1
|
Kaistha BP, Kar G, Dannhorn A, Watkins A, Opoku-Ansah G, Ilieva K, Mullins S, Anderton J, Galvani E, Garcon F, Lapointe JM, Brown L, Hair J, Slidel T, Luheshi N, Ryan K, Hardaker E, Dovedi S, Kumar R, Wilkinson RW, Hammond SA, Eyles J. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models. Cancer Biol Ther 2024; 25:2296048. [PMID: 38206570 PMCID: PMC10793677 DOI: 10.1080/15384047.2023.2296048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines in vitro. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.
Collapse
Affiliation(s)
| | - Gozde Kar
- Oncology R & D, AstraZeneca, Cambridge, UK
| | | | | | | | - Kristina Ilieva
- Oncology R & D, AstraZeneca, Cambridge, UK
- Immunooncology, MorphoSys AG, Planegg, Germany
| | - Stefanie Mullins
- Oncology R & D, AstraZeneca, Cambridge, UK
- Translational Science, F-Star, Cambridge, UK
| | | | | | | | | | - Lee Brown
- Imaging Sciences, AstraZeneca, Cambridge, UK
| | - James Hair
- Oncology R & D, AstraZeneca, Cambridge, UK
| | - Tim Slidel
- Oncology R & D, AstraZeneca, Cambridge, UK
| | | | - Kelli Ryan
- Oncology R & D, AstraZeneca, Cambridge, UK
| | | | | | - Rakesh Kumar
- Oncology R & D, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Jim Eyles
- Oncology R & D, AstraZeneca, Cambridge, UK
| |
Collapse
|
2
|
Yoneyama M, Zormpas-Petridis K, Robinson R, Sobhani F, Provenzano E, Steel H, Lightowlers S, Towns C, Castillo SP, Anbalagan S, Lund T, Wennerberg E, Melcher A, Coles CE, Roxanis I, Yuan Y, Somaiah N. Longitudinal Assessment of Tumor-Infiltrating Lymphocytes in Primary Breast Cancer Following Neoadjuvant Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:862-874. [PMID: 38677525 DOI: 10.1016/j.ijrobp.2024.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TILs) have prognostic significance in several cancers, including breast cancer. Despite interest in combining radiation therapy with immunotherapy, little is known about the effect of radiation therapy itself on the tumor-immune microenvironment, including TILs. Here, we interrogated longitudinal dynamics of TILs and systemic lymphocytes in patient samples taken before, during, and after neoadjuvant radiation therapy (NART) from PRADA and Neo-RT breast clinical trials. METHODS AND MATERIALS We manually scored stromal TILs (sTILs) from longitudinal tumor samples using standardized guidelines as well as deep learning-based scores at cell-level (cTIL) and cell- and tissue-level combination analyses (SuperTIL). In parallel, we interrogated absolute lymphocyte counts from routine blood tests at corresponding time points during treatment. Exploratory analyses studied the relationship between TILs and pathologic complete response (pCR) and long-term outcomes. RESULTS Patients receiving NART experienced a significant and uniform decrease in sTILs that did not recover at the time of surgery (P < .0001). This lymphodepletive effect was also mirrored in peripheral blood. Our SuperTIL deep learning score showed good concordance with manual sTILs and importantly performed comparably to manual scores in predicting pCR from diagnostic biopsies. The analysis suggested an association between baseline sTILs and pCR, as well as sTILs at surgery and relapse, in patients receiving NART. CONCLUSIONS This study provides novel insights into TIL dynamics in the context of NART in breast cancer and demonstrates the potential for artificial intelligence to assist routine pathology. We have identified trends that warrant further interrogation and have a bearing on future radioimmunotherapy trials.
Collapse
Affiliation(s)
- Miki Yoneyama
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Konstantinos Zormpas-Petridis
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ruth Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Faranak Sobhani
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Elena Provenzano
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Harriet Steel
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Sara Lightowlers
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Towns
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Simon P Castillo
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Selvakumar Anbalagan
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Tom Lund
- Integrated Pathology Unit, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Alan Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Charlotte E Coles
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom.
| | - Navita Somaiah
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
3
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
4
|
Tubin S, Ashdown ML, Ahmed MM, Guha C, Salerno G, Celedin B, Trummer B, Demschar S, Raunik W. Novel time-synchronized immune-guided partial tumor irradiation: Proof of principle trial. Radiother Oncol 2024; 199:110442. [PMID: 39069088 DOI: 10.1016/j.radonc.2024.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND PURPOSE Radiotherapy for bulky tumors often results in palliation with suboptimal outcomes. The prognosis is worsened by immunosuppression caused by radio-chemotherapy, negatively impacting on survival. Novel Partial Tumor Irradiation (PTI) was designed to spare the Peritumoral Immune Microenvironment (PIM) and to be delivered synchronously with immune activity peaks, thus enhancing both local and distant tumor control through immunostimulation. MATERIALS AND METHODS Present proof-of-principle trial enrolled 26 patients with bulky tumors, comparing outcomes between treatments administered at immune activity peaks versus troughs. The primary endpoint was local-bystander and distal-abscopal response-rate. Secondary endpoints included overall-, progression-free-, cancer-specific survival, neoadjuvant and immunomodulatory potential. RESULTS All measured outcomes were significantly influenced by treatment-timing. The bystander and abscopal response rates were 77% and 41%, respectively. PTI significantly upregulated pro-inflammatory and cell-death-inducing pathways improving the efficacy of radiotherapy by highly complex tumors. CONCLUSIONS This study highlights the profound impact PTI can have on a highly palliative patient cohort previously deemed beyond therapeutic hope. With 41 % of these patients still alive after a median follow-up of 50 months, PTI offers a potential lifeline for those facing advanced, treatment-resistant cancers. This approach generated also distant immunogenic anti-tumor responses, offering a promising new avenue for the treatment of advanced cancers.
Collapse
Affiliation(s)
- S Tubin
- Medaustron Center for Ion Therapy, Marie-Curie Strasse 5, Wiener Neustadt 2700, Austria; KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria; Heidelberg University Hospital, Department of Radiation Oncology and Radiation Therapy, Im Neuenheimer Feld 400 69120, Heidelberg, Germany; Division of Radiation Biology and Molecular Therapeutics at the Department of Radiation Oncology, Albert Einstein College of Medicine, 111 E. 210th Street Klau 3 Bronx, NY 10467, New York, United States.
| | - M L Ashdown
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, 3010, Melbourne, Australia
| | - M M Ahmed
- Division of Radiation Biology and Molecular Therapeutics at the Department of Radiation Oncology, Albert Einstein College of Medicine, 111 E. 210th Street Klau 3 Bronx, NY 10467, New York, United States
| | - C Guha
- Montefiore Medical Center Radiation Oncology, 111 E 210th St, New York, NY, United States
| | - G Salerno
- Department of Neurosciences, Mental Health and Sensory Organs / Department of Clinical and Molecular Medicine, Universita' La Sapienza Roma, Ospedale Sant' Andrea, Via di Grottarossa, 1035 00189, Rome, RM, Italy.
| | - B Celedin
- KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria
| | - B Trummer
- Center for Interdisciplinary Pain Therapy, Oncology and Palliative Care, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11 9020, Klagenfurt am Wörthersee, Austria
| | - S Demschar
- Center for Interdisciplinary Pain Therapy, Oncology and Palliative Care, Klinikum Klagenfurt am Wörthersee, Feschnigstr. 11 9020, Klagenfurt am Wörthersee, Austria
| | - W Raunik
- KABEG Klinikum Klagenfurt, Institute of Radiation Oncology, Feschnigstraße 11 9020, Klagenfurt am Wörthersee, Austria
| |
Collapse
|
5
|
Berzaghi R, Gundersen K, Dille Pedersen B, Utne A, Yang N, Hellevik T, Martinez-Zubiaurre I. Immunological signatures from irradiated cancer-associated fibroblasts. Front Immunol 2024; 15:1433237. [PMID: 39308864 PMCID: PMC11412886 DOI: 10.3389/fimmu.2024.1433237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Cancer-associated fibroblasts (CAFs) are abundant and influential elements of the tumor microenvironment (TME), giving support to tumor development in multiple ways. Among other mechanisms, CAFs are important regulators of immunological processes occurring in tumors. However, CAF-mediated tumor immunomodulation in the context of radiotherapy remains poorly understood. In this study, we explore effects of radiation on CAF-derived immunoregulatory signals to the TME. Methods Primary CAF cultures were established from freshly collected human NSCLC lung tumors. CAFs were exposed to single-high or fractionated radiation regimens (1x18Gy or 3x6Gy), and the expression of different immunoregulatory cell-associated and secreted signaling molecules was analyzed 48h and 6 days after initiation of treatment. Analyses included quantitative measurements of released damage-associated molecular patterns (DAMPs), interferon (IFN) type I responses, expression of immune regulatory receptors, and secretion of soluble cytokines, chemokines, and growth factors. CAFs are able to survive ablative radiation regimens, however they enter into a stage of premature cell senescence. Results Our data show that CAFs avoid apoptosis and do not contribute by release of DAMPs or IFN-I secretion to radiation-mediated tumor immunoregulation. Furthermore, the secretion of relevant immunoregulatory cytokines and growth factors including TGF-β, IL-6, IL-10, TNFα, IL-1β, VEGF, CXCL12, and CXCL10 remain comparable between non-irradiated and radiation-induced senescent CAFs. Importantly, radiation exposure modifies the cell surface expression of some key immunoregulatory receptors, including upregulation of CD73 and CD276. Discussion Our data suggest that CAFs do not participate in the release of danger signals or IFN-I secretion following radiotherapy. The immune phenotype of CAFs and radiation-induced senescent CAFs is similar, however, the observed elevation of some cell surface immunological receptors on irradiated CAFs could contribute to the establishment of an enhanced immunosuppressive TME after radiotherapy.
