1
|
Silva RCMC. The function of CD8 + T cells in the absence of MHC-I in target cells: what to learn from the deficiency of MHC-I expression in humans. Immunol Res 2024; 73:4. [PMID: 39661298 DOI: 10.1007/s12026-024-09556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
|
2
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
3
|
Abelin JG, Cox AL. Innovations Toward Immunopeptidomics. Mol Cell Proteomics 2024; 23:100823. [PMID: 39095021 PMCID: PMC11419911 DOI: 10.1016/j.mcpro.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past 30 years, immunopeptidomics has grown alongside improvements in mass spectrometry technology, genomics, transcriptomics, T cell receptor sequencing, and immunological assays to identify and characterize the targets of activated T cells. Together, multiple research groups with expertise in immunology, biochemistry, chemistry, and peptide mass spectrometry have come together to enable the isolation and sequence identification of endogenous major histocompatibility complex (MHC)-bound peptides. The idea to apply highly sensitive mass spectrometry techniques to study the landscape of peptide antigens presented by cell surface MHCs was innovative and continues to be successfully used and improved upon to deepen our understanding of how peptide antigens are processed and presented to T cells. Multiple research groups were involved in this bringing immunopeptidomics to the forefront of translational research, and we will highlight the contributions of one of the earliest developers, Professor Donald F. Hunt, and his research group at the University of Virginia. The Hunt laboratory applied cutting edge mass spectroscopy-based immunopeptidomics to study cancer, autoimmunity, transplant rejection, and infectious diseases. Across these diverse research areas, the Hunt laboratory and collaborators would characterize previously unknown MHC peptide-binding motifs and identify immunologically active antigens using ultra sensitive mass spectrometry techniques. Amazingly, many of the MHC-bound peptide antigens discovered in collaborations with the Hunt laboratory were sequenced by mass spectrometry before the completion of the human genome using manual de novo sequencing. In this perspective article, we will chronicle the work of the Hunt laboratory and their many collaborators that would be a major part of the foundation for mass spectrometry-based immunopeptidomics and its application to immunology research.
Collapse
Affiliation(s)
| | - Andrea L Cox
- Johns Hopkins Bloomberg School of Public Health, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Baltimore, Maryland, USA; Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Schetelig J, Baldauf H, Heidenreich F, Hoogenboom JD, Spellman SR, Kulagin A, Schroeder T, Sengeloev H, Dreger P, Forcade E, Vydra J, Wagner-Drouet EM, Choi G, Paneesha S, Miranda NAA, Tanase A, de Wreede LC, Lange V, Schmidt AH, Sauter J, Fein JA, Bolon YT, He M, Marsh SGE, Gadalla SM, Paczesny S, Ruggeri A, Chabannon C, Fleischhauer K. Donor KIR genotype based outcome prediction after allogeneic stem cell transplantation: no land in sight. Front Immunol 2024; 15:1350470. [PMID: 38629074 PMCID: PMC11019434 DOI: 10.3389/fimmu.2024.1350470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Optimizing natural killer (NK) cell alloreactivity could further improve outcome after allogeneic hematopoietic cell transplantation (alloHCT). The donor's Killer-cell Immunoglobulin-like Receptor (KIR) genotype may provide important information in this regard. In the past decade, different models have been proposed aiming at maximizing NK cell activation by activating KIR-ligand interactions or minimizing inhibitory KIR-ligand interactions. Alternative classifications intended predicting outcome after alloHCT by donor KIR-haplotypes. In the present study, we aimed at validating proposed models and exploring more classification approaches. To this end, we analyzed samples stored at the Collaborative Biobank from HLA-compatible unrelated stem cell donors who had donated for patients with acute myeloid leukemia (AML) or myelodysplastic neoplasm (MDS) and whose outcome data had been reported to EBMT or CIBMTR. The donor KIR genotype was determined by high resolution amplicon-based next generation sequencing. We analyzed data from 5,017 transplants. The median patient age at alloHCT was 56 years. Patients were transplanted for AML between 2013 and 2018. Donor-recipient pairs were matched for HLA-A, -B, -C, -DRB1, and -DQB1 (79%) or had single HLA mismatches. Myeloablative conditioning was given to 56% of patients. Fifty-two percent of patients received anti-thymocyte-globulin-based graft-versus-host disease prophylaxis, 32% calcineurin-inhibitor-based prophylaxis, and 7% post-transplant cyclophosphamide-based prophylaxis. We tested several previously reported classifications in multivariable regression analyses but could not confirm outcome associations. Exploratory analyses in 1,939 patients (39%) who were transplanted from donors with homozygous centromeric (cen) or telomeric (tel) A or B motifs, showed that the donor cen B/B-tel A/A diplotype was associated with a trend to better event-free survival (HR 0.84, p=.08) and reduced risk of non-relapse mortality (NRM) (HR 0.65, p=.01). When we further dissected the contribution of B subtypes, we found that only the cen B01/B01-telA/A diplotype was associated with a reduced risk of relapse (HR 0.40, p=.04) while all subtype combinations contributed to a reduced risk of NRM. This exploratory finding has to be validated in an independent data set. In summary, the existing body of evidence is not (yet) consistent enough to recommend use of donor KIR genotype information for donor selection in routine clinical practice.
