation(s)
- Yu-Xiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jian-Ping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Qi-Yang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
20
|
Wang K, Dai X, Zhang C, Cao X, Zhang R, Zhang Z, Huang X, Ren Q. Two Wnt genes regulate the expression levels of antimicrobial peptides during Vibrio infection in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 101:225-233. [PMID: 32247046 DOI: 10.1016/j.fsi.2020.03.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The Wnt signal transduction pathway is involved in a wide variety of cellular processes, including cell proliferation, differentiation, apoptosis, and immunity against microbial infection. In the current study, we cloned and characterized two Wnt homologues (Mn-Wnt4 and Mn-Wnt16) in Macrobrachium nipponense. The full length cDNA of Mn-Wnt4 was 3144 bp with a 1074 bp open reading frame (ORF) that encoded a protein containing 358 amino acid residues. The full length cDNA of Mn-Wnt16 transcript was 2893 bp with a 1281 bp ORF that encoded a 427 amino acid protein. Mn-Wnt4 and Mn-Wnt16 proteins contained a highly conserved WNT1 domain. Tissue distribution analysis showed that Mn-Wnt4 and Mn-Wnt16 were highly expressed in the stomach. The transcriptional levels of Mn-Wnt4 and Mn-Wnt16 in the stomach were upregulated at most tested time points after bacterial (Staphylococcus aureus and Vibrio parahaemolyticus) and viral (White spot syndrome virus) infection. Moreover, the expression levels of some antimicrobial peptides (AMPs) (including anti-lipopolysaccharide factor [ALF] and crustin [CRU]) were upregulated after V. parahaemolyticus infection. We further used dsRNA-mediated RNA interference technology to explore the relationship between these two Wnt genes and the expression levels of AMPs during V. parahaemolyticus infection. Mn-Wnt4 knockdown could significantly inhibit the expression of ALF1 and CRU4 in the stomach of V. parahaemolyticus-injected prawns, whereas Mn-Wnt16 silencing could result in the inhibition of the expression level of CRU3 and CRU4 in the stomach of V. parahaemolyticus-infected prawns. These findings indicated that the Wnt gene family might participate in the body's innate immune response to Vibrio infection by regulating the synthesis of a variety of AMPs. Our study will help to understand the role of the Wnt signaling pathway in the immune response of crustaceans.
Collapse
Affiliation(s)
- Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhuoxing Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
21
|
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Riluzole: a therapeutic strategy in Alzheimer's disease by targeting the WNT/β-catenin pathway. Aging (Albany NY) 2020; 12:3095-3113. [PMID: 32035419 PMCID: PMC7041777 DOI: 10.18632/aging.102830] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, where the etiology remains unclear. AD is characterized by amyloid-(Aβ) protein aggregation and neurofibrillary plaques deposits. Oxidative stress and chronic inflammation have been suggested as causes of AD. Glutamatergic pathway dysregulation is also mainly associated with AD process. In AD, the canonical WNT/β-catenin pathway is downregulated. Downregulation of WNT/β-catenin, by activation of GSK-3β-induced Aβ, and inactivation of PI3K/Akt pathway involve oxidative stress in AD. The downregulation of the WNT/β-catenin pathway decreases the activity of EAAT2, the glutamate receptors, and leads to neuronal death. In AD, oxidative stress, neuroinflammation and glutamatergic pathway operate in a vicious circle driven by the dysregulation of the WNT/β-catenin pathway. Riluzole is a glutamate modulator and used as treatment in amyotrophic lateral sclerosis. Recent findings have highlighted its use in AD and its potential increase power on the WNT pathway. Nevertheless, the mechanism by which Riluzole can operate in AD remains unclear and should be better determine. The focus of our review is to highlight the potential action of Riluzole in AD by targeting the canonical WNT/β-catenin pathway to modulate glutamatergic pathway, oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Alexandre Vallée
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France.,Laboratory of Mathematics and Applications (LMA), University of Poitiers, Poitiers, France
| | - Rémy Guillevin
- DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
22
|
Immunopotentiator thymosin alpha-1 attenuates inflammatory pain by modulating the Wnt3a/β-catenin pathway in spinal cord. Neuroreport 2020; 31:69-75. [PMID: 31764244 DOI: 10.1097/wnr.0000000000001370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanism of inflammatory pain involves the central nervous system (CNS) and the immune system. It is reported that immunopotentiator thymosin alpha-1 (Tα1) can reduce inflammation, protect neurons and strengthen the immune function. However, the roles of Tα1 in inflammatory pain still remain unclear. In this study, we found Tα1 can attenuate the complete Freund's adjuvant (CFA)-induced mechanical allodynia and heat hyperalgesia. Meanwhile, it reduced the upregulation of CFA-induced inflammatory mediators (interferon (IFN)-γ, tumor necrosis factor-α and brain-derived neurotrophic factor). In addition, we found the Wnt3a/β-catenin pathway was activated in spinal cord after the injection of CFA, paralleling with pain hypersensitivity. However, Tα1 reversed this status. In summary, Tα1 could attenuate inflammatory pain by modulating the Wnt3a/β-catenin pathway. It might be related to the downregulation of inflammatory mediators.