Collapse
Affiliation(s)
- Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kristian Gundersen
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Brede Dille Pedersen
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Amalie Utne
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Nannan Yang
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Rykkelid AM, Sinha PM, Folefac CA, Horsman MR, Sørensen BS, Søland TM, Schreurs OJF, Malinen E, Edin NFJ. Combination of proton- or X-irradiation with anti-PDL1 immunotherapy in two murine oral cancers. Sci Rep 2024; 14:11569. [PMID: 38773258 PMCID: PMC11109162 DOI: 10.1038/s41598-024-62272-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Combining radiation therapy with immunotherapy is a strategy to improve both treatments. The purpose of this study was to compare responses for two syngeneic head and neck cancer (HNC) tumor models in mice following X-ray or proton irradiation with or without immune checkpoint inhibition (ICI). MOC1 (immunogenic) and MOC2 (less immunogenic) tumors were inoculated in the right hind leg of each mouse (C57BL/6J, n = 398). Mice were injected with anti-PDL1 (10 mg/kg, twice weekly for 2 weeks), and tumors were treated with single-dose irradiation (5-30 Gy) with X-rays or protons. MOC2 tumors grew faster and were more radioresistant than MOC1 tumors, and all mice with MOC2 tumors developed metastases. Irradiation reduced the tumor volume in a dose-dependent manner. ICI alone reduced the tumor volume for MOC1 with 20% compared to controls, while no reduction was seen for MOC2. For MOC1, there was a clear treatment synergy when combining irradiation with ICI for radiation doses above 5 Gy and there was a tendency for X-rays being slightly more biologically effective compared to protons. For MOC2, there was a tendency of protons being more effective than X-rays, but both radiation types showed a small synergy when combined with ICI. Although the responses and magnitudes of the therapeutic effect varied, the optimal radiation dose for maximal synergy appeared to be in the order of 10-15 Gy, regardless of tumor model.
Collapse
Affiliation(s)
- Anne Marit Rykkelid
- Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo, Norway
| | | | | | - Michael R Horsman
- Experimental Clinical Oncology - Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Tine Merete Søland
- Institute of Oral Biology, University of Oslo, P.O. Box 1052, 0316, Blindern, Oslo, Norway
| | | | - Eirik Malinen
- Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo, Norway
- Department of Radiation Biology, Oslo University Hospital, P.O. Box 4950, 0424, Nydalen, Oslo, Norway
| | - Nina Frederike J Edin
- Department of Physics, University of Oslo, P.O. Box 1048, 0316, Blindern, Oslo, Norway.
| |
Collapse
|
7
|
Gao C, Zeng Y, Zhang L, Wang J, Yang X, Li K, Ren H, Liu Z. Sustained Secretion of CCL21 via an Implantable Cell Reservoir Hydrogel Enhances the Systemic Antitumor Effect of Radiotherapy. NANO LETTERS 2024; 24:5894-5903. [PMID: 38709593 DOI: 10.1021/acs.nanolett.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The combination of radiotherapy (RT) and immunotherapy shows promise in improving the clinical treatment of solid tumors; however, it faces challenges of low response rates and systemic toxicity. Herein, an implantable alginate/collagen hydrogel encapsulating C-C motif ligand 21 (CCL21)-expressing dendritic cells (CCL21-DCs@gel) was developed to potentiate the systemic antitumor effects of RT. The hydrogel functioned as a suitable reservoir for in vivo culture and proliferation of CCL21-DCs, thereby enabling sustained CCL21 release. The local CCL21 gradient induced by CCL21-DCs@gel significantly enhanced the efficacy of RT in suppressing primary tumor growth and inhibiting distant metastasis across several mouse models. Furthermore, the combination of RT with CCL21-DCs@gel provided complete prophylactic protection to mice. Mechanistic investigations revealed that CCL21-DCs@gel potentiated RT by promoting tumor lymphangiogenesis and attracting immune cell infiltration into the tumor. Collectively, these results suggest that CCL21-DCs@gel is a promising adjunct to RT for effectively eradicating tumors and preventing tumor recurrence.
Collapse
Affiliation(s)
- Chao Gao
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yuwen Zeng
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Linyu Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiujie Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - He Ren
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing 100191, China
| |
Collapse
|
8
|
Luo X, Zeng M. Combination low-dose cyclophosphamide with check-point blockade and ionizing radiation promote an abscopal effect in mouse models of melanoma. J Cancer Res Ther 2024; 20:718-725. [PMID: 38687945 DOI: 10.4103/jcrt.jcrt_616_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 11/09/2023] [Indexed: 05/02/2024]
Abstract
PURPOSE The complex strategy of hypo-fractionated radiotherapy (HFRT) in combination with an immune checkpoint inhibitor (ICI) can stimulate a potential systemic antitumor response; however, the abscopal effect is always precluded by the tumor microenvironment, which may limit sufficient T-cell infiltration of distant nonirradiated tumors for certain kinds of inhibitory factors, such as regulatory T-cells (Tregs). Additionally, low-dose cyclophosphamide (LD-CYC) can specifically kill regulatory Tregs and strongly synergize antigen-specific immune responses, which could promote an abscopal effect. MATERIALS AND METHODS We explored whether a triple regimen consisting of HFRT, ICI, and LD-CYC could achieve a better systemic antitumor response in bilateral mouse tumor models. RESULT Our data demonstrate that LD-CYC combined with HFRT and antiprogrammed cell death ligand 1 (PDL-1) therapy could enhance the abscopal effect than only HFRT/antiPDL-1 or HFRT alone. Surprisingly, repeat CYC doses cannot further restrain tumor proliferation but can prolong murine overall survival, as revealed by the major pathologic responses. These results are associated with increased CD8 + effector T-cell infiltration, although LD-CYC did not upregulate PDL-1 expression in the tumor. CONCLUSIONS Compared with traditional strategies, for the first time, we demonstrated that a triple treatment strategy remarkably increased the number of radiation-induced tumor-infiltrating CD8 + T-cells, effectively decreasing infiltrating Tregs, and promoting an abscopal effect. Thus, we describe a novel and effective therapeutic approach by combining multiple strategies to target several tumor-mediated immune inhibitory mechanisms.
Collapse
MESH Headings
- Animals
- Cyclophosphamide/pharmacology
- Cyclophosphamide/administration & dosage
- Cyclophosphamide/therapeutic use
- Mice
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/radiation effects
- Tumor Microenvironment/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/radiation effects
- Female
- Combined Modality Therapy
- Disease Models, Animal
- Melanoma, Experimental/pathology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/radiotherapy
- Radiation, Ionizing
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- Antineoplastic Agents, Alkylating/pharmacology
- Antineoplastic Agents, Alkylating/therapeutic use
- Antineoplastic Agents, Alkylating/administration & dosage
- Mice, Inbred C57BL
- Humans
- Cell Line, Tumor
Collapse
Affiliation(s)
- Xing Luo
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
- Clinical Medical School, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
- Department of Oncology, Key Clinical Specialty of Sichuan Province, Chengdu, Sichuan, People's Republic of China
| | - Ming Zeng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
9
|
Altorki NK, Bhinder B, Borczuk AC, Elemento O, Mittal V, McGraw TE. A signature of enhanced proliferation associated with response and survival to anti-PD-L1 therapy in early-stage non-small cell lung cancer. Cell Rep Med 2024; 5:101438. [PMID: 38401548 PMCID: PMC10982989 DOI: 10.1016/j.xcrm.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
In early-stage non-small cell lung cancer, the combination of neoadjuvant anti-PD-L1 and subablative stereotactic body radiation therapy (SBRT) is associated with higher rates of major pathologic response compared to anti-PD-L1 alone. Here, we identify a 140-gene set, enriched in genes characteristic of highly proliferating cells, associated with response to the dual therapy. Analysis of on-treatment transcriptome data indicate roles for T and B cells in response. The 140-gene set is associated with disease-free survival when applied to the combined trial arms. This 140-gene set identifies a subclass of tumors in all 7 of The Cancer Genome Atlas tumor types examined. Worse survival is associated with the 140-gene signature in 5 of these tumor types. Collectively, our data support that this 140-gene set, discovered in association with response to combined anti-PD-L1 and SBRT, identifies a clinically aggressive subclass of solid tumors that may be more likely to respond to immunotherapies.
Collapse
Affiliation(s)
- Nasser K Altorki
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA.
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, Northwell Health Cancer Institute, Northwell Health, Greenvale, NY 10042, USA
| | - Olivier Elemento
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA
| | - Timothy E McGraw
- Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
10
|
Yang N, Hellevik T, Berzaghi R, Martinez‐Zubiaurre I. Radiation-induced effects on TGF-β and PDGF receptor signaling in cancer-associated fibroblasts. Cancer Rep (Hoboken) 2024; 7:e2018. [PMID: 38488488 PMCID: PMC10941573 DOI: 10.1002/cnr2.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) consist of heterogeneous connective tissue cells and are often constituting the most abundant cell type in the tumor stroma. Radiation effects on tumor stromal components like CAFs in the context of radiation treatment is not well-described. AIM This study explores potential changes induced by ionizing radiation (IR) on platelet-derived growth factor (PDGF)/PDGFRs and transforming growth factor-beta (TGF-β)/TGFβRs signaling systems in CAFs. METHODS AND RESULTS Experiments were carried out by employing primary cultures of human CAFs isolated from freshly resected non-small cell lung carcinoma tumor tissues. CAF cultures from nine donors were treated with one high (1 × 18 Gy) or three fractionated (3 × 6 Gy) radiation doses. Alterations in expression levels of TGFβRII and PDGFRα/β induced by IR were analyzed by western blots and flow cytometry. In the presence or absence of cognate ligands, receptor activation was studied in nonirradiated and irradiated CAFs. Radiation exposure did not exert changes in expression of PDGF or TGF-β receptors in CAFs. Additionally, IR alone was unable to trigger activation of either receptor. The radiation regimens tested did not affect PDGFRβ signaling in the presence of PDGF-BB. In contrast, signaling via pSmad2/3 and pSmad1/5/8 appeared to be down-regulated in irradiated CAFs after stimulation with TGF-β, as compared with controls. CONCLUSION Our data demonstrate that IR by itself is insufficient to induce measurable changes in PDGF or TGF-β receptor expression levels or to induce receptor activation in CAFs. However, in the presence of their respective ligands, exposure to radiation at certain doses appear to interfere with TGF-β receptor signaling.