Collapse
Affiliation(s)
- Johannes Schetelig
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
- Clinical Trials Unit, DKMS Group, Dresden, Germany
| | | | - Falk Heidenreich
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
- Clinical Trials Unit, DKMS Group, Dresden, Germany
| | | | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program (NMDP), Minneapolis, MN, United States
| | - Alexander Kulagin
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia
| | - Thomas Schroeder
- Klinik für Hämatologie und Stammzelltransplantation, Universitätsklinikum Essen, Essen, Germany
| | - Henrik Sengeloev
- Bone Marrow Transplant Unit, Department of Hematology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Dreger
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Edouard Forcade
- Service Hématologie clinique de Thérapie cellulaire, Centre Hospitalier Universitaire Bordeaux, Université de Bordeaus, Bordeaux, France
| | - Jan Vydra
- Transplant Unit and Intensive Care Unit, Institute of Hematology and Bood Transfusion, Prague, Czechia
| | - Eva Maria Wagner-Drouet
- Center for Cellular Immunotherapy and Stem Cell Transplantation, Third Medical Department, Hematology and Oncology, University Cancer Center Mainz, Mainz, Germany
| | - Goda Choi
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Shankara Paneesha
- Department of Haematology & Stem Cell Transplantation, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Nuno A. A. Miranda
- Department of Hematology, Instituto Português de Oncologia de Lisboa, Lisboa, Portugal
| | - Alina Tanase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | | | | | | | | | - Joshua A. Fein
- Department of Hematology & Medical Oncology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Yung-Tsi Bolon
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program (NMDP), Minneapolis, MN, United States
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program (NMDP), Minneapolis, MN, United States
| | - Steven G. E. Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London & Cancer Institute, University College London, London, United Kingdom
| | - Shahinaz M. Gadalla
- National Cancer Institute, Division of Cancer Epidemiology & Genetics, Bethesda, MD, United States
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | | | - Christian Chabannon
- Institut Paoli-Calmettes, Centre de Lutte Contre le Cancer, Marseille, France
| | | |
Collapse
|
5
|
Sim MJW, Brennan P, Wahl KL, Lu J, Rajagopalan S, Sun PD, Long EO. Innate receptors with high specificity for HLA class I-peptide complexes. Sci Immunol 2023; 8:eadh1781. [PMID: 37683038 DOI: 10.1126/sciimmunol.adh1781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Genetic studies associate killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands with a variety of human diseases. The basis for these associations and the relative contribution of inhibitory and activating KIR to NK cell responses are unclear. Because KIR binding to HLA-I is peptide dependent, we performed systematic screens, which totaled more than 3500 specific interactions, to determine the specificity of five KIR for peptides presented by four HLA-C ligands. Inhibitory KIR2DL1 was largely peptide sequence agnostic and could bind ~60% of hundreds of HLA-peptide complexes tested. Inhibitory KIR2DL2, KIR2DL3, and activating KIR2DS1 and KIR2DS4 bound only 10% and down to 1% of HLA-peptide complexes tested, respectively. Activating KIR2DS1, previously described as weak, had high binding affinity for HLA-C, with high peptide sequence specificity. Our data revealed MHC-restricted peptide recognition by germline-encoded NK receptors and suggest that NK cell responses can be shaped by HLA-I-bound immunopeptidomes in the context of disease or infection.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Paul Brennan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Katherine L Wahl
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| |
Collapse
|
6
|
Kuśnierczyk P. Genetic differences between smokers and never-smokers with lung cancer. Front Immunol 2023; 14:1063716. [PMID: 36817482 PMCID: PMC9932279 DOI: 10.3389/fimmu.2023.1063716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Smoking is a major risk factor for lung cancer, therefore lung cancer epidemiological trends reflect the past trends of cigarette smoking to a great extent. The geographic patterns in mortality closely follow those in incidence. Although lung cancer is strongly associated with cigarette smoking, only about 15% of smokers get lung cancer, and also some never-smokers develop this malignancy. Although less frequent, lung cancer in never smokers is the seventh leading cause of cancer deaths in both sexes worldwide. Lung cancer in smokers and never-smokers differs in many aspects: in histological types, environmental factors representing a risk, and in genes associated with this disease. In this review, we will focus on the genetic differences between lung cancer in smokers versus never-smokers: gene expression, germ-line polymorphisms, gene mutations, as well as ethnic and gender differences. Finally, treatment options for smokers and never-smokers will be briefly reviewed.
Collapse
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
7
|
Lv D, Khawar MB, Liang Z, Gao Y, Sun H. Neoantigens and NK Cells: “Trick or Treat” the Cancers? Front Immunol 2022; 13:931862. [PMID: 35874694 PMCID: PMC9302773 DOI: 10.3389/fimmu.2022.931862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has become an important treatment strategy for cancer patients nowadays. Targeting cancer neoantigens presented by major histocompatibility complex (MHC) molecules, which emerge as a result of non-synonymous somatic mutations with high immunogenicity, is one of the most promising cancer immunotherapy strategies. Currently, several therapeutic options based on the personalized or shared neoantigens have been developed, including neoantigen vaccine and adoptive T-cell therapy, both of which are now being tested in clinical trials for various malignancies. The goal of this review is to outline the use of neoantigens as cancer therapy targets, with an emphasis on neoantigen identification, clinical usage of personalized neoantigen-based cancer therapy agents, and the development of off-the-shelf products based on shared neoantigens. In addition, we introduce and discuss the potential impact of the neoantigen–MHC complex on natural killer (NK) cell antitumor function, which could be a novel way to boost immune response-induced cytotoxicity against malignancies.
Collapse
Affiliation(s)
- Dan Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- School of Life Sciences, Anqing Normal University, Anqing, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Yu Gao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
- *Correspondence: Haibo Sun,
| |
Collapse
|
8
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
9
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
10
|
Sim MJW, Stotz Z, Lu J, Brennan P, Long EO, Sun PD. T cells discriminate between groups C1 and C2 HLA-C. eLife 2022; 11:75670. [PMID: 35587797 PMCID: PMC9177145 DOI: 10.7554/elife.75670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/15/2022] [Indexed: 01/09/2023] Open
Abstract
Dimorphic amino acids at positions 77 and 80 delineate HLA-C allotypes into two groups, C1 and C2, which associate with disease through interactions with C1 and C2-specific natural killer cell receptors. How the C1/C2 dimorphism affects T cell recognition is unknown. Using HLA-C allotypes that differ only by the C1/C2-defining residues, we found that KRAS-G12D neoantigen-specific T cell receptors (TCRs) discriminated between C1 and C2 presenting the same KRAS-G12D peptides. Structural and functional experiments, and immunopeptidomics analysis revealed that Ser77 in C1 and Asn77 in C2 influence amino acid preference near the peptide C-terminus (pΩ), including the pΩ-1 position, in which C1 favors small and C2 prefers large residues. This resulted in weaker TCR affinity for KRAS-G12D-bound C2-HLA-C despite conserved TCR contacts. Thus, the C1/C2 dimorphism on its own impacts peptide presentation and HLA-C-restricted T cell responses, with implications in disease, including adoptive T cell therapy targeting KRAS-G12D-induced cancers.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Zachary Stotz
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Paul Brennan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| |
Collapse
|
11
|