Collapse
|
23
|
Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219:34-45. [PMID: 31917251 DOI: 10.1016/j.imlet.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are excellent candidates for different cellular therapies due to their physiological properties such as immunoregulatory function. whetheare currently utilized for regenerative medication and treatment of a number of inflammatory illnesses given their ability to considerably impact tissue microenvironments via extracellular vesicles or toll-like receptor pathway modulation. MicroRNAs (miRNAs) are small noncoding RNAs that target the messenger RNA and play a critical role in different biological procedures, such as the development and reaction of the immune system. Moreover, miRNAs have recently been revealed to have serious functions in MSCs to regulate immunomodulatory properties. In this review, we study how the miRNAs pathway can modulate the immunoregulatory activity of MSCs by counting their interactions with immune cells and also discuss the possibility of using miRNA-based implications for MSC-based therapies.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Medical Biotechnology (PhD), Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
24
|
Lindsay CB, Zolezzi JM, Rivera DS, Cisternas P, Bozinovic F, Inestrosa NC. Andrographolide Reduces Neuroinflammation and Oxidative Stress in Aged Octodon degus. Mol Neurobiol 2019; 57:1131-1145. [DOI: 10.1007/s12035-019-01784-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
|
25
|
Wang G, Li Z, Li S, Ren J, Suresh V, Xu D, Zang W, Liu X, Li W, Wang H, Guo F. Minocycline Preserves the Integrity and Permeability of BBB by Altering the Activity of DKK1-Wnt Signaling in ICH Model. Neuroscience 2019; 415:135-146. [PMID: 31344398 DOI: 10.1016/j.neuroscience.2019.06.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 01/07/2023]
Abstract
Disruption of the blood-brain barrier (BBB) and subsequent neurological deficits are the most severe consequence of intracerebral hemorrhage (ICH). Minocycline has been wildly used clinically as a neurological protective agent in clinical practice. However, the underlying mechanisms by which minocycline functions remain unclear. Therefore, we assessed the influence of minocycline on BBB structure, neurological function, and inflammatory responses in a collagenase-induced ICH model, and elucidated underlying molecular mechanisms as well. Following a single injection of collagenase VII-S into the basal ganglia, BBB integrity was assessed by Evans blue extravasation while neurological function was assessed using an established neurologic function scoring system. Minocycline treatment significantly alleviated the severity of BBB disruption, brain edema, and neurological deficits in ICH model. Moreover, minocycline decreased the production of inflammatory mediators including TNF, IL-6, and MMP-9, by microglia. Minocycline treatment decreased DKK1 expression but increased Wnt1, β-catenin and Occludin, a phenomenon mimicked by DKK1 silencing. These data suggest that minocycline improves the consequences of ICH by preserving BBB integrity and attenuating neurologic deficits in a DKK1-related manner that involves enhancement of the Wnt1-β-catenin activity.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 450052
| | - Zhihua Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University
| | - Shujian Li
- Department of neurology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China, 450001
| | - Junling Ren
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA, 40202
| | - Vigneyshwar Suresh
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 450052
| | - Dingkang Xu
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 450052
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University
| | - Xianzhi Liu
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 450052
| | - Wei Li
- Department of neurology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, China, 450001
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA, 40202.
| | - Fuyou Guo
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 450052.