Collapse
Affiliation(s)
- Nannan Yang
- Department of Community Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| | - Turid Hellevik
- Department of Radiation OncologyUniversity Hospital of North NorwayTromsøNorway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| | - Inigo Martinez‐Zubiaurre
- Department of Clinical Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
11
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
12
|
Song KH, Jung SY, Park JI, Lee DH, Ahn J, Hwang SG, Lim DS, Song JY. Poliovirus receptor inhibition in breast cancer cells induces antitumor immunity via T cell activation. Am J Cancer Res 2023; 13:5966-5980. [PMID: 38187056 PMCID: PMC10767338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
Radiotherapy (RT) is a commonly used treatment option for patients with cancer because it can effectively control tumor growth and kill tumor cells. However, the impact of RT goes beyond direct tumor cell killing because it can change the tumor microenvironment by altering surrounding tissues and infiltrating cells and modulating the expression of immune checkpoints. Poliovirus receptor (PVR, cluster of differentiation (CD)155), a member of the nectin-like molecule family, is overexpressed in many human cancers. However, its role in the tumor growth and T-cell immune responses of triple-negative breast cancer (TNBC) remains unclear. In the present study, we observe that radiation exposure increases PVR expression in MDA-MB-231 and BT549 cells. Silencing PVR not only inhibited the proliferation of breast cancer cells but also significantly enhanced the cytotoxicity of cytotoxic T lymphocytes (CTLs) compared with the control or RT groups. Treatment of T cells with PVR decreased CD8+ T cells, increased CD4+ T cells, and induced PVR ligands such as T cell immunoreceptor with immunoglobulin and ITIM domain, CD226, and CD96. However, after treatment with PVR, CTL responses decreased and secretion of interferon-γ, tumor necrosis factor-α, interleukin (IL)-2, IL-6, and IL-10 was significantly inhibited. In contrast, PVR knockdown increased the production of these cytokines, illustrating the immunosuppressive function of PVR. Suppression of PVR using an anti-PVR antibody inhibited 4T1 tumor growth by increasing immune cell infiltration. These results provide new insights into the role of PVR in TNBC and highlight its potential as a target for T cell-mediated immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Dong-Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA UniversityGyeonggi-do 13488, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| |
Collapse
|
13
|
Becherini C, Lancia A, Detti B, Lucidi S, Scartoni D, Ingrosso G, Carnevale MG, Roghi M, Bertini N, Orsatti C, Mangoni M, Francolini G, Marani S, Giacomelli I, Loi M, Pergolizzi S, Bonzano E, Aristei C, Livi L. Modulation of tumor-associated macrophage activity with radiation therapy: a systematic review. Strahlenther Onkol 2023; 199:1173-1190. [PMID: 37347290 PMCID: PMC10673745 DOI: 10.1007/s00066-023-02097-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/23/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE Tumor-associated macrophages (TAMs) are the most represented cells of the immune system in the tumor microenvironment (TME). Besides its effects on cancer cells, radiation therapy (RT) can alter TME composition. With this systematic review, we provide a better understanding on how RT can regulate macrophage characterization, namely the M1 antitumor and the M2 protumor polarization, with the aim of describing new effective RT models and exploration of the possibility of integrating radiation with other available therapies. METHODS A systematic search in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was carried out in PubMed, Google Scholar, and Scopus. Articles from January 2000 to April 2020 which focus on the role of M1 and M2 macrophages in the response to RT were identified. RESULTS Of the 304 selected articles, 29 qualitative summary papers were included in our analysis (16 focusing on administration of RT and concomitant systemic molecules, and 13 reporting on RT alone). Based on dose intensity, irradiation was classified into low (low-dose irradiation, LDI; corresponding to less than 1 Gy), moderate (moderate-dose irradiation, MDI; between 1 and 10 Gy), and high (high-dose irradiation, HDI; greater than 10 Gy). While HDI seems to be responsible for induced angiogenesis and accelerated tumor growth through early M2-polarized TAM infiltration, MDI stimulates phagocytosis and local LDI may represent a valid treatment option for possible combination with cancer immunotherapeutic agents. CONCLUSION TAMs seem to have an ambivalent role on the efficacy of cancer treatment. Radiation therapy, which exerts its main antitumor activity via cell killing, can in turn interfere with TAM characterization through different modalities. The plasticity of TAMs makes them an attractive target for anticancer therapies and more research should be conducted to explore this potential therapeutic strategy.
Collapse
Affiliation(s)
- Carlotta Becherini
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy
| | - Andrea Lancia
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Beatrice Detti
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy.
| | - Sara Lucidi
- Radiation Oncology, Santa Chiara Hospital, Trento, Italy
| | - Daniele Scartoni
- Proton Treatment Center, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, Perugia General Hospital, 06129, Perugia, Italy
| | - Maria Grazia Carnevale
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Manuele Roghi
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Niccolò Bertini
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Carolina Orsatti
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Monica Mangoni
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy
| | - Simona Marani
- Radiation Oncology Section, Perugia General Hospital, 06129, Perugia, Italy
| | - Irene Giacomelli
- Proton Treatment Center, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Mauro Loi
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy
| | - Stefano Pergolizzi
- Radiation Oncology Unit-Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Elisabetta Bonzano
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, Perugia General Hospital, 06129, Perugia, Italy
| | - Lorenzo Livi
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Khalifa J. [Impact of immunotherapy on the therapeutic strategy for the management of stage I non-small cell lung cancer: The radiation oncologist's point of view]. Cancer Radiother 2023; 27:653-658. [PMID: 37573193 DOI: 10.1016/j.canrad.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 08/14/2023]
Abstract
Surgery is the standard treatment for operable patients with stage I non-small cell lung cancer (NSCLC) (T1-T2aN0M0). Stereotactic body radiotherapy (SBRT) is the treatment of choice for non-operable patients, and its positioning for operable patients remains to be clarified. The pattern of recurrence after management of stage I NSCLC is dominated by the risk of distant recurrence, this constituting the rationale for the adjunction of systemic treatment, and especially check point inhibitor (CPI), in combination with surgery or SBRT for patients with high risk features. While the benefit of postoperative CPI on the micro-metastatic disease is logically considered within the framework of a simply additive effect of both therapeutic modalities, it is reasonable to consider a synergistic effect of both CPI and SBRT. Given the role of tumor draining nodes in the development of an anti-tumor immune response, a "tumor-draining node sparing" strategy enabled by SBRT could therefore be of major interest in combination with CPI. Pending confirmation of the role of CPI in combination with RTS for the management of stage I NSCLC, we thus discuss in this review the theoretical advantages that this therapeutic strategy could have compared to a surgical strategy.
Collapse
Affiliation(s)
- J Khalifa
- Département de radiothérapie, institut universitaire du cancer de Toulouse - Onccopole, 1, avenue Irène-Joliot-Curie, 31000 Toulouse, France; Inserm U1037, équipe immunité anti-tumorale et immunothérapie, centre de recherche contre le cancer de Toulouse, 2, avenue Hubert-Curien, 31100 Toulouse, France.
| |
Collapse
|
15
|
Wu L, Zhang Z, Bai M, Yan Y, Yu J, Xu Y. Radiation combined with immune checkpoint inhibitors for unresectable locally advanced non-small cell lung cancer: synergistic mechanisms, current state, challenges, and orientations. Cell Commun Signal 2023; 21:119. [PMID: 37221584 PMCID: PMC10207766 DOI: 10.1186/s12964-023-01139-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/22/2023] [Indexed: 05/25/2023] Open
Abstract
Until the advent of immune checkpoint inhibitors (ICIs), definitive radiotherapy (RT) concurrently with chemotherapy was recommended for unresectable, locally advanced non-small cell lung cancer (LA-NSCLC). The trimodality paradigm with consolidation ICIs following definitive concurrent chemoradiotherapy has been the standard of care since the PACIFIC trial. Preclinical evidence has demonstrated the role of RT in the cancer-immune cycle and the synergistic effect of RT combined with ICIs (iRT). However, RT exerts a double-edged effect on immunity and the combination strategy still could be optimized in many areas. In the context of LA-NSCLC, optimized RT modality, choice, timing, and duration of ICIs, care for oncogenic addicted tumors, patient selection, and novel combination strategies require further investigation. Targeting these blind spots, novel approaches are being investigated to cross the borders of PACIFIC. We discussed the development history of iRT and summarized the updated rationale for the synergistic effect. We then summarized the available research data on the efficacy and toxicity of iRT in LA-NSCLC for cross-trial comparisons to eliminate barriers. Progression during and after ICIs consolidation therapy has been regarded as a distinct resistance scenario from primary or secondary resistance to ICIs, the subsequent management of which has also been discussed. Finally, based on unmet needs, we probed into the challenges, strategies, and auspicious orientations to optimize iRT in LA-NSCLC. In this review, we focus on the underlying mechanisms and recent advances of iRT with an emphasis on future challenges and directions that warrant further investigation. Taken together, iRT is a proven and potential strategy in LA-NSCLC, with multiple promising approaches to further improve the efficacy. Video Abstract.
Collapse
Affiliation(s)
- Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Menglin Bai
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yujie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Guberina N, Wirsdörfer F, Stuschke M, Jendrossek V. Combined radiation- and immune checkpoint-inhibitor-induced pneumonitis – The challenge to predict and detect overlapping immune-related adverse effects from evolving laboratory biomarkers and clinical imaging. Neoplasia 2023; 39:100892. [PMID: 37011458 PMCID: PMC10124136 DOI: 10.1016/j.neo.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
The risk of overlapping pulmonary toxicity induced by thoracic radio(chemo)therapy and immune checkpoint inhibitor therapy in the treatment of patients suffering from non-small cell lung cancer (NSCLC) is one important challenge in successful radioimmunotherapy. In the present opinion we highlight factors that we find important to be considered before treatment initiation, during the treatment sequence, and after treatment completion combined or sequential application of radio(chemo)therapy and immune checkpoint inhibitor therapy. A major aim is to optimize the therapeutic index and to avoid immune related adverse effects. The goals in the future will be focused not only on identifying patients already in the pretreatment phase who could benefit from this complex treatment, but also in identifying patients, who are most likely to have higher grade toxicity. In this respect, proper assessment of clinical performance status, monitoring for the presence of certain comorbidities, evaluation of laboratory parameters such as TGF-α and IL-6 levels, human leukocyte antigens (HLA), and consideration of other potential biomarkers which will evolve in near future are essential. Likewise, the critical parameters must be monitored during the treatment phase and follow-up care to detect potential side effects in time. With the help of high-end imaging which is already used on a daily basis in image guided radiotherapy (IGRT) for intensity modulated radiotherapy (IMRT), its advanced form volumetric modulated arc therapy (VMAT), and adaptive radiation therapy (ART), clinically relevant changes in lung tissue can be detected at an early stage of disease. Concurrent radiotherapy and immunotherapy requires a special focus on adverse events, particularly of the lung, but, when properly approached and applied, it may offer new perspectives for patients with locally advanced NSCLC to be seriously considered as a curative option.