Closa L, Xicoy B, Zamora L, Estrada N, Colomer D, Herrero MJ, Vidal F, Alvarez-Larrán A, Caro JL. Natural Killer cell receptors and ligand variants modulate response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. HLA 2021; 99:93-104. [PMID: 34921518 DOI: 10.1111/tan.14515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm treated with tyrosine kinase inhibitors (TKIs). Although survival rates have improved, response to these treatments is highly heterogeneous. Variations in response rates may be due to different causes such as, treatment adherence, mutations in the BCR-ABL1 gene, clonal evolution and amplification of the BCR-ABL1 gene, but innate immune response is also considered to play a very important role and, specifically, NK cell activity through their receptors and ligands, could be determinant. The aim of this retrospective study was to explore the role of different activating and inhibiting KIR genes as well as the activating NKG2D receptor, present in NK cells, and also their respective ligands, HLA-A, -B, -C, -G, -F, MICA and MICB, in the progression of 190 patients with CML and treated at two hospitals from Barcelona between 2000 and 2019. Early molecular response (EMR), major molecular response (MMR) or MR3.0 and deep molecular response (DMR) or MR4.0 were correlated. As control samples, healthy donors from the Barcelona Blood Bank were analyzed. The presence of KIR2DL2/KIR2DS2 was associated with the achievement of EMR, MR3.0 and MR4.0. Carriers of the higher expression NKG2D variant and MICA*009:01 were also likely to achieve molecular response (MR). The most remarkable difference between CML patients and controls was a higher frequency of the lower expression NKG2D variant in CML patients. In summary, our results showed that activating NK receptor phenotypes might help to achieve MR and DMR in CML patients treated with TKIs although confirmatory studies are necessary. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laia Closa
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain.,Transfusional Medicine Group, Vall d'Hebron Research Institute- Autonomous University of Barcelona (VHIR-UAB), Barcelona, Spain
| | - Blanca Xicoy
- Department of hematology, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lurdes Zamora
- Department of hematology, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Natalia Estrada
- Department of hematology, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Dolors Colomer
- Hematopathology Section, Hospital Clinic, IDIBAPS, CIBERONC, Barcelona
| | - Maria J Herrero
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain
| | - Francisco Vidal
- Transfusional Medicine Group, Vall d'Hebron Research Institute- Autonomous University of Barcelona (VHIR-UAB), Barcelona, Spain.,Congenital Coagulopathy Laboratory, Blood and Tissue Bank, Barcelona, Spain.,CIBER of Cardiovascular Diseases, Spain
| | - Alberto Alvarez-Larrán
- Hematology Department, Hospital Clinic, Institut de Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Jose L Caro
- Transfusional Medicine Group, Vall d'Hebron Research Institute- Autonomous University of Barcelona (VHIR-UAB), Barcelona, Spain.,Department of Immunology, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
12
|
Piekarska K, Radwan P, Tarnowska A, Wiśniewski A, Radwan M, Wilczyński JR, Malinowski A, Nowak I. ERAP, KIR, and HLA-C Profile in Recurrent Implantation Failure. Front Immunol 2021; 12:755624. [PMID: 34745129 PMCID: PMC8569704 DOI: 10.3389/fimmu.2021.755624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 01/29/2023] Open
Abstract
The mother's uterine immune system is dominated by uterine natural killer (NK) cells during the first trimester of pregnancy. These cells express killer cell immunoglobulin-like receptors (KIRs) of inhibitory or activating function. Invading extravillous trophoblast cells express HLA-C molecules, and both maternal and paternal HLA-C allotypes are presented to KIRs. Endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) shape the HLA class I immunopeptidome. The ERAPs remove N-terminal residues from antigenic precursor peptides and generate optimal-length peptides to fit into the HLA class I groove. The inability to form the correct HLA class I complexes with the appropriate peptides may result in a lack of immune response by NK cells. The aim of this study was to investigate the role of ERAP1 and ERAP2 polymorphisms in the context of KIR and HLA-C genes in recurrent implantation failure (RIF). In addition, for the first time, we showed the results of ERAP1 and ERAP2 secretion into the peripheral blood of patients and fertile women. We tested a total of 881 women. Four hundred ninety-six females were patients who, together with their partners, participated in in vitro fertilization (IVF). A group of 385 fertile women constituted the control group. Women positive for KIR genes in the Tel AA region and HLA-C2C2 were more prevalent in the RIF group than in fertile women (p/pcorr. = 0.004/0.012, OR = 2.321). Of the ERAP polymorphisms studied, two of them (rs26653 and rs26618) appear to affect RIF susceptibility in HLA-C2-positive patients. Moreover, fertile women who gave birth in the past secreted significantly more ERAP1 than IVF women and control pregnant women (p < 0.0001 and p = 0.0005, respectively). In the case of ERAP2, the opposite result was observed; i.e., fertile women secreted far less ERAP2 than IVF patients (p = 0.0098). Patients who became pregnant after in vitro fertilization embryo transfer (IVF-ET) released far less ERAP2 than patients who miscarried (p = 0.0032). Receiver operating characteristic (ROC) analyses indicate a value of about 2.9 ng/ml of ERAP2 as a point of differentiation between patients who miscarried and those who gave birth to a healthy child. Our study indicates that both ERAP1 and ERAP2 may be involved in processes related to reproduction.
Collapse
Affiliation(s)
- Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
| | - Agnieszka Tarnowska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
- Faculty of Health Sciences, The Mazovian State University in Płock, Płock, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Łódź, Łódź, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncologic Gynecology, Polish Mothers’ Memorial Hospital—Research Institute, Łódź, Poland
- Medical Centre Gynemed, Łódź, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
13
|
Wiśniewski A, Sobczyński M, Pawełczyk K, Porębska I, Jasek M, Wagner M, Niepiekło-Miniewska W, Kowal A, Dubis J, Jędruchniewicz N, Kuśnierczyk P. Polymorphisms of Antigen-Presenting Machinery Genes in Non-Small Cell Lung Cancer: Different Impact on Disease Risk and Clinical Parameters in Smokers and Never-Smokers. Front Immunol 2021; 12:664474. [PMID: 34149699 PMCID: PMC8212834 DOI: 10.3389/fimmu.2021.664474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is strongly associated with cigarette smoking; nevertheless some never-smokers develop cancer. Immune eradication of cancer cells is dependent on polymorphisms of HLA class I molecules and antigen-processing machinery (APM) components. We have already published highly significant associations of single nucleotide polymorphisms (SNPs) of the ERAP1 gene with non-small cell lung cancer (NSCLC) in Chinese, but not in Polish populations. However, the smoking status of participants was not known in the previous study. Here, we compared the distribution of APM polymorphic variants in larger cohorts of Polish patients with NSCLC and controls, stratified according to their smoking status. We found significant but opposite associations in never-smokers and in smokers of all tested SNPs (rs26653, rs2287987, rs30187, and rs27044) but one (rs26618) in ERAP1. No significant associations were seen in other genes. Haplotype analysis indicated that the distribution of many ERAP1/2 haplotypes is opposite, depending on smoking status. Additionally, haplotypic combination of low activity ERAP1 and the lack of an active form of ERAP2 seems to favor the disease in never-smokers. We also revealed interesting associations of some APM polymorphisms with: age at diagnosis (ERAP1 rs26653), disease stage (ERAP1 rs27044, PSMB9 rs17587), overall survival (ERAP1 rs30187), and response to chemotherapy (ERAP1 rs27044). The results presented here may suggest the important role for ERAP1 in the anti-cancer response, which is different in smokers versus never-smokers, depending to some extent on the presence of ERAP2, and affecting NSCLC clinical course.
Collapse
Affiliation(s)
- Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Sobczyński
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Konrad Pawełczyk
- Department and Clinic of Thoracic Surgery, Wrocław Medical University, Wrocław, Poland
| | - Irena Porębska
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Monika Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aneta Kowal
- Department of Pulmonology and Lung Oncology, Wrocław Medical University, Wrocław, Poland
| | - Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
14
|
Structural plasticity of KIR2DL2 and KIR2DL3 enables altered docking geometries atop HLA-C. Nat Commun 2021; 12:2173. [PMID: 33846289 PMCID: PMC8041999 DOI: 10.1038/s41467-021-22359-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
The closely related inhibitory killer-cell immunoglobulin-like receptors (KIR), KIR2DL2 and KIR2DL3, regulate the activation of natural killer cells (NK) by interacting with the human leukocyte antigen-C1 (HLA-C1) group of molecules. KIR2DL2, KIR2DL3 and HLA-C1 are highly polymorphic, with this variation being associated with differences in the onset and progression of some human diseases. However, the molecular bases underlying these associations remain unresolved. Here, we determined the crystal structures of KIR2DL2 and KIR2DL3 in complex with HLA-C*07:02 presenting a self-epitope. KIR2DL2 differed from KIR2DL3 in docking modality over HLA-C*07:02 that correlates with variabilty of recognition of HLA-C1 allotypes. Mutagenesis assays indicated differences in the mechanism of HLA-C1 allotype recognition by KIR2DL2 and KIR2DL3. Similarly, HLA-C1 allotypes differed markedly in their capacity to inhibit activation of primary NK cells. These functional differences derive, in part, from KIR2DS2 suggesting KIR2DL2 and KIR2DL3 binding geometries combine with other factors to distinguish HLA-C1 functional recognition.