| |
Collapse
|
26
|
Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7420189. [PMID: 31396533 PMCID: PMC6668540 DOI: 10.1155/2019/7420189] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Toll-like receptors mediate important cellular immune responses upon activation via various pathogenic stimuli such as bacterial or viral components. The activation and subsequent secretion of cytokines and proinflammatory factors occurs in the whole body including the brain. The subsequent inflammatory response is crucial for the immune system to clear the pathogen(s) from the body via the innate and adaptive immune response. Within the brain, astrocytes, neurons, microglia, and oligodendrocytes all bear unique compositions of Toll-like receptors. Besides pathogens, cellular damage and abnormally folded protein aggregates, such as tau and Amyloid beta peptides, have been shown to activate Toll-like receptors in neurodegenerative diseases such as Alzheimer's disease. This review provides an overview of the different cell type-specific Toll-like receptors of the human brain, their activation mode, and subsequent cellular response, as well as their activation in Alzheimer's disease. Finally, we critically evaluate the therapeutic potential of targeting Toll-like receptors for treatment of Alzheimer's disease as well as discussing the limitation of mouse models in understanding Toll-like receptor function in general and in Alzheimer's disease.
Collapse
|
27
|
Zolezzi JM, Lindsay CB, Serrano FG, Ureta RC, Theoduloz C, Schmeda-Hirschmann G, Inestrosa NC. Neuroprotective Effects of Ferruginol, Jatrophone, and Junicedric Acid Against Amyloid-β Injury in Hippocampal Neurons. J Alzheimers Dis 2019; 63:705-723. [PMID: 29660932 DOI: 10.3233/jad-170701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Soluble amyloid-β (Aβ) oligomers have been recognized as early neurotoxic intermediates with a key role in the synaptic dysfunction observed in Alzheimer's disease (AD). Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Additionally, the presence of Aβ oligomers is associated with imbalanced intracellular calcium levels and apoptosis in neurons. In this context, we evaluated the effects of three diterpenes (ferruginol, jatrophone, and junicedric acid) that are found in medicinal plants and have several forms of biological activity. The intracellular calcium levels in hippocampal neurons increased in the presence of ferruginol, jatrophone, and junicedric acid, a result that was consistent with the observed increase in CA1 synaptic transmission in mouse hippocampal slices. Additionally, assays using Aβ peptide demonstrated that diterpenes, particularly ferruginol, restore LTP and reduce apoptosis. Recovery of the Aβ oligomer-induced loss of the synaptic proteins PSD-95, synapsin, VGlut, and NMDA receptor subunit 2A was observed in mouse hippocampal slices treated with junicedric acid. This cascade of events may be associated with the regulation of kinases, e.g., protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII), in addition to the activation of the canonical Wnt signaling pathway and could thus provide protection against Aβ oligomers, which trigger synaptic dysfunction. Our results suggest a potential neuroprotective role for diterpenes against the Aβ oligomers-induced neurodegenerative alterations, which make them interesting molecules to be further studied in the context of AD.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Carolina B Lindsay
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe G Serrano
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roxana C Ureta
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of Healthy Brain Aging, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
28
|
Abdi J, Rashedi I, Keating A. Concise Review: TLR Pathway-miRNA Interplay in Mesenchymal Stromal Cells: Regulatory Roles and Therapeutic Directions. Stem Cells 2018; 36:1655-1662. [PMID: 30171669 DOI: 10.1002/stem.2902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) deploy Toll-like receptors (TLRs) to respond to exogenous and endogenous signals. Activation of TLR pathways in MSCs alters their inflammatory profile and immunomodulatory effects on cells from both the innate and adaptive immune systems. Micro-RNAs (miRNAs), whose expression is modulated by TLR activation, can regulate inflammatory responses by targeting components of the TLR signaling pathways either in MSCs or in the cells with which they interact. Here, we review how the miRNA-TLR pathway axis can regulate the immunomodulatory functions of MSCs, including their interactions with monocytes/macrophages and natural killer cells, and discuss the therapeutic implications for MSC-based therapies. Stem Cells 2018;36:1655-1662.