Collapse
|
17
|
Penninckx S, Thariat J, Mirjolet C. Radiation therapy-activated nanoparticle and immunotherapy: The next milestone in oncology? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:157-200. [PMID: 37438017 DOI: 10.1016/bs.ircmb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Radiotherapy (RT) is a fundamental treatment at the locoregional or oligometastatic stages of cancer. In various tumors, RT effects may be optimized using synergistic combinations that enhance tumor response. Innovative strategies have been designed that explore the radiation mechanisms, at the physical, chemical and biological levels, to propose precision RT approaches. They consist in combining RT with immunotherapy to revert radiation immunosuppressive effects or to enhance radiation-induced immune defenses against the tumor to favor immunogenic cell death. Radiotherapy-activated nanoparticles are another innovation. By increasing radiation response in situ, nanoparticles improve tumor control locally, and can trigger systemic immune reactions that may be exploited to improve the systemic efficacy of RT. Strong clinical evidence of improved outcomes is now available for combinations of RT and immunotherapy on one hand and RT and nanoparticles on the other hand. The triple combination of RT, immunotherapy and nanoparticles is promising in terms of tolerance, local and systemic anti-tumor control. Yet, significant challenges remain to unravel the complexity of the multiscale mechanisms underlying response to this combination and their associated parameters. Such parameters include patient characteristics, tumor bulk and histology, radiation technique, energy, dose, fractionation, immunotherapy targets and predictive biomarkers, nanoparticle type, size, delivery (intratumoral/intravenous), distribution. The temporal combination is another critical parameter. The mechanisms of response of the combinatorial approaches are reviewed, with a focus on underlying mechanisms based on preclinical, translational and clinical studies. Opportunities for translation of current understanding into precision RT trials combined with immunotherapy and nanoparticles are also discussed.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Juliette Thariat
- Laboratoire de physique Corpusculaire IN2P3/ENSICAEN/CNRS UMR 6534, Normandie Université Centre François Baclesse, Caen, France
| | - Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France
| |
Collapse
|
18
|
Tian W, Chu X, Tanzhu G, Zhou R. Optimal timing and sequence of combining stereotactic radiosurgery with immune checkpoint inhibitors in treating brain metastases: clinical evidence and mechanistic basis. J Transl Med 2023; 21:244. [PMID: 37020242 PMCID: PMC10077682 DOI: 10.1186/s12967-023-04089-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/25/2023] [Indexed: 04/07/2023] Open
Abstract
Recent evidence has shown that immune checkpoint inhibitors (ICIs) are efficacious for treating brain metastases of various primary tumors. However, the immunosuppressive tumor microenvironment and the blood-brain barrier (BBB) or blood-tumor barrier (BTB) essentially restrict the efficacy of ICIs. Stereotactic radiosurgery (SRS) can be a powerful ally to ICIs due to its trait of disrupting the BBB/BTB and increasing the immunogenicity of brain metastases. The combination of SRS + ICI has shown synergy in brain metastases in several retrospective studies. Nevertheless, the optimal schedule for the combination of SRS and ICI in brain metastases is yet to be determined. In this review, we summarized the current clinical and preclinical evidence on the timing and sequence of SRS + ICI to provide insight into the current state of knowledge about this important area in patient care.
Collapse
Affiliation(s)
- Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
19
|
Hatoum GF, Temple HT, Garcia SA, Zheng Y, Kfoury F, Kinley J, Wu X. Neoadjuvant Radiation Therapy with Interdigitated High-Dose LRT for Voluminous High-Grade Soft-Tissue Sarcoma. Cancer Manag Res 2023; 15:113-122. [PMID: 36776730 PMCID: PMC9910204 DOI: 10.2147/cmar.s393934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose To report a case of large extremity soft tissue sarcoma (2933 cc), safely treated with a novel approach of interdigitating high-dose LATTICE radiation therapy (LRT) with standard radiation therapy as a neoadjuvant treatment to surgery. Patients and Methods Four sessions of high-dose LRT were delivered in a weekly interval, interdigitated with standard radiation therapy. The LRT plan consisted of 15 high-dose vertices receiving a dose >12 Gy per session, with 2-3 Gy to the peripheral margin of the tumor. The patient underwent surgical excision 2 months after the new regimen of induction radiation therapy. Results and Discussion The patient tolerated the radiation therapy regimen well. The post-operative assessment revealed a negative surgical margin and over 95% necrosis of the total tumor volume. The post-surgical wound complication was mitigated by outpatient wound care. Interdigitating multiple sessions of high-dose LATTICE radiation treatments with standard neoadjuvant radiation therapy as a neoadjuvant therapy for soft tissue sarcoma was feasible and did not incur additional toxicity in this clinical case. A phase-I/II trial will be conducted to further evaluate the toxicity and efficacy of the new treatment strategy with the intent to increase the rate of pathologic necrosis, which has been shown to positively correlate with the overall survival.
Collapse
Affiliation(s)
- Georges F Hatoum
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
| | - H Thomas Temple
- Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Silvio A Garcia
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
| | - Yi Zheng
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
- Department of Research and Development, Executive Medical Physics Associates, North Miami Beach, FL, USA
| | - Fouad Kfoury
- Pharmacy Department, South Miami Hospital, South Miami, FL, USA
| | - Jill Kinley
- Department of Clinical Research, HCA Florida JFK Medical Center, Atlantis, FL, USA
| | - Xiaodong Wu
- Department of Radiation Oncology, HCA Florida JFK Medical Center Comprehensive Cancer Institute, Lake Worth, FL, USA
- Department of Research and Development, Executive Medical Physics Associates, North Miami Beach, FL, USA
| |
Collapse
|
20
|
Radiosensitivity is associated with antitumor immunity in estrogen receptor-negative breast cancer. Breast Cancer Res Treat 2023; 197:479-488. [PMID: 36515748 DOI: 10.1007/s10549-022-06818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE This study evaluated radiosensitivity and the tumor microenvironment (TME) to identify characteristics of breast cancer patients who would benefit most from radiation therapy. METHODS We analyzed 1903 records from the Molecular Taxonomy of Breast Cancer International Consortium cohort using the radiosensitivity index and gene expression deconvolution algorithms, CIBERSORT and xCell, that estimates the TME composition of tumor samples. In this study, patients were stratified according to TME and radiosensitivity. We performed integrative analyses of clinical and immuno-genomic data to characterize molecular features associated with radiosensitivity. RESULTS Radiosensitivity was significantly associated with activation of antitumor immunity. In contrast, radioresistance was associated with a reactive stromal microenvironment. The immuno-genomic analysis revealed that estrogen receptor (ER) pathway activity was correlated with suppression of antitumor immunity. In ER-negative disease, the best prognosis was shown in the immune-high and radiosensitive group patients, and the lowest was in the immune-low and radioresistant group patients. In ER-positive disease, immune signature and radiosensitivity had no prognostic significance. CONCLUSION Taken together, these results suggest that tumor radiosensitivity is associated with activation of antitumor immunity and a better prognosis, particularly in patients with ER-negative breast cancer.
Collapse
|
21
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
de Kermenguy F, Meziani L, Mondini M, Clémenson C, Morel D, Deutsch E, Robert C. Radio-induced lymphopenia in the era of anti-cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
23
|
Zhao R, Wei W, Zhen L. WGCNA-based identification of potential targets and pathways in response to treatment in locally advanced breast cancer patients. Open Med (Wars) 2023; 18:20230651. [PMID: 36896338 PMCID: PMC9990777 DOI: 10.1515/med-2023-0651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 03/08/2023] Open
Abstract
Locally advanced breast cancer patients have a poor prognosis; however, the relationship between potential targets and the response to treatment is still unclear. The gene expression profiles of breast cancer patients with stages from IIB to IIIC were downloaded from The Cancer Genome Atlas. We applied weighted gene co-expression network analysis and differentially expressed gene analysis to identify the primary genes involved in treatment response. The disease-free survival between low- and high-expression groups was analyzed using Kaplan-Meier analysis. Gene set enrichment analysis was applied to identify hub genes-related pathways. Additionally, the CIBERSORT algorithm was employed to evaluate the correlation between the hub gene expression and immune cell types. A total of 16 genes were identified to be related to radiotherapy response, and low expression of SVOPL, EDAR, GSTA1, and ABCA13 was associated with poor overall survival and progression-free survival in breast cancer cases. Correlation analysis revealed that the four genes negatively related to some specific immune cell types. The four genes were downregulated in H group compared with the L group. Four hub genes associated with the immune cell infiltration of breast cancer were identified; these genes might be used as a promising biomarker to test the treatment in breast cancer patients.
Collapse
Affiliation(s)
- Ruipeng Zhao
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Wan Wei
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Linlin Zhen
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
24
|
The Lymphatic Endothelium in the Context of Radioimmuno-Oncology. Cancers (Basel) 2022; 15:cancers15010021. [PMID: 36612017 PMCID: PMC9817924 DOI: 10.3390/cancers15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The study of lymphatic tumor vasculature has been gaining interest in the context of cancer immunotherapy. These vessels constitute conduits for immune cells' transit toward the lymph nodes, and they endow tumors with routes to metastasize to the lymph nodes and, from them, toward distant sites. In addition, this vasculature participates in the modulation of the immune response directly through the interaction with tumor-infiltrating leukocytes and indirectly through the secretion of cytokines and chemokines that attract leukocytes and tumor cells. Radiotherapy constitutes the therapeutic option for more than 50% of solid tumors. Besides impacting transformed cells, RT affects stromal cells such as endothelial and immune cells. Mature lymphatic endothelial cells are resistant to RT, but we do not know to what extent RT may affect tumor-aberrant lymphatics. RT compromises lymphatic integrity and functionality, and it is a risk factor to the onset of lymphedema, a condition characterized by deficient lymphatic drainage and compromised tissue homeostasis. This review aims to provide evidence of RT's effects on tumor vessels, particularly on lymphatic endothelial cell physiology and immune properties. We will also explore the therapeutic options available so far to modulate signaling through lymphatic endothelial cell receptors and their repercussions on tumor immune cells in the context of cancer. There is a need for careful consideration of the RT dosage to come to terms with the participation of the lymphatic vasculature in anti-tumor response. Here, we provide new approaches to enhance the contribution of the lymphatic endothelium to radioimmuno-oncology.
Collapse
|
25
|
Zhu S, Wang Y, Tang J, Cao M. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Front Immunol 2022; 13:1074477. [PMID: 36532071 PMCID: PMC9753984 DOI: 10.3389/fimmu.2022.1074477] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging evidence indicates that the induction of radiotherapy(RT) on the immunogenic cell death (ICD) is not only dependent on its direct cytotoxic effect, changes in the tumor immune microenvironment also play an important role in it. Tumor immune microenvironment (TIME) refers to the immune microenvironment that tumor cells exist, including tumor cells, inflammatory cells, immune cells, various signaling molecules and extracellular matrix. TIME has a barrier effect on the anti-tumor function of immune cells, which can inhibit all stages of anti-tumor immune response. The remodeling of TIME caused by RT may affect the degree of immunogenicity, and make it change from immunosuppressive phenotype to immunostimulatory phenotype. It is of great significance to reveal the causes of immune escape of tumor cells, especially for the treatment of drug-resistant tumor. In this review, we focus on the effect of RT on the TIME, the mechanism of RT in reversing the TIME to suppress intrinsic immunity, and the sensitization effect of the remodeling of TIME caused by RT on the effectiveness of immunotherapy.