Collapse
|
15
|
Ziegler MC, Naidoo K, Chapel A, Nkotwana S, Mann J, Mncube Z, Ismael N, Goulder P, Ndung’u T, Altfeld M, Thobakgale CF. HIV-1 evades a Gag mutation that abrogates killer cell immunoglobulin-like receptor binding and disinhibits natural killer cells in infected individuals with KIR2DL2+/HLA-C*03: 04+ genotype. AIDS 2021; 35:151-154. [PMID: 33273184 PMCID: PMC7856308 DOI: 10.1097/qad.0000000000002721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: HIV-1 sequence variations impact binding of inhibitory killer cell immunoglobulin-like receptors (KIRs) to human leukocyte antigen class I (HLA-I) molecules modulating natural killer cell function. HIV-1 strains encoding amino acids that mediate binding of inhibitory KIRs might therefore have a selective benefit in individuals expressing the respective KIR/HLA genotypes. Here, we demonstrate that HIV-1 clade C avoids a p24 Gag mutation that abolishes binding of KIR2DL2 to HLA-C03:04 and disinhibits natural killer cells in individual encoding for this genotype.
Collapse
Affiliation(s)
- Maja C. Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kewreshini Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anais Chapel
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sindiswa Nkotwana
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Zenele Mncube
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismael
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
- Africa Health Research Institute, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Marcus Altfeld
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Christina F. Thobakgale
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- University of the Witwatersrand, Faculty of Health Sciences, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
16
|
Kaufman J. From Chickens to Humans: The Importance of Peptide Repertoires for MHC Class I Alleles. Front Immunol 2020; 11:601089. [PMID: 33381122 PMCID: PMC7767893 DOI: 10.3389/fimmu.2020.601089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
In humans, killer immunoglobulin-like receptors (KIRs), expressed on natural killer (NK) and thymus-derived (T) cells, and their ligands, primarily the classical class I molecules of the major histocompatibility complex (MHC) expressed on nearly all cells, are both polymorphic. The variation of this receptor-ligand interaction, based on which alleles have been inherited, is known to play crucial roles in resistance to infectious disease, autoimmunity, and reproduction in humans. However, not all the variation in response is inherited, since KIR binding can be affected by a portion of the peptide bound to the class I molecules, with the particular peptide presented affecting the NK response. The extent to which the large multigene family of chicken immunoglobulin-like receptors (ChIRs) is involved in functions similar to KIRs is suspected but not proven. However, much is understood about the two MHC-I molecules encoded in the chicken MHC. The BF2 molecule is expressed at a high level and is thought to be the predominant ligand of cytotoxic T lymphocytes (CTLs), while the BF1 molecule is expressed at a much lower level if at all and is thought to be primarily a ligand for NK cells. Recently, a hierarchy of BF2 alleles with a suite of correlated properties has been defined, from those expressed at a high level on the cell surface but with a narrow range of bound peptides to those expressed at a lower level on the cell surface but with a very wide repertoire of bound peptides. Interestingly, there is a similar hierarchy for human class I alleles, although the hierarchy is not as wide. It is a question whether KIRs and ChIRs recognize class I molecules with bound peptide in a similar way, and whether fastidious to promiscuous hierarchy of class I molecules affect both T and NK cell function. Such effects might be different from those predicted by the similarities of peptide-binding based on peptide motifs, as enshrined in the idea of supertypes. Since the size of peptide repertoire can be very different for alleles with similar peptide motifs from the same supertype, the relative importance of these two properties may be testable.
Collapse
Affiliation(s)
- Jim Kaufman
- School of Biological Sciences, Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proc Natl Acad Sci U S A 2020; 117:12826-12835. [PMID: 32461371 DOI: 10.1073/pnas.1921964117] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complete cancer regression occurs in a subset of patients following adoptive T cell therapy (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs). However, the low success rate presents a great challenge to broader clinical application. To provide insight into TIL-based immunotherapy, we studied a successful case of ACT where regression was observed against tumors carrying the hotspot mutation G12D in the KRAS oncogene. Four T cell receptors (TCRs) made up the TIL infusion and recognized two KRAS-G12D neoantigens, a nonamer and a decamer, all restricted by human leukocyte antigen (HLA) C*08:02. Three of them (TCR9a, 9b, and 9c) were nonamer-specific, while one was decamer-specific (TCR10). We show that only mutant G12D but not the wild-type peptides stabilized HLA-C*08:02 due to the formation of a critical anchor salt bridge to HLA-C. Therapeutic TCRs exhibited high affinities, ranging from nanomolar to low micromolar. Intriguingly, TCR binding affinities to HLA-C inversely correlated with their persistence in vivo, suggesting the importance of antigenic affinity in the function of therapeutic T cells. Crystal structures of TCR-HLA-C complexes revealed that TCR9a to 9c recognized G12D nonamer with multiple conserved contacts through shared CDR2β and CDR3α. This allowed CDR3β variation to confer different affinities via a variable HLA-C contact, generating an oligoclonal response. TCR10 recognized an induced and distinct G12D decamer conformation. Thus, this successful case of ACT included oligoclonal TCRs of high affinity recognizing distinct conformations of neoantigens. Our study revealed the potential of a structural approach to inform clinical efforts in targeting KRAS-G12D tumors by immunotherapy and has general implications for T cell-based immunotherapies.
Collapse
|
18
|
Debebe BJ, Boelen L, Lee JC, Thio CL, Astemborski J, Kirk G, Khakoo SI, Donfield SM, Goedert JJ, Asquith B. Identifying the immune interactions underlying HLA class I disease associations. eLife 2020; 9:54558. [PMID: 32238263 PMCID: PMC7253178 DOI: 10.7554/elife.54558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Variation in the risk and severity of many autoimmune diseases, malignancies and infections is strongly associated with polymorphisms at the HLA class I loci. These genetic associations provide a powerful opportunity for understanding the etiology of human disease. HLA class I associations are often interpreted in the light of 'protective' or 'detrimental' CD8+ T cell responses which are restricted by the host HLA class I allotype. However, given the diverse receptors which are bound by HLA class I molecules, alternative interpretations are possible. As well as binding T cell receptors on CD8+ T cells, HLA class I molecules are important ligands for inhibitory and activating killer immunoglobulin-like receptors (KIRs) which are found on natural killer cells and some T cells; for the CD94:NKG2 family of receptors also expressed mainly by NK cells and for leukocyte immunoglobulin-like receptors (LILRs) on myeloid cells. The aim of this study is to develop an immunogenetic approach for identifying and quantifying the relative contribution of different receptor-ligand interactions to a given HLA class I disease association and then to use this approach to investigate the immune interactions underlying HLA class I disease associations in three viral infections: Human T cell Leukemia Virus type 1, Human Immunodeficiency Virus type 1 and Hepatitis C Virus as well as in the inflammatory condition Crohn's disease.