Collapse
Affiliation(s)
- Jahangir Abdi
- Cell Therapy Translational Research Laboratory, University Health Network (UHN), Toronto, Ontario, Canada.,Arthritis Program, Krembil Research Institute, UHN, Toronto, ON, Canada
| | - Iran Rashedi
- Cell Therapy Translational Research Laboratory, University Health Network (UHN), Toronto, Ontario, Canada.,Arthritis Program, Krembil Research Institute, UHN, Toronto, ON, Canada
| | - Armand Keating
- Cell Therapy Translational Research Laboratory, University Health Network (UHN), Toronto, Ontario, Canada.,Arthritis Program, Krembil Research Institute, UHN, Toronto, ON, Canada.,Princess Margaret Cancer Centre, UHN, Toronto, ON, Canada
| |
Collapse
|
29
|
The Involvement of NLRP3 on the Effects of Minocycline in an AD-Like Pathology Induced by β-Amyloid Oligomers Administered to Mice. Mol Neurobiol 2018; 56:2606-2617. [DOI: 10.1007/s12035-018-1211-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
|
30
|
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018; 53:279-310. [PMID: 29718780 PMCID: PMC6101676 DOI: 10.1080/10409238.2018.1458070] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate-isoprenoid-cholesterol biosynthesis pathway plays a key role in human health and disease. The importance of this pathway is underscored by the discovery that two major isoprenoids, farnesyl and geranylgeranyl pyrophosphate, are required to modify an array of proteins through a process known as protein prenylation, catalyzed by prenyltransferases. The lipophilic prenyl group facilitates the anchoring of proteins in cell membranes, mediating protein-protein interactions and signal transduction. Numerous essential intracellular proteins undergo prenylation, including most members of the small GTPase superfamily as well as heterotrimeric G proteins and nuclear lamins, and are involved in regulating a plethora of cellular processes and functions. Dysregulation of isoprenoids and protein prenylation is implicated in various disorders, including cardiovascular and cerebrovascular diseases, cancers, bone diseases, infectious diseases, progeria, and neurodegenerative diseases including Alzheimer's disease (AD). Therefore, isoprenoids and/or prenyltransferases have emerged as attractive targets for developing therapeutic agents. Here, we provide a general overview of isoprenoid synthesis, the process of protein prenylation and the complexity of prenylated proteins, and pharmacological agents that regulate isoprenoids and protein prenylation. Recent findings that connect isoprenoids/protein prenylation with AD are summarized and potential applications of new prenylomic technologies for uncovering the role of prenylated proteins in the pathogenesis of AD are discussed.
Collapse
Affiliation(s)
- Angela Jeong
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
| | | | - W. Gibson Wood
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Mark D. Distefano
- Departments of Chemistry,University of Minnesota, Minneapolis, MN 55455
| | - Ling Li
- Departments of Experimental and Clinical Pharmacolog,University of Minnesota, Minneapolis, MN 55455
- Departments of Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
31
|
Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Transl Psychiatry 2018; 8:45. [PMID: 29503438 PMCID: PMC5835496 DOI: 10.1038/s41398-018-0093-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/30/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
Synaptic abnormalities have been described in individuals with autism spectrum disorders (ASD). The cell-adhesion molecule Neuroligin-3 (Nlgn3) has an essential role in the function and maturation of synapses and NLGN3 ASD-associated mutations disrupt hippocampal and cortical function. Here we show that Wnt/β-catenin signaling increases Nlgn3 mRNA and protein levels in HT22 mouse hippocampal cells and primary cultures of rat hippocampal neurons. We characterized the activity of mouse and rat Nlgn3 promoter constructs containing conserved putative T-cell factor/lymphoid enhancing factor (TCF/LEF)-binding elements (TBE) and found that their activity is significantly augmented in Wnt/β-catenin cell reporter assays. Chromatin immunoprecipitation (ChIP) assays and site-directed mutagenesis experiments revealed that endogenous β-catenin binds to novel TBE consensus sequences in the Nlgn3 promoter. Moreover, activation of the signaling cascade increased Nlgn3 clustering and co- localization with the scaffold PSD-95 protein in dendritic processes of primary neurons. Our results directly link Wnt/β-catenin signaling to the transcription of the Nlgn3 gene and support a functional role for the signaling pathway in the dysregulation of excitatory/inhibitory neuronal activity, as is observed in animal models of ASD.
Collapse
|
32
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer's disease. Acta Biochim Biophys Sin (Shanghai) 2017; 49:853-866. [PMID: 28981597 DOI: 10.1093/abbs/gmx073] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, in which the primary etiology remains unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD shows oxidative stress and chronic inflammation. In AD, canonical Wingless-Int (Wnt)/β-catenin pathway is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased. Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ, and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12 cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-catenin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein. CBD attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a potential new candidate for AD therapy.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | | | - Rémy Guillevin
- Université de Poitiers et CHU de Poitiers, DACTIM, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Futuroscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|