Collapse
|
26
|
Liu Y, Betori RC, Pagacz J, Frost GB, Efimova EV, Wu D, Wolfgeher DJ, Bryan TM, Cohen SB, Scheidt KA, Kron SJ. Targeting telomerase reverse transcriptase with the covalent inhibitor NU-1 confers immunogenic radiation sensitization. Cell Chem Biol 2022; 29:1517-1531.e7. [PMID: 36206753 PMCID: PMC9588800 DOI: 10.1016/j.chembiol.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Beyond synthesizing telomere repeats, the telomerase reverse transcriptase (TERT) also serves multiple other roles supporting cancer growth. Blocking telomerase to drive telomere erosion appears impractical, but TERT's non-canonical activities have yet to be fully explored as cancer targets. Here, we used an irreversible TERT inhibitor, NU-1, to examine impacts on resistance to conventional cancer therapies. In vitro, inhibiting TERT sensitized cells to chemotherapy and radiation. NU-1 delayed repair of double-strand breaks, resulting in persistent DNA damage signaling and cellular senescence. Although NU-1 alone did not impact growth of syngeneic CT26 tumors in BALB/c mice, it dramatically enhanced the effects of radiation, leading to immune-dependent tumor elimination. Tumors displayed persistent DNA damage, suppressed proliferation, and increased activated immune infiltrate. Our studies confirm TERT's role in limiting genotoxic effects of conventional therapy but also implicate TERT as a determinant of immune evasion and therapy resistance.
Collapse
Affiliation(s)
- Yue Liu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Rick C Betori
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Joanna Pagacz
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Grant B Frost
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Elena V Efimova
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ding Wu
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Scott B Cohen
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| | - Stephen J Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy. Int J Mol Sci 2022; 23:ijms232012263. [PMID: 36293116 PMCID: PMC9602685 DOI: 10.3390/ijms232012263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 03/21/2023] Open
Abstract
Therapeutic cancer vaccines have become firmly established as a reliable and proficient form of tumor immunotherapy. They represent a promising approach for substantial advancements in the successful treatment of malignant diseases. One attractive vaccine strategy is using, as the vaccine material, the whole tumor cells treated ex vivo by rapid tumor ablation therapies that instigate stress signaling responses culminating in immunogenic cell death (ICD). One such treatment is photodynamic therapy (PDT). The underlying mechanisms and critical elements responsible for the potency of these vaccines are discussed in this review. Radiotherapy has emerged as a suitable component for the combined therapy protocols with the vaccines. Arguments and prospects for optimizing tumor control using a radiovaccination strategy involving X-ray irradiation plus PDT vaccines are presented, together with the findings supporting its validity.
Collapse
|
28
|
Beach C, MacLean D, Majorova D, Arnold JN, Olcina MM. The effects of radiation therapy on the macrophage response in cancer. Front Oncol 2022; 12:1020606. [PMID: 36249052 PMCID: PMC9559862 DOI: 10.3389/fonc.2022.1020606] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
The efficacy of radiotherapy, a mainstay of cancer treatment, is strongly influenced by both cellular and non-cellular features of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a heterogeneous population within the TME and their prevalence significantly correlates with patient prognosis in a range of cancers. Macrophages display intrinsic radio-resistance and radiotherapy can influence TAM recruitment and phenotype. However, whether radiotherapy alone can effectively "reprogram" TAMs to display anti-tumor phenotypes appears conflicting. Here, we discuss the effect of radiation on macrophage recruitment and plasticity in cancer, while emphasizing the role of specific TME components which may compromise the tumor response to radiation and influence macrophage function. In particular, this review will focus on soluble factors (cytokines, chemokines and components of the complement system) as well as physical changes to the TME. Since the macrophage response has the potential to influence radiotherapy outcomes this population may represent a drug target for improving treatment. An enhanced understanding of components of the TME impacting radiation-induced TAM recruitment and function may help consider the scope for future therapeutic avenues to target this plastic and pervasive population.
Collapse
Affiliation(s)
- Callum Beach
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - David MacLean
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Dominika Majorova
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Monica M. Olcina
- Department of Oncology, Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom,*Correspondence: Monica M. Olcina,
| |
Collapse
|
29
|
Telarovic I, Yong CSM, Guckenberger M, Unkelbach J, Pruschy M. Radiation-induced lymphopenia does not impact treatment efficacy in a mouse tumor model. Neoplasia 2022; 31:100812. [PMID: 35667149 PMCID: PMC9168138 DOI: 10.1016/j.neo.2022.100812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Radiation-induced lymphopenia is a common occurrence in radiation oncology and an established negative prognostic factor, however the mechanisms underlying the relationship between lymphopenia and inferior survival remain elusive. The relevance of lymphocyte co-irradiation as critical normal tissue component at risk is an emerging topic of high clinical relevance, even more so in the context of potentially synergistic radiotherapy-immunotherapy combinations. The impact of the radiotherapy treatment volume on the lymphocytes of healthy and tumor-bearing mice was investigated in a novel mouse model of radiation-induced lymphopenia. Using an image-guided small-animal radiotherapy treatment platform, translationally relevant tumor-oriented volumes of irradiation with an anatomically defined increasing amount of normal tissue were irradiated, with a focus on the circulating blood and lymph nodes. In healthy mice, the influence of irradiation with increasing radiotherapy treatment volumes was quantified on the level of circulating blood cells and in the spleen. A significant decrease in the lymphocytes was observed in response to irradiation, including the minimally irradiated putative tumor area. The extent of lymphopenia correlated with the increasing volumes of irradiation. In tumor-bearing mice, differential radiotherapy treatment volumes did not influence the overall therapeutic response to radiotherapy alone. Intriguingly, an improved treatment efficacy in mice treated with draining-lymph node co-irradiation was observed in combination with an immune checkpoint inhibitor. Taken together, our study reveals compelling data on the importance of radiotherapy treatment volume in the context of lymphocytes as critical components of normal tissue co-irradiation and highlights emerging challenges at the interface of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen S M Yong
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Dept. Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Dept. Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
30
|
Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
This review focuses on the opposing effects on the immune system of radiotherapy (RT) and the consequences for combined cancer treatment strategies of RT with immunotherapies, including hyperthermia (HT). How RT and HT might affect cancer stem cell populations is also briefly outlined in this context.
Recent Findings
RT is one of the crucial standard cancer therapies. Most patients with solid tumors receive RT for curative and palliative purposes in the course of their disease. RT achieves a local tumor control by inducing DNA damage which can lead to tumor cell death. In recent years, it has become evident that RT does not only have local effects, but also systemic effects which involves induction of anti-tumor immunity and possible alteration of the immunosuppressive properties of the tumor microenvironment. Though, often RT alone is not able to induce potent anti-tumor immune responses since the effects of RT on the immune system can be both immunostimulatory and immunosuppressive.
Summary
RT with additional therapies such as HT and immune checkpoint inhibitors (ICI) are promising approaches to induce anti-tumor immunity effectively. HT is not only a potent sensitizer for RT, but it might also improve the efficacy of RT and certain chemotherapeutic agents (CT) by additionally sensitizing resistant cancer stem cells (CSCs).
Graphical abstract
Collapse
|
31
|
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy. Cancers (Basel) 2022; 14:cancers14143505. [PMID: 35884565 PMCID: PMC9319172 DOI: 10.3390/cancers14143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Radiotherapy is an important cancer treatment. Aside from its direct killing effect, it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist, especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical studies supporting this finding have accumulated, but gaps between theory and clinical practice still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this combination, raises questions that must be addressed in clinical practice, and provides ideas for designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy. Abstract Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate immunity, and many other factors. There are conflicting findings on the optimal radiation dose and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment. Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising potential. However, there are still questions to be addressed in order to put this novel combination therapy into clinical practice. For example, the selection of treatment site, treatment volume, the sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered when working out individualized treatment plans, and lists possible avenues to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.
Collapse
|
32
|
Bao X, Xie L. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:222. [PMID: 35836249 PMCID: PMC9284706 DOI: 10.1186/s13046-022-02430-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/02/2022] [Indexed: 01/09/2023]
Abstract
Emerging evidence has demonstrated that radiotherapy (RT) can not only cause direct damage to cancer cells but also lead to immunogenic cell death (ICD), which involves the activation of host antitumor immune response in tumor immune microenvironment (TIME). RT-induced ICD comprises the release of damage-associated molecular patterns (DAMPs) from dying cancer cells that result in the activation of tumor-specific immunity to elicit long-term antitumor efficacy in both original and abscopal tumor sites. Adenosine triphosphate (ATP), as an important DAMP released by irradiated cancer cells and an essential factor within purinergic pathway, can be further hydrolyzed to adenosine (ADO) by two key ectonucleotidases, CD39 and CD73, to further modulate the antitumor immunity in TIME through purinergic signaling via the interaction to its specific receptors such as adenosine 2A receptor (A2AR) and A2BR widely expressed on the surface of the components in TIME, including cancer cells and many immune effector cells. In this review, we first introduced key components in purinergic pathway including ATP, ADO, their receptors, and essential ectonucleotidases. Then we reviewed the regulation of ATP and ADO levels and their main mechanisms by which they promote tumor growth and broadly suppress antitumor immunity through inhibiting the pro-inflammatory response of dendritic cells, cytotoxic T lymphocytes, and natural killer cells, while improving the anti-inflammatory response of regulatory T cells, macrophages, and myeloid-derived suppressor cells in TIME, especially after irradiation. Finally, we presented an overview of dozens of promising therapeutics including pharmacological antagonists and specific antibodies targeting ADO receptors and ectonucleotidases CD39 or CD73 investigated in the clinic for cancer treatment, especially focusing on the preclinical studies and clinical trials being explored for blocking the purinergic signaling to enhance RT as a combination antitumor therapeutic strategy, which has a robust potential to be translated to the clinic in the future.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, 2800 Gongwei Rd, Shanghai, China. .,Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China. .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong An Rd, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Hsieh RCE, Krishnan S, Wu RC, Boda AR, Liu A, Winkler M, Hsu WH, Lin SH, Hung MC, Chan LC, Bhanu KR, Srinivasamani A, De Azevedo RA, Chou YC, DePinho RA, Gubin M, Vilar E, Chen CH, Slay R, Jayaprakash P, Hegde SM, Hartley G, Lea ST, Prasad R, Morrow B, Couillault CA, Steiner M, Wang CC, Venkatesulu BP, Taniguchi C, Kim YSB, Chen J, Rudqvist NP, Curran MA. ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Sci Immunol 2022; 7:eabl9330. [PMID: 35687697 DOI: 10.1126/sciimmunol.abl9330] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Radiotherapy (RT) of colorectal cancer (CRC) can prime adaptive immunity against tumor-associated antigen (TAA)-expressing CRC cells systemically. However, abscopal tumor remissions are extremely rare, and the postirradiation immune escape mechanisms in CRC remain elusive. Here, we found that irradiated CRC cells used ATR-mediated DNA repair signaling pathway to up-regulate both CD47 and PD-L1, which through engagement of SIRPα and PD-1, respectively, prevented phagocytosis by antigen-presenting cells and thereby limited TAA cross-presentation and innate immune activation. This postirradiation CD47 and PD-L1 up-regulation was observed across various human solid tumor cells. Concordantly, rectal cancer patients with poor responses to neoadjuvant RT exhibited significantly elevated postirradiation CD47 levels. The combination of RT, anti-SIRPα, and anti-PD-1 reversed adaptive immune resistance and drove efficient TAA cross-presentation, resulting in robust TAA-specific CD8 T cell priming, functional activation of T effectors, and increased T cell clonality and clonal diversity. We observed significantly higher complete response rates to RT/anti-SIRPα/anti-PD-1 in both irradiated and abscopal tumors and prolonged survival in three distinct murine CRC models, including a cecal orthotopic model. The efficacy of triple combination therapy was STING dependent as knockout animals lost most benefit of adding anti-SIRPα and anti-PD-1 to RT. Despite activation across the myeloid stroma, the enhanced dendritic cell function accounts for most improvements in CD8 T cell priming. These data suggest ATR-mediated CD47 and PD-L1 up-regulation as a key mechanism restraining radiation-induced immune priming. RT combined with SIRPα and PD-1 blockade promotes robust antitumor immune priming, leading to systemic tumor regressions.