Collapse
Affiliation(s)
- Bisrat J Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Lies Boelen
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - James C Lee
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | -
- Johns Hopkins University, Baltimore, United States.,Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chloe L Thio
- Johns Hopkins University, Baltimore, United States
| | | | - Gregory Kirk
- Johns Hopkins University, Baltimore, United States
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, United States
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors: Detection, function and therapeutic use. Int J Immunogenet 2020; 47:1-12. [PMID: 31755661 DOI: 10.1111/iji.12461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) have a central role in the control of natural killer (NK) cell function. The functions of the activating KIRs, as compared to those of the inhibitory KIR, have been more difficult to define due to difficulties in antibody-mediated identification and their apparent low affinities for HLA class I. Immunogenetic studies have shown associations of activating KIRs with the outcome of autoimmune diseases, pregnancy-associated disorders, infectious diseases and cancers. Activating KIR are thus thought to have important roles in the control of natural killer cell functions and their role in disease. In this review, we discuss current knowledge on activating KIR, their ligands and, their roles in the pathogenesis and potential therapy of human diseases.
Collapse
Affiliation(s)
- Matthew D Blunt
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
20
|
Deng Z, Zhao J, Cai S, Qi Y, Yu Q, Martin MP, Gao X, Chen R, Zhuo J, Zhen J, Zhang M, Zhang G, He L, Zou H, Lu L, Zhu W, Hong W, Carrington M, Norman PJ. Natural Killer Cells Offer Differential Protection From Leukemia in Chinese Southern Han. Front Immunol 2019; 10:1646. [PMID: 31379844 PMCID: PMC6646668 DOI: 10.3389/fimmu.2019.01646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Interactions of human natural killer (NK) cell inhibitory receptors with polymorphic HLA-A, -B and -C molecules educate NK cells for immune surveillance against tumor cells. The KIR A haplotype encodes a distinctive set of HLA-specific NK cell inhibiting receptors having strong influence on immunity. We observed higher frequency of KIR A homozygosity among 745 healthy Chinese Southern Han than 836 adult patients representing three types of leukemia: ALL (OR = 0.68, 95% CI = 0.52-0.89, p = 0.004), AML (OR = 0.76, 95% CI = 0.59-0.98, p = 0.034), and CML (OR = 0.72 95% CI = 0.51-1.0, ns). We observed the same trend for NHL (OR = 0.47 95% CI = 0.26-0.88 p = 0.017). For ALL, the protective effect of the KIR AA genotype was greater in the presence of KIR ligands C1 (Pc = 0.01) and Bw4 (Pc = 0.001), which are tightly linked in East Asians. By contrast, the C2 ligand strengthened protection from CML (Pc = 0.004). NK cells isolated from KIR AA individuals were significantly more cytotoxic toward leukemic cells than those from other KIR genotypes (p < 0.0001). These data suggest KIR allotypes encoded by East Asian KIR A haplotypes are strongly inhibitory, arming NK cells to respond to leukemogenic cells having altered HLA expression. Thus, the study of populations with distinct KIR and HLA distributions enlightens understanding of immune mechanisms that significantly impact leukemia pathogenesis.
Collapse
Affiliation(s)
- Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Jun Zhao
- School of Ophthalmology and Optometry, Shenzhen Eye Hospital, Shenzhen University, Shenzhen, China
| | - Siqi Cai
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Ying Qi
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qiong Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xiaojiang Gao
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rui Chen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Jiacai Zhuo
- Department of Hematology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jianxin Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
- Central Laboratory, Baoan Maternal and Child Health Hospital, Shenzhen, China
| | - Mingjie Zhang
- Research and Development Department, Shenzhen Hank Bioengineering Institute, Shenzhen, China
| | - Guobin Zhang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Liumei He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Hongyan Zou
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Liang Lu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Weigang Zhu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Wenxu Hong
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, China
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- Ragon Institute of MGH MIT and Harvard, Cambridge, MA, United States
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
21
|
Sim MJW, Rajagopalan S, Altmann DM, Boyton RJ, Sun PD, Long EO. Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C. Proc Natl Acad Sci U S A 2019; 116:12964-12973. [PMID: 31138701 PMCID: PMC6601252 DOI: 10.1073/pnas.1903781116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells have an important role in immune defense against viruses and cancer. Activation of human NK cell cytotoxicity toward infected or tumor cells is regulated by killer cell immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen class I (HLA-I). Combinations of KIR with HLA-I are genetically associated with susceptibility to disease. KIR2DS4, an activating member of the KIR family with poorly defined ligands, is a receptor of unknown function. Here, we show that KIR2DS4 has a strong preference for rare peptides carrying a Trp at position 8 (p8) of 9-mer peptides bound to HLA-C*05:01. The complex of a peptide bound to HLA-C*05:01 with a Trp at p8 was sufficient for activation of primary KIR2DS4+ NK cells, independent of activation by other receptors and of prior NK cell licensing. HLA-C*05:01+ cells that expressed the peptide epitope triggered KIR2DS4+ NK cell degranulation. We show an inverse correlation of the worldwide allele frequency of functional KIR2DS4 with that of HLA-C*05:01, indicative of functional interaction and balancing selection. We found a highly conserved peptide sequence motif for HLA-C*05:01-restricted activation of human KIR2DS4+ NK cells in bacterial recombinase A (RecA). KIR2DS4+ NK cells were stimulated by RecA epitopes from multiple human pathogens, including Helicobacter, Chlamydia, Brucella, and Campylobacter. We predict that over 1,000 bacterial species could activate NK cells through KIR2DS4, and propose that human NK cells also contribute to immune defense against bacteria through recognition of a conserved RecA epitope presented by HLA-C*05:01.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Molecular and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Sumati Rajagopalan
- Molecular and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Daniel M Altmann
- Lung Immunology Group, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Rosemary J Boyton
- Lung Immunology Group, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Eric O Long
- Molecular and Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
22
|
Gwozdowicz S, Nestorowicz K, Graczyk-Pol E, Szlendak U, Rogatko-Koros M, Mika-Witkowska R, Pawliczak D, Zubala M, Malinowska A, Witkowska A, Nowak J. KIR specificity and avidity of standard and unusual C1, C2, Bw4, Bw6 and A3/11 amino acid motifs at entire HLA:KIR interface between NK and target cells, the functional and evolutionary classification of HLA class I molecules. Int J Immunogenet 2019; 46:217-231. [PMID: 31210416 DOI: 10.1111/iji.12433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells make vital contributions to the immune system and the reproductive system. Notably, NK cells of donor origin can recognize and kill residual leukaemic cells and cure malignant patients in hematopoietic stem cell (HSC) transplant setting. NK cell function is regulated by KIRs that recognize cognate HLA class I molecules on target cells, depending on their amino acid residues. In review, we addressed the question of binding capacity and avidity of HLA class I molecules to different killer cell immunoglobulin-like receptors (KIRs) depending on all interacting amino acid residues both on HLA and KIR side. We searched PubMed database and analysed available HLA:KIR crystallographic data for amino acid residues in HLA molecules, those physically involved in binding KIRs (termed here the "entire KIR interface"). Within entire KIR interface, we selected five functional sequence motifs (14-19, 66-76, 77-84, 88-92 and 142-151) and classified them according to the conservation of their amino acid sequences among 8,942 HLA class I molecules. Although some conserved amino acid motifs were shared by different groups of KIR ligands, the HLA motif combinations were exclusive for the ligand groups. In 135 common HLA class I molecules with known HLA:KIR recognition, we found 54 combinations of five motifs in each of the KIR-binding interfaces (C1, C2, Bw4, A3/11) and conserved non-KIR-binding interfaces. Based on the entire KIR interface, this analysis allowed to classify 8,942 HLA class I molecules into KIR specificity groups. This functional and evolutionary classification of entire KIR interfaces provides a tool for unambiguously predicting HLA:KIR interactions for common and those HLA molecules that have not yet been functionally tested. Considering the entire KIR interface in HLA class I molecules, functional interactions of HLA and KIR can be predicted in immune responses, reproduction and allotransplantation. Further functional studies are needed on the HLA:KIR interaction variations caused by the repertoires of peptides presented by HLA molecules and KIR polymorphisms at allelic level.
Collapse
Affiliation(s)
- Slawomir Gwozdowicz
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Klaudia Nestorowicz
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Elzbieta Graczyk-Pol
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Urszula Szlendak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Rogatko-Koros
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Renata Mika-Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Daria Pawliczak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Zubala
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Malinowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Jacek Nowak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
23
|
Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, Bertaina A, Moretta F, Del Zotto G, Pietra G, Mingari MC, Locatelli F, Moretta L. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front Immunol 2019; 10:1179. [PMID: 31231370 PMCID: PMC6558367 DOI: 10.3389/fimmu.2019.01179] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells contribute to the first line of defense against viruses and to the control of tumor growth and metastasis spread. The discovery of HLA class I specific inhibitory receptors, primarily of killer Ig-like receptors (KIRs), and of activating receptors has been fundamental to unravel NK cell function and the molecular mechanisms of tumor cell killing. Stemmed from the seminal discoveries in early '90s, in which Alessandro Moretta was the major actor, an extraordinary amount of research on KIR specificity, genetics, polymorphism, and repertoire has followed. These basic notions on NK cells and their receptors have been successfully translated to clinical applications, primarily to the haploidentical hematopoietic stem cell transplantation to cure otherwise fatal leukemia in patients with no HLA compatible donors. The finding that NK cells may express the PD-1 inhibitory checkpoint, particularly in cancer patients, may allow understanding how anti-PD-1 therapy could function also in case of HLA class Ineg tumors, usually susceptible to NK-mediated killing. This, together with the synergy of therapeutic anti-checkpoint monoclonal antibodies, including those directed against NKG2A or KIRs, emerging in recent or ongoing studies, opened new solid perspectives in cancer therapy.
Collapse
Affiliation(s)
- Daniela Pende
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Massimo Vitale
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
- Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - Chiara Vitale
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - Enrico Munari
- Department of Pathology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Alice Bertaina
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics Stanford School of Medicine, Stanford, CA, United States
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Genny Del Zotto
- Core Facilities, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Gabriella Pietra
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Università di Genova, Genoa, Italy
| | - Maria Cristina Mingari
- Laboratory of Immunology, Department of Integrated Oncological Therapies, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Experimental Medicine (DIMES), Center of Excellence for Biomedical Research, Università di Genova, Genoa, Italy
| | - Franco Locatelli
- Department of Oncohematology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
24
|
Mbiribindi B, Mukherjee S, Wellington D, Das J, Khakoo SI. Spatial Clustering of Receptors and Signaling Molecules Regulates NK Cell Response to Peptide Repertoire Changes. Front Immunol 2019; 10:605. [PMID: 31024524 PMCID: PMC6460049 DOI: 10.3389/fimmu.2019.00605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cell activation requires integration of inhibitory and activating signaling. Inhibitory signals are determined by members of the killer cell immunoglobulin-like receptor (KIR) family, which have major histocompatibility complex (MHC) class I ligands. Loss of this inhibitory signal leads to NK cell activation. Thus, down-regulation of MHC I during viral infection or cancer induces NK cell activation. However, NK cell activation in the presence of MHC-I has been demonstrated for HLA-C*0102 through changes in its peptide content: "peptide antagonism." Here we identify an antagonist peptide for HLA-C*0304 suggesting that peptide antagonism is a generalizable phenomenon and, using a combination of mathematical modeling, confocal imaging, and immune-assays, we quantitatively determine mechanisms that underlie peptide antagonism in inhibitory KIR2DL2/3 signaling. These data provide a mechanism for NK cell activation based on a reduction of inhibitory signaling in the presence of preserved levels of MHC class I.
Collapse
Affiliation(s)
- Berenice Mbiribindi
- Department of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sayak Mukherjee
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| | - Dannielle Wellington
- Department of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jayajit Das
- Battelle Center for Mathematical Medicine, The Research Institute at the Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, Wexner College of Medicine, The Ohio State University, Columbus, OH, United States
- Biophysics Program, The Ohio State University, Columbus, OH, United States
| | - Salim I. Khakoo
- Department of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
25
|
Kuśnierczyk P, Stratikos E. Endoplasmic reticulum aminopeptidases as a double-faced tool to increase or decrease efficiency of antigen presentation in health and disease. Hum Immunol 2019; 80:277-280. [PMID: 30928619 DOI: 10.1016/j.humimm.2019.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, The Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece
| |
Collapse
|
26
|
Nemat-Gorgani N, Guethlein LA, Henn BM, Norberg SJ, Chiaroni J, Sikora M, Quintana-Murci L, Mountain JL, Norman PJ, Parham P. Diversity of KIR, HLA Class I, and Their Interactions in Seven Populations of Sub-Saharan Africans. THE JOURNAL OF IMMUNOLOGY 2019; 202:2636-2647. [PMID: 30918042 DOI: 10.4049/jimmunol.1801586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
HLA class I and KIR sequences were determined for Dogon, Fulani, and Baka populations of western Africa, Mbuti of central Africa, and Datooga, Iraqw, and Hadza of eastern Africa. Study of 162 individuals identified 134 HLA class I alleles (41 HLA-A, 60 HLA-B, and 33 HLA-C). Common to all populations are three HLA-C alleles (C1+C*07:01, C1+C*07:02, and C2+C*06:02) but no HLA-A or -B Unexpectedly, no novel HLA class I was identified in these previously unstudied and anthropologically distinctive populations. In contrast, of 227 KIR detected, 22 are present in all seven populations and 28 are novel. A high diversity of HLA A-C-B haplotypes was observed. In six populations, most haplotypes are represented just once. But in the Hadza, a majority of haplotypes occur more than once, with 2 having high frequencies and 10 having intermediate frequencies. The centromeric (cen) part of the KIR locus exhibits an even balance between cenA and cenB in all seven populations. The telomeric (tel) part has an even balance of telA to telB in East Africa, but this changes across the continent to where telB is vestigial in West Africa. All four KIR ligands (A3/11, Bw4, C1, and C2) are present in six of the populations. HLA haplotypes of the Iraqw and Hadza encode two KIR ligands, whereas the other populations have an even balance between haplotypes encoding one and two KIR ligands. Individuals in these African populations have a mean of 6.8-8.4 different interactions between KIR and HLA class I, compared with 2.9-6.5 for non-Africans.