Collapse
Affiliation(s)
- Rodney Cheng-En Hsieh
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Akash R Boda
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arthur Liu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michelle Winkler
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wen-Hao Hsu
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Hsesheng Lin
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krithikaa Rajkumar Bhanu
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anupallavi Srinivasamani
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Yung-Chih Chou
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Ronald A DePinho
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Gubin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Parker Institute for Cancer Immunotherapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Hsien Chen
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Ravaen Slay
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Priyamvada Jayaprakash
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shweta Mahendra Hegde
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Genevieve Hartley
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Spencer T Lea
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rishika Prasad
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brittany Morrow
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Madeline Steiner
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chun-Chieh Wang
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Bhanu Prasad Venkatesulu
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Cullen Taniguchi
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yon Son Betty Kim
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junjie Chen
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nils-Petter Rudqvist
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
34
|
Wang B, Hu J, Zhang J, Zhao L. Radiation therapy regulates TCF-1 to maintain CD8+T cell stemness and promotes anti-tumor immunotherapy. Int Immunopharmacol 2022; 107:108646. [DOI: 10.1016/j.intimp.2022.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 11/05/2022]
|
35
|
Baxevanis CN, Gritzapis AD, Voutsas IF, Batsaki P, Goulielmaki M, Adamaki M, Zoumpourlis V, Fortis SP. T-Cell Repertoire in Tumor Radiation: The Emerging Frontier as a Radiotherapy Biomarker. Cancers (Basel) 2022; 14:cancers14112674. [PMID: 35681654 PMCID: PMC9179913 DOI: 10.3390/cancers14112674] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Radiotherapy constitutes an essential component of the treatment for malignant disease. Besides its direct effect on cancer cells, namely, DNA damage and cell death, ionizing irradiation also mediates indirect antitumor effects that are mostly mediated by the immune system. Investigations into the processes underlying the interaction between radiotherapy and the immune system have uncovered mechanisms that can be exploited to promote the antitumor efficacy of radiotherapy both locally in the irradiated primary tumor and also at distant lesions in non-irradiated tumors. Because of its capacity to stimulate antitumor immunity, radiotherapy is also applied in combination with immune-checkpoint-inhibition-based immunotherapy. This review discusses the important pathways that govern the synergistic interactions between ionizing radiation and antitumor immune reactivity. Unravelling these involved mechanisms is mandatory for the successful application of anticancer radiotherapy and immunotherapy. We also place emphasis on the need for biomarkers that will aid in the selection of patients most likely to benefit from such combined treatments. Abstract Radiotherapy (RT) is a therapeutic modality that aims to eliminate malignant cells through the induction of DNA damage in the irradiated tumor site. In addition to its cytotoxic properties, RT also induces mechanisms that result in the promotion of antitumor immunity both locally within the irradiation field but also at distant tumor lesions, a phenomenon that is known as the “abscopal” effect. Because the immune system is capable of sensing the effects of RT, several treatment protocols have been assessing the synergistic role of radiotherapy combined with immunotherapy, collectively referred to as radioimmunotherapy. Herein, we discuss mechanistic insights underlying RT-based immunomodulation, which also enhance our understanding of how RT regulates antitumor T-cell-mediated immunity. Such knowledge is essential for the discovery of predictive biomarkers and for the improvement of clinical trials investigating the efficacy of radio-immunotherapeutic modalities in cancer patients.
Collapse
Affiliation(s)
- Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Angelos D. Gritzapis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Ioannis F. Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (M.A.); (V.Z.)
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (M.A.); (V.Z.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
- Correspondence: ; Tel.: +30-2106409462
| |
Collapse
|
36
|
Yan D, Zhao Q, Du Z, Li H, Geng R, Yang W, Zhang X, Cao J, Yi N, Zhou J, Tang Z. Development and validation of an immune-related gene signature for predicting the radiosensitivity of lower-grade gliomas. Sci Rep 2022; 12:6698. [PMID: 35461367 PMCID: PMC9035187 DOI: 10.1038/s41598-022-10601-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is an important treatment modality for lower-grade gliomas (LGGs) patients. This analysis was conducted to develop an immune-related radiosensitivity gene signature to predict the survival of LGGs patients who received radiotherapy. The clinical and RNA sequencing data of LGGs were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). Lasso regression analyses were used to construct a 21-gene signature to identify the LGGs patients who could benefit from radiotherapy. Based on this radiosensitivity signature, patients were classified into a radiosensitive (RS) group and a radioresistant (RR) group. According to the Kaplan–Meier analysis results of the TCGA dataset and the two CGGA validation datasets, the RS group had a higher overall survival rate than that of the RR group. This gene signature was RT-specific and an independent prognostic indicator. The nomogram model performed well in predicting 3-, and 5-year survival of LGGs patients after radiotherapy by this gene signature and other clinical factors (age, sex, grade, IDH mutations, 1p/19q codeletion). In summary, this signature is a powerful supplement to the prognostic factors of LGGs patients with radiotherapy and may provide an opportunity to incorporate individual tumor biology into clinical decision making in radiation oncology.
Collapse
|
37
|
Wang Y, Chen J, Duan R, Gu R, Wang W, Wu J, Lian H, Hu Y, Yuan A. High-Z-Sensitized Radiotherapy Synergizes with the Intervention of the Pentose Phosphate Pathway for In Situ Tumor Vaccination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109726. [PMID: 35102614 DOI: 10.1002/adma.202109726] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
In situ tumor vaccination is preliminarily pursued to strengthen antitumor immune response. Immunogenic tumor cell death spontaneously releases abundant antigens and adjuvants for activation of dendritic cells, providing a paragon opportunity for establishing efficient in situ vaccination. Herein, Phy@PLGdH nanosheets are constructed by integrating physcion (Phy, an inhibitor of the pentose phosphate pathway (PPP)) with layered gadolinium hydroxide (PLGdH) nanosheets to boost radiation-therapy (RT)-induced immunogenic cell death (ICD) for potent in situ tumor vaccination. It is first observed that sheet-like PLGdH can present superior X-ray deposition and tumor penetrability, exhibiting improved radiosensitization in vitro and in vivo. Moreover, the destruction of cellular nicotinamide adenine dinucleotide phosphate (NADPH) and nucleotide homeostasis by Phy-mediated PPP intervention can further amplify PLGdH-sensitized RT-mediated oxidative stress and DNA damage, which correspondingly results in effective ICD and enhance the immunogenicity of irradiated tumor cells. Consequently, Phy@PLGdH-sensitized RT successfully primes robust CD8+ -T-cell-dependent antitumor immunity to potentiate checkpoint blockade immunotherapies against primary and metastatic tumors.
Collapse
Affiliation(s)
- Yuxiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Rumeng Duan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Weiran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Huibo Lian
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
38
|
Liang S, Zhou G, Hu W. Research Progress of Heavy Ion Radiotherapy for Non-Small-Cell Lung Cancer. Int J Mol Sci 2022; 23:2316. [PMID: 35216430 PMCID: PMC8876478 DOI: 10.3390/ijms23042316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) has a high incidence and poses a serious threat to human health. However, the treatment outcomes of concurrent chemoradiotherapy for non-small-cell lung cancer are still unsatisfactory, especially for high grade lesions. As a new cancer treatment, heavy ion radiotherapy has shown promising efficacy and safety in the treatment of non-small-cell lung cancer. This article discusses the clinical progress of heavy ion radiotherapy in the treatment of non-small-cell lung cancer mainly from the different cancer stages, the different doses of heavy ion beams, and the patient's individual factors, and explores the deficiency of heavy ion radiotherapy in the treatment of non-small-cell lung cancer and the directions of future research, in order to provide reference for the wider and better application of heavy ion radiotherapy in the future.