Collapse
Affiliation(s)
- Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, NY 11794
| | | | - Jacques Chiaroni
- UMR 7268-Anthropologie Bio-Culturelle, Droit, Éthique et Santé, Aix-Marseille Université, l'Etablissement Français du Sang, Centre National de la Recherche Scientifique, 13344 Marseille, France
| | - Martin Sikora
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | | | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO 80045; and.,Department of Immunology, University of Colorado, Denver, CO 80045
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305;
| |
Collapse
|
27
|
Niepiekło-Miniewska W, Mpakali A, Stratikos E, Matusiak Ł, Narbutt J, Lesiak A, Kuna P, Wilczyńska K, Nowak I, Wiśniewski A, Zwolińska K, Ponińska J, Płoski R, Szepietowski JC, Kuśnierczyk P. Endoplasmic reticulum aminopeptidase 1 polymorphism Ile276Met is associated with atopic dermatitis and affects the generation of an HLA-C associated antigenic epitope in vitro. J Eur Acad Dermatol Venereol 2019; 33:906-911. [PMID: 30680818 DOI: 10.1111/jdv.15449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease of complex aetiology, with interactions between susceptibility genes and environmental factors. We have previously described a protective effect of the KIR2DS1 gene encoding the natural killer cell receptor, whose ligands are HLA-C molecules. Here, we found an association of HLA-C*05:01 allele with AD. KIR-HLA-C interactions are affected by peptides presented by HLA-C. The generation of these peptides is strongly influenced by endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2). Expression and activity of ERAP molecules depend on the polymorphisms of their genes. OBJECTIVE Possible associations of several single nucleotide polymorphisms (SNPs) in the ERAP1 and ERAP2 genes with susceptibility to AD. METHODS Peripheral blood DNA isolation from 318 patients and 549 controls. PCR-SSO or PCR-SSP for HLA-C typing; TaqMan Genotyping Assay for ERAP typing. RESULTS Only one SNP in the ERAP1 gene, rs26618T>C, causing the amino acid change Ile276Met, had an association with AD. To gain insight on the functional role of this SNP, we produced recombinant variants differing only at position 276 (Ile or Met) and tested their aminopeptidase activity against a N-terminally extended precursor LIVDRPVTLV of the HLA-C*05:01 epitope IVDRPVTLV. Both ERAP1 variants were able to efficiently generate the epitope, although the 276Ile allotype was able to do this about 50% faster. Furthermore, both variants were quite inefficient in further degradation of the mature epitope. Finally, we found that the effect of 276Met on susceptibility to AD was seen only in KIR2DS1-negative individuals, not protected by this KIR. CONCLUSION Associations of HLA-C*05:01 allele and rs26618T>C (Ile276Met) ERAP1 polymorphism with AD, and a significant difference between these two ERAP1 variants in their ability to generate an epitope for the HLA-C*05:01 molecule was found.
Collapse
Affiliation(s)
- W Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - A Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece
| | - E Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, Athens, Greece
| | - Ł Matusiak
- Department of Dermatology, Venereology and Allergology, Medical University of Wroclaw, Wrocław, Poland
| | - J Narbutt
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - A Lesiak
- 1st Department of Dermatology and Venereology, Medical University of Łódź, Łódź, Poland
| | - P Kuna
- 2nd Chair of Internal Diseases, Medical University of Łódź, N. Barlicki Medical University Hospital, Łódź, Poland
| | - K Wilczyńska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - I Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - A Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - K Zwolińska
- Laboratory of Virology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - J Ponińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - R Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - J C Szepietowski
- Department of Dermatology, Venereology and Allergology, Medical University of Wroclaw, Wrocław, Poland
| | - P Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
28
|
Altmann DM. Natural killer cell transcriptional control, subsets, receptors and effector function. Immunology 2019; 156:109-110. [PMID: 30632618 PMCID: PMC6329198 DOI: 10.1111/imm.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
There have been considerable advances in characterization of the complexities of natural killer (NK) cell ligand recognition, activation, subsets and effector functions. The nature of the transcription factors that act to define distinctive functional programmes of NK cell subsets are now starting to be clarified as a consequence of studies in knockouts. Importantly, this is being extended to improved understanding of the nature of NK cell memory. As NK cell biology offers increasing resonance with analogous pathways in CD8 biology, some have made the case that immunology may sometimes benefit from a little less conceptual 'splitting' and a little more conceptual 'lumping.'
Collapse
|
29
|
Wauquier N, Petitdemange C, Tarantino N, Maucourant C, Coomber M, Lungay V, Bangura J, Debré P, Vieillard V. HLA-C-restricted viral epitopes are associated with an escape mechanism from KIR2DL2 + NK cells in Lassa virus infection. EBioMedicine 2019; 40:605-613. [PMID: 30711514 PMCID: PMC6413685 DOI: 10.1016/j.ebiom.2019.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background Lassa virus (LASV) is the etiologic agent of an acute hemorrhagic fever endemic in West Africa. Natural killer (NK) cells control viral infections in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their ligands. LASV infection is associated with defective immune responses, including inhibition of NK cell activity in the presence of MHC-class 1+-infected target cells. Methods We compared individual KIR and HLA-class 1 genotypes of 68 healthy volunteers to 51 patients infected with LASV in Sierra Leone, including 37 survivors and 14 fatalities. Next, potential HLA-C1, HLA-C2, and HLA-Bw4 binding epitopes were in silico screened among LASV nucleoprotein (NP) and envelope glycoprotein (GP). Selected 10-mer peptides were then tested in peptide-HLA stabilization, KIR binding and polyfunction assays. Findings LASV-infected patients were similar to healthy controls, except for the inhibitory KIR2DL2 gene. We found a specific increase in the HLA-C1:KIR2DL2 interaction in fatalities (10/11) as compared to survivors (12/19) and controls (19/29). We also identified that strong of NP and GP viral epitopes was only observed with HLA-C molecules, and associated with strong inhibition of degranulation in the presence of KIR2DL+ NK cells. This inhibitory effect significantly increased in the presence of the vGP420 variant, detected in 28.1% of LASV sequences. Interpretation Our finding suggests that presentation of specific LASV epitopes by HLA-C alleles to the inhibitory KIR2DL2 receptor on NK cells could potentially prevent the killing of infected cells and provides insights into the mechanisms by which LASV can escape NK-cell-mediated immune pressure.
Collapse
Affiliation(s)
- Nadia Wauquier
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France; Metabiota, San Francisco, CA, USA
| | - Caroline Petitdemange
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Nadine Tarantino
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Christopher Maucourant
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | | | | | | | - Patrice Debré
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
| |
Collapse
|
30
|
Bastidas-Legarda LY, Khakoo SI. Conserved and variable natural killer cell receptors: diverse approaches to viral infections. Immunology 2019; 156:319-328. [PMID: 30570753 DOI: 10.1111/imm.13039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system with essential roles during viral infections. NK cell functions are mediated through a repertoire of non-rearranging inhibitory and activating receptors that interact with major histocompatibility complex (MHC)-peptide complexes on the surface of infected cells. Recent work studying the conserved CD94-NKG2A and variable killer cell immunoglobulin-like receptor-MHC systems suggest that these two receptor families may have subtly different properties in terms of interactions with MHC class I bound peptides, and in recognition of down-regulation of MHC class I. In this review, we discuss how these properties generate diversity in the NK cell response to viruses.