Collapse
Affiliation(s)
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| |
Collapse
|
39
|
Yasmin-Karim S, Ziberi B, Wirtz J, Bih N, Moreau M, Mueller R, Anisworth V, Hesser J, Makrigiorgos GM, Chuong MD, Wei XX, Nguyen PL, Ngwa W. Boosting the Abscopal Effect Using Immunogenic Biomaterials With Varying Radiation Therapy Field Sizes. Int J Radiat Oncol Biol Phys 2022; 112:475-486. [PMID: 34530092 PMCID: PMC8750216 DOI: 10.1016/j.ijrobp.2021.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Persistent immunosuppression in the tumor microenvironment is a major limitation to boosting the abscopal effect, whereby radiation therapy at 1 site can lead to regression of tumors at distant sites. Here, we investigate the use of radiation and immunogenic biomaterials (IBM) targeting only the gross tumor volume/subvolume for boosting the abscopal effect in immunologically cold tumors. METHODS AND MATERIALS To evaluate the abscopal effect, 2 syngeneic contralateral tumors were implanted in each mouse, where only 1 tumor was treated. IBM was administered to the treated tumor with 1 fraction of radiation and results were compared, including as a function of different radiation therapy field sizes. The IBM was designed similar to fiducial markers using immunogenic polymer components loaded with anti-CD40 agonist. Tumor volumes of both treated and untreated tumors were measured over time, along with survival and corresponding immune cell responses. RESULTS Results showed that radiation with IBM administered to the gross tumor subvolume can effectively boost abscopal responses in both pancreatic and prostate cancers, significantly increasing survival (P < .0001 and P < .001, respectively). Results also showed equal or superior abscopal responses when using field sizes smaller than the gross tumor volume compared with irradiating the whole tumor volume. These results were buttressed by observation of higher infiltration of cytotoxic CD8+ T-lymphocytes in the treated tumors (P < .0001) and untreated tumors (P < .0001) for prostate cancer. Significantly higher infiltration was also observed in treated tumors (P < .0001) and untreated tumors P < .01) for pancreatic cancer. Moreover, the immune responses were accompanied by a positive shift of proinflammatory cytokines in both prostate and pancreatic tumors. CONCLUSIONS The approach targeting gross tumor subvolumes with radiation and IBM offers opportunity for boosting the abscopal effect while significantly minimizing healthy tissue toxicity. This approach proffers a radioimmunotherapy dose-painting strategy that can be developed for overcoming current barriers of immunosuppression especially for immunologically cold tumors.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Corresponding author: Name: Sayeda Yasmin-Karim, (S.Y.)
| | - Bashkim Ziberi
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,University of Tetova, Tetova, Republic of North Macedonia
| | - Johanna Wirtz
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Medical Faculty of University Ulm, Ulm, Germany
| | - Noella Bih
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michele Moreau
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| | - Romy Mueller
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany
| | - Victoria Anisworth
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| | - Juergen Hesser
- Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany
| | - G. Mike Makrigiorgos
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Chuong
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Xiao Xiao Wei
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul L. Nguyen
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wilfred Ngwa
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| |
Collapse
|
40
|
De Mattia E, Canzonieri V, Polesel J, Mezzalira S, Dalle Fratte C, Dreussi E, Roncato R, Bignucolo A, Innocente R, Belluco C, Pucciarelli S, De Paoli A, Palazzari E, Toffoli G, Cecchin E. SMAD3 Host and Tumor Profiling to Identify Locally Advanced Rectal Cancer Patients at High Risk of Poor Response to Neoadjuvant Chemoradiotherapy. Front Pharmacol 2022; 12:778781. [PMID: 35002714 PMCID: PMC8740633 DOI: 10.3389/fphar.2021.778781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Identifying patients at risk of poor response to neoadjuvant chemoradiotherapy (nCRT) is an emerging clinical need in locally advanced rectal cancer (LARC). SMAD3 is a key player in the chemoradio-resistance phenotype and its expression is both constitutive and locally induced. The aim was to investigate both host (genetic polymorphisms) and tumor SMAD3 profiling to predict response to nCRT. In a group of 76 LARC patients, SMAD3 and phosphorylated-SMAD3 expression was assessed by immunohistochemistry in preoperative tumor tissue. In an expanded study group (n = 378), a set of SMAD3 polymorphisms (rs35874463, rs1065080, rs1061427, rs17228212, rs744910, and rs745103) was analyzed. Association with tumor regression grade (TRG) and patient prognosis (progression-free survival [PFS] and overall survival [OS]) was assessed. Patients with high tumor expression of SMAD3 had a significantly increased risk of poor response (TRG≥2) [cellularity >55% (OR:10.36, p = 0.0004), or moderate/high intensity (OR:5.20, p = 0.0038), or an H-score≥1 (OR:9.84, p = 0.0004)]. Patients carrying the variant SMAD3 rs745103-G allele had a poorer response (OR:0.48, p = 0.0093), a longer OS (HR:0.65, p = 0.0307), and a trend for longer PFS (HR:0.75, p = 0.0944). Patients who carried both high SMAD3 tumor expression and the wild-type rs745103-A allele had an extremely high risk of not achieving a complete response (OR:13.45, p = 0.0005). Host and tumor SMAD3 status might be considered to improve risk stratification of LARC patients to facilitate selection for alternative personalized neoadjuvant strategies including intensified regimens.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Silvia Mezzalira
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Chiara Dalle Fratte
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Dreussi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Roberto Innocente
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Claudio Belluco
- Surgical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | | - Antonino De Paoli
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elisa Palazzari
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
41
|
Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-tumor effect by triggering tumor cell necroptosis and DAMPs. Cancer Lett 2021; 523:149-161. [PMID: 34606928 DOI: 10.1016/j.canlet.2021.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Radiation is an integral part of cancer therapy. With the emergence of oncolytic vaccinia virus immunotherapy, it is important to study the combination of radiation and vaccinia virus in cancer therapy. In this study, we investigated the anti-tumor effect of and immune mechanisms underlying the combination of high-dose hypofractionated stereotactic body radiotherapy (SBRT) and oncolytic vaccinia virus in preclinical murine models. The combination enhanced the in vivo anti-tumor effect and increased the numbers of splenic CD4+Ki-67+ helper T lymphocytes and CD8+Ki-67+ cytotoxic T lymphocytes. Combinational therapy also increased tumor-infiltrating CD3+CD4+ helper T lymphocytes and CD3+CD8+ cytotoxic T lymphocytes, but decreased tumor-infiltrating regulatory T cells. In addition, SBRT combined with oncolytic vaccinia virus enhanced in vitro cell death, partly through necroptosis, and subsequent release of damage-associated molecular patterns (DAMPs), and shifted the macrophage M1/M2 ratio. We concluded that SBRT combined with oncolytic vaccinia virus can trigger tumor cell necroptosis and modify macrophages through the release of DAMPs, and then generate potent anti-tumor immunity and effects. Thus, combined therapy is potentially an important strategy for clinical cancer therapy.
Collapse
|
42
|
Akama-Garren EH, Morris ZS, Sikora AG, Weichselbaum R, Schoenfeld JD. Prospective Clinical Investigation of the Efficacy of Combination Radiation Therapy With Immune Checkpoint Inhibition. Int J Radiat Oncol Biol Phys 2021; 111:1165-1175. [PMID: 34411638 PMCID: PMC10960630 DOI: 10.1016/j.ijrobp.2021.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
Immune checkpoint inhibitors (ICIs) lead to durable responses in a subset of patients with cancer, but most patients do not respond to ICI, prompting interest in combining immunotherapy with other therapeutic regimens. Preclinical evidence supports the potential for therapeutic synergy between immunotherapy and radiation therapy through modulation of the tumor microenvironment and antitumor immune responses. Local therapy also has the potential to overcome localized sites of relative immune suppression and resistance. Prospective clinical trials have been initiated to test these hypotheses in the clinic as well as to investigate the toxicities and adverse events associated with combination immunotherapy and radiation therapy. In this review, we discuss the emerging results from prospective clinical trials of combination immunotherapy and radiation therapy, the safety and efficacy of their combination, concordance with preclinical and retrospective data, and some of the remaining open questions to be addressed by future clinical trials.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago Medical Center, Chicago, Illinois; The Ludwig Center for Metastasis Research, The University of Chicago Medical Center, Chicago, Illinois
| | - Jonathan D Schoenfeld
- Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
43
|
Reijmen E, De Mey S, Van Damme H, De Ridder K, Gevaert T, De Blay E, Bouwens L, Collen C, Decoster L, De Couck M, Laoui D, De Grève J, De Ridder M, Gidron Y, Goyvaerts C. Transcutaneous Vagal Nerve Stimulation Alone or in Combination With Radiotherapy Stimulates Lung Tumor Infiltrating Lymphocytes But Fails to Suppress Tumor Growth. Front Immunol 2021; 12:772555. [PMID: 34925341 PMCID: PMC8671299 DOI: 10.3389/fimmu.2021.772555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
The combination of radiotherapy (RT) with immunotherapy represents a promising treatment modality for non-small cell lung cancer (NSCLC) patients. As only a minority of patients shows a persistent response today, a spacious optimization window remains to be explored. Previously we showed that fractionated RT can induce a local immunosuppressive profile. Based on the evolving concept of an immunomodulatory role for vagal nerve stimulation (VNS), we tested its therapeutic and immunological effects alone and in combination with fractionated RT in a preclinical-translational study. Lewis lung carcinoma-bearing C57Bl/6 mice were treated with VNS, fractionated RT or the combination while a patient cohort with locally advanced NSCLC receiving concurrent radiochemotherapy (ccRTCT) was enrolled in a clinical trial to receive either sham or effective VNS daily during their 6 weeks of ccRTCT treatment. Preclinically, VNS alone or with RT showed no therapeutic effect yet VNS alone significantly enhanced the activation profile of intratumoral CD8+ T cells by upregulating their IFN-γ and CD137 expression. In the periphery, VNS reduced the RT-mediated rise of splenic, but not blood-derived, regulatory T cells (Treg) and monocytes. In accordance, the serological levels of protumoral CXCL5 next to two Treg-attracting chemokines CCL1 and CCL22 were reduced upon VNS monotherapy. In line with our preclinical findings on the lack of immunological changes in blood circulating immune cells upon VNS, immune monitoring of the peripheral blood of VNS treated NSCLC patients (n=7) did not show any significant changes compared to ccRTCT alone. As our preclinical data do suggest that VNS intensifies the stimulatory profile of the tumor infiltrated CD8+ T cells, this favors further research into non-invasive VNS to optimize current response rates to RT-immunotherapy in lung cancer patients.