Collapse
Affiliation(s)
- Leidy Y Bastidas-Legarda
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
31
|
Hilton HG, McMurtrey CP, Han AS, Djaoud Z, Guethlein LA, Blokhuis JH, Pugh JL, Goyos A, Horowitz A, Buchli R, Jackson KW, Bardet W, Bushnell DA, Robinson PJ, Mendoza JL, Birnbaum ME, Nielsen M, Garcia KC, Hildebrand WH, Parham P. The Intergenic Recombinant HLA-B∗46:01 Has a Distinctive Peptidome that Includes KIR2DL3 Ligands. Cell Rep 2018; 19:1394-1405. [PMID: 28514659 PMCID: PMC5510751 DOI: 10.1016/j.celrep.2017.04.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 01/26/2023] Open
Abstract
HLA-B∗46:01 was formed by an intergenic mini-conversion, between HLA-B∗15:01 and HLA-C∗01:02, in Southeast Asia during the last 50,000 years, and it has since become the most common HLA-B allele in the region. A functional effect of the mini-conversion was introduction of the C1 epitope into HLA-B∗46:01, making it an exceptional HLA-B allotype that is recognized by the C1-specific natural killer (NK) cell receptor KIR2DL3. High-resolution mass spectrometry showed that HLA-B∗46:01 has a low-diversity peptidome that is distinct from those of its parents. A minority (21%) of HLA-B∗46:01 peptides, with common C-terminal characteristics, form ligands for KIR2DL3. The HLA-B∗46:01 peptidome is predicted to be enriched for peptide antigens derived from Mycobacterium leprae. Overall, the results indicate that the distinctive peptidome and functions of HLA-B∗46:01 provide carriers with resistance to leprosy, which drove its rapid rise in frequency in Southeast Asia. The interlocus recombinant HLA-B∗46:01 is found at high frequency in Southeast Asia HLA-B∗46:01 has a low-diversity peptidome that is distinct from both its parents A subset of HLA-B∗46:01 peptides provides ligands for the NK cell receptor KIR2DL3 The unique features of HLA-B∗46:01 correlate with protection against leprosy
Collapse
Affiliation(s)
- Hugo G Hilton
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Curtis P McMurtrey
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex S Han
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zakia Djaoud
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jeroen H Blokhuis
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jason L Pugh
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ana Goyos
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amir Horowitz
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rico Buchli
- Pure Protein LLC, Oklahoma City, OK 73104, USA
| | - Ken W Jackson
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wilfred Bardet
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - David A Bushnell
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Philip J Robinson
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Juan L Mendoza
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael E Birnbaum
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Morten Nielsen
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - K Christopher Garcia
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - William H Hildebrand
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Peter Parham
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol 2018; 18:325-339. [PMID: 29292391 DOI: 10.1038/nri.2017.143] [Citation(s) in RCA: 452] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fifty years since the first description of an association between HLA and human disease, HLA molecules have proven to be central to physiology, protective immunity and deleterious, disease-causing autoimmune reactivity. Technological advances have enabled pivotal progress in the determination of the molecular mechanisms that underpin the association between HLA genetics and functional outcome. Here, we review our current understanding of HLA molecules as the fundamental platform for immune surveillance and responsiveness in health and disease. We evaluate the scope for personalized antigen-specific disease prevention, whereby harnessing HLA-ligand interactions for clinical benefit is becoming a realistic prospect.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jan Petersen
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Infection and Immunity Programme and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lars Fugger
- Danish National Research Foundation Centre PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark.,Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
33
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Naiyer MM, Cassidy SA, Magri A, Cowton V, Chen K, Mansour S, Kranidioti H, Mbirbindi B, Rettman P, Harris S, Fanning LJ, Mulder A, Claas FHJ, Davidson AD, Patel AH, Purbhoo MA, Khakoo SI. KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Sci Immunol 2017; 2:2/15/eaal5296. [DOI: 10.1126/sciimmunol.aal5296] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
|
35
|
Colucci F, Traherne J. Killer-cell immunoglobulin-like receptors on the cusp of modern immunogenetics. Immunology 2017; 152:556-561. [PMID: 28755388 DOI: 10.1111/imm.12802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands play a central role in immunity and human health. These molecules are encoded by gene families with copy number variation, extreme levels of sequence diversity and complex expression patterns. The rapid evolution of KIR and HLA genes and their associations with infectious diseases, pregnancy disorders, immunopathologies and outcome of cell transplantation have generated considerable interest from immunologists, geneticists and clinicians. Until recently, however, analyses have been stuck at low-level resolution, focusing primarily on presence or absence of KIR genes. This is changing with the advent of modern high throughput sequencing, cell phenotyping and bioinformatics. These developments allow high-resolution analysis and much deeper understanding of KIR evolution and KIR function. The impending deluge of high dimensional data brings inevitably new challenges in analysis, interpretation and communication of results, but the benefits are already tangible. The diversity of KIR across worldwide human populations is being catalogued at the allele level. Structures of KIR molecules and their interactions with HLA-peptide complexes are being determined. How KIR modulate natural killer cell education is being defined. Ligands for activating KIR, elusive for many years, are being discovered. KIR gene complexes and their related receptor gene families are being characterized in animal models and livestock breeds. These advances are helping to generate a more complete picture of the impact of KIR variation in health and disease and offer new opportunities for immunotherapy, as highlighted in a recent meeting (The Tenth KIR Workshop, April 2017 Cambridge, UK).
Collapse
Affiliation(s)
- Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - James Traherne
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Hilton HG, Parham P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 2017; 69:567-579. [PMID: 28695291 DOI: 10.1007/s00251-017-1001-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are fast-acting and versatile lymphocytes that are critical effectors of innate immunity, adaptive immunity, and placental development. Controlling NK cell function are the interactions between killer-cell immunoglobulin-like receptors (KIRs) and their HLA-A, HLA-B and HLA-C ligands. Due to the extensive polymorphism of both KIR and HLA class I, these interactions are highly diversified and specific combinations correlate with protection or susceptibility to a range of infectious, autoimmune, and reproductive disorders. Evolutionary, genetic, and functional studies are consistent with the interactions between KIR and HLA-C being the dominant control mechanism of human NK cells. In addition to their recognition of the C1 and C2 epitopes, increasing evidence points to KIR having a previously unrecognized selectivity for the peptide presented by HLA-C. This selectivity appears to be a conserved feature of activating KIR and may partly explain the slow progress made in identifying their HLA class I ligands. The peptide selectivity of KIR allows NK cells to respond, not only to changes in the surface expression of HLA-C, but also to the more subtle changes in the HLA-C peptidome, such as occur during viral infection and malignant transformation. Here, we review recent advances in understanding of human-specific KIR evolution and how the inhibitory and activating HLA-C receptors allow NK cells to respond to healthy cells, diseased cells, and the semi-allogeneic cells of the fetus.
Collapse
Affiliation(s)
- Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA.
| |
Collapse
|