Collapse
MESH Headings
- Aged
- Animals
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/radiotherapy
- Carcinoma, Lewis Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Carcinoma, Non-Small-Cell Lung/therapy
- Combined Modality Therapy
- Female
- Humans
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/radiotherapy
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Mice, Inbred C57BL
- Middle Aged
- Tumor Burden
- Vagus Nerve Stimulation
- Mice
Collapse
Affiliation(s)
- Eva Reijmen
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven De Mey
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Helena Van Damme
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kirsten De Ridder
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Emmy De Blay
- Cell Differentiation Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Bouwens
- Cell Differentiation Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Collen
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Lore Decoster
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Oncologisch Centrum, Universitair Ziekenhuis (UZ) Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Marijke De Couck
- Department of Public Health, Mental Health and Wellbeing Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Health Care, University College Odisee, Aalst, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacques De Grève
- Laboratory of Medical and Molecular Oncology (LMMO), Department of Medical Oncology, Oncologisch Centrum, Universitair Ziekenhuis (UZ) Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Brussels, Belgium
| | - Yori Gidron
- Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
44
|
Malviya R, Verma S, Sundram S. Advancement and Strategies for the Development of Peptide-Drug Conjugates: Pharmacokinetic Modulation, Role and Clinical Evidence Against Cancer Management. Curr Cancer Drug Targets 2021; 22:286-311. [PMID: 34792003 DOI: 10.2174/1568009621666211118111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
Currently, many new treatment strategies are being used for the management of cancer. Among them, chemotherapy based on peptides has been of great interest due to the unique features of peptides. This review discusses the role of peptide and peptides analogues in the treatment of cancer, with special emphasis on their pharmacokinetic modulation and research progress. Low molecular weight, targeted drug delivery, enhanced permeability, etc., of the peptide-linked drug conjugates, lead to an increase in the effectiveness of cancer therapy. Various peptides have recently been developed as drugs and vaccines with an altered pharmacokinetic parameter which has subsequently been assessed in different phases of the clinical study. Peptides have made a great impact in the area of cancer therapy and diagnosis. Targeted chemotherapy and drug delivery techniques using peptides are emerging as excellent tools in minimizing problems with conventional chemotherapy. It can be concluded that new advances in using peptides to treat different types of cancer have been shown by different clinical studies indicating that peptides could be used as an ideal therapeutic method in treating cancer due to the novel advantages of peptides. The development of identifying and synthesizing novel peptides could provide a promising choice to patients with cancer.
Collapse
Affiliation(s)
- Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Swati Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| | - Sonali Sundram
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida. India
| |
Collapse
|
45
|
Gkika E, Adebahr S, Brenner A, Schimek-Jasch T, Radicioni G, Exner JP, Rühle A, Spohn SKB, Popp I, Zamboglou C, Sprave T, Firat E, Niedermann G, Nicolay NH, Nestle U, Grosu AL, Duda DG. Changes in Blood Biomarkers of Angiogenesis and Immune Modulation after Radiation Therapy and Their Association with Outcomes in Thoracic Malignancies. Cancers (Basel) 2021; 13:cancers13225725. [PMID: 34830880 PMCID: PMC8616228 DOI: 10.3390/cancers13225725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
The effects of radiotherapy on systemic immunity remain to be fully characterized in a disease-specific manner. The aim of the study was to examine potential biomarkers of systemic immunomodulation when using radiotherapy for thoracic malignancies. Serial blood samples were collected from 56 patients with thoracic malignancies prior (RTbaseline), during (RTduring) and at the end of radiotherapy (RTend), as well as at the first (FU1) and second follow-up (FU2). The changes in serum levels of IL-10, IFN-γ, IL-12p70, IL-13, IL-1β, IL-4, IL-6, IL-8, TNF-α, bFGF, sFlt-1, PlGF, VEGF, VEGF-C, VEGF-D and HGF were measured by multiplexed array and tested for associations with clinical outcomes. We observed an increase in the levels of IL-10, IFN-γ, PlGF and VEGF-D and a decrease in those of IL-8, VEGF, VEGF-C and sFlt-1 during and at the end of radiotherapy. Furthermore, baseline concentration of TNF-α significantly correlated with OS. IL-6 level at RTend and FU1,2 correlated with OS (RTend: p = 0.039, HR: 1.041, 95% CI: 1.002-1.082, FU1: p = 0.001, HR: 1.139, 95% CI: 1.056-1.228, FU2: p = 0.017, HR: 1.101 95% CI: 1.018-1.192), while IL-8 level correlated with OS at RTduring and RTend (RTduring: p = 0.017, HR: 1.014, 95% CI: 1.002-1.026, RTend: p = 0.004, HR: 1.007, 95% CI: 1.061-1.686). In conclusion, serum levels of TNF-α, IL-6 and IL-8 are potential biomarkers of response to radiotherapy. Given the recent implementation of immunotherapy in lung and esophageal cancer, these putative blood biomarkers should be further validated and evaluated in the combination or sequential therapy setting.
Collapse
Affiliation(s)
- Eleni Gkika
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| | - Sonja Adebahr
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anton Brenner
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
| | - Tanja Schimek-Jasch
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gianluca Radicioni
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jan-Philipp Exner
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Rühle
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simon K. B. Spohn
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ilinca Popp
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Constantinos Zamboglou
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tanja Sprave
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Elke Firat
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gabriele Niedermann
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nils Henrik Nicolay
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ursula Nestle
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- Department of Radiation Oncology, Kliniken Maria Hilf, 41063 Moenchengladbach, Germany
| | - Anca-Ligia Grosu
- University Medical Center Freiburg, Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.A.); (A.B.); (T.S.-J.); (G.R.); (J.-P.E.); (A.R.); (S.K.B.S.); (I.P.); (C.Z.); (T.S.); (E.F.); (G.N.); (N.H.N.); (U.N.); (A.-L.G.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dan G. Duda
- E. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
46
|
Moving towards the Future of Radio-Immunotherapy: Could We “Tailor” the Abscopal Effect on Head and Neck Cancer Patients? IMMUNO 2021. [DOI: 10.3390/immuno1040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The abscopal effect (AbE) is defined as radiation-induced shrinkage of distant, non-treated, neoplastic lesions and it is considered the best clinical picture of the efficient immune stimulation by irradiation. The first report about abscopal tumor regression upon radiotherapy dates back to the beginning of the 20th century. The growing preclinical and clinical synergism between radiation and immunotherapy gave birth the purpose to more easily reproduce the abscopal effect, nevertheless, it is still rare in clinical practice. In this review we summarize immunological modulation of radiotherapy, focusing on the well-balanced equilibrium of tumor microenvironment and how radio-immunotherapy combinations can perturb it, with particular attention on head and neck squamous cell cancer. Finally, we investigate future perspectives, with the aim to “tailor” the abscopal effect to the patient.
Collapse
|
47
|
Tang J, Malachowska B, Wu X, Guha C. Repurposing Radiation Therapy for Immuno-oncology. Clin Oncol (R Coll Radiol) 2021; 33:683-693. [PMID: 34535358 DOI: 10.1016/j.clon.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 01/12/2023]
Abstract
Radiation therapy is traditionally used for the local control of tumour growth, but recent studies suggest that radiation therapy can have immunomodulatory properties that can be applied in combination therapy with immunotherapeutic agents. The paradigm of using radiation therapy for immunomodulation in cancer treatment is a rapidly progressing field, with multiple ongoing clinical trials exploring its use in combination with immune checkpoint blockades to induce an abscopal effect. Permutations of radiation therapy regimens, including variations in radiation dosing, radiation planning parameters and radiation modality, are being tested with varying degrees of success. The relative biological effectiveness was a concept introduced in the early days of radiation biology that allows the comparison of local tumour control across various radiation modalities and energies. Similarly, there remains a need for a new concept of comparing the immunological effectiveness of various radiation modalities. In this review, we will provide an overview of immunobiological models for preclinical and clinical monitoring of radiation therapy regimens and introduce the concept of relative immunological effectiveness to compare and screen for immune-activating functions of these regimens.
Collapse
Affiliation(s)
- J Tang
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York, USA
| | - B Malachowska
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - X Wu
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - C Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York, USA.
| |
Collapse
|
48
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
49
|
Radioimmunotherapy: future prospects from the perspective of brachytherapy. J Contemp Brachytherapy 2021; 13:458-467. [PMID: 34484362 PMCID: PMC8407252 DOI: 10.5114/jcb.2021.108601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
In combination with radiotherapy, immunotherapy is becoming an increasingly used strategy in treating advanced, recurrent, or metastatic cancer. The evident impact of radiotherapy on local and systemic immune response is an indication of the synergistic effect of these two modalities. There is a strong rationale to combine radiotherapy and immunotherapy to enhance response rates and overcome resistances. Therefore, the combination of radio- and immunotherapy holds a variety of opportunities as well as challenges in treating primary cancer and is progressively tested in curative settings. Brachytherapy is also known as internal radiation therapy and only offers a local therapy option at first glance: due to tumor-specific antigens, released by a high local radiation dose, a systemic immune response could be plausible and eminent. Accordingly, brachytherapy could be an underestimated partner with immuno-therapeutic approaches in both curative and palliative settings, to generate local and systemic response. In this review, we summarized the potential benefit of a potential combination of brachytherapy and immuno-therapeutic approaches vs. the background of limited data.
Collapse
|
50
|
Mirjolet C, Truc G. [Abscopal effect: Myth or reality?]. Cancer Radiother 2021; 25:533-536. [PMID: 34462213 DOI: 10.1016/j.canrad.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
The abscopal effect has been mentioned since 1953. The increase in knowledge about the immune system and the development of immunotherapies support its potential therapeutic interest. While it is accepted that radiotherapy induces an immune response, demonstrating its systemic impact is not easy. The preclinical basis is solid but its clinical validation pending. Radiotherapy rarely induces tumor reduction at a distance from the beams, probably due to its immunosuppressive effect. This is why a synergy between radiotherapy and systemic treatments targeting these immunosuppressive mechanisms was observed. Several parameters can modulate the induction of the abscopal effect. Among these, the fractionation of the dose seems to be determining with currently a pre-eminence of hypofractionated stereotaxis. On the other hand, even if the choice of more immunogenic targets (liver, lung) should be favoured, the optimal number of lesions to be irradiated remains to be defined as well as the minimum volume allowing sufficient release of tumor antigens. The impact of radiation-induced lymphopenia on radiotherapy/immunotherapy efficacy needs to be assessed more precisely, as does the effect of radiotherapy techniques on them. Finally, the choice of immunotherapy(ies) and the combination regimen with radiotherapy remain under discussion. A sequential scheme appears to provide less toxicities but the concomitant would lead to a better response. The study of these different parameters should allow us to deliver optimized radiotherapy/immunotherapy(ies) combinations to our metastatic patients in order to benefit as many people as possible from this abscopal effect.
Collapse
Affiliation(s)
- C Mirjolet
- Department of radiation oncology, Unicancer - Georges-Francois-Leclerc Cancer Center, 21000 Dijon, France; Inserm UMR 1231, 21000 Dijon, France.
| | - G Truc
- Department of radiation oncology, Unicancer - Georges-Francois-Leclerc Cancer Center, 21000 Dijon, France
| |
Collapse
|