1
|
Chen S, Cheng S, Cai J, Liu Z, Li H, Wang P, Li Y, Yang F, Chen K, Qiu M. The current therapeutic cancer vaccines landscape in non-small cell lung cancer. Int J Cancer 2024; 155:1909-1927. [PMID: 39109825 DOI: 10.1002/ijc.35088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 10/04/2024]
Abstract
Currently, conventional immunotherapies for the treatment of non-small cell lung cancer (NSCLC) have low response rates and benefit only a minority of patients, particularly those with advanced disease, so novel therapeutic strategies are urgent deeded. Therapeutic cancer vaccines, a form of active immunotherapy, harness potential to activate the adaptive immune system against tumor cells via antigen cross-presentation. Cancer vaccines can establish enduring immune memory and guard against recurrences. Vaccine-induced tumor cell death prompts antigen epitope spreading, activating functional T cells and thereby sustaining a cancer-immunity cycle. The success of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rendered cancer vaccines a promising avenue, especially when combined with immunotherapy or chemoradiotherapy for NSCLC. This review delves into the intricate antitumor immune mechanisms underlying therapeutic cancer vaccines, enumerates the tumor antigen spectrum of NSCLC, discusses different cancer vaccines progress and summarizes relevant clinical trials. Additionally, we analyze the combination strategies, current limitations, and future prospects of cancer vaccines in NSCLC treatment, aiming to offer fresh insights for their clinical application in managing NSCLC. Overall, cancer vaccines offer promising potential for NSCLC treatment, particularly combining with chemoradiotherapy or immunotherapy could further improve survival in advanced patients. Exploring inhaled vaccines or prophylactic vaccines represents a crucial research avenue.
Collapse
Affiliation(s)
- Shaoyi Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Sida Cheng
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Jingsheng Cai
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Haoran Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yun Li
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing, China
- Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
2
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
3
|
Gupta DS, Gupta DS, Abjani NK, Dave Y, Apte K, Kaur G, Kaur D, Saini AK, Sharma U, Haque S, Tuli HS. Vaccine-based therapeutic interventions in lung cancer management: A recent perspective. Med Oncol 2024; 41:249. [PMID: 39316239 DOI: 10.1007/s12032-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
The incidence of lung cancer continues to grow globally, contributing to an ever-increasing load on healthcare systems. Emerging evidence has indicated lowered efficacy of conventional treatment strategies, such as chemotherapy, surgical interventions and radiotherapy, prompting the need for exploring alternative interventions. A growing focus on immunotherapy and the development of personalized medicine has paved the way for vaccine-based delivery in lung cancer. With various prominent targets such as CD8+T cells and PD-L1, immune-targeted, anti-cancer vaccines have been evaluated in both, pre-clinical and clinical settings, to improve therapeutic outcomes. However, there are a number of challenges that must be addressed, including the scalability of such delivery systems, heterogeneity of lung cancers, and long-term safety as well as efficacy. In addition to this, natural compounds, in combination with immunotherapy, have gained considerable research interest in recent times. This makes it necessary to explore their role in synergism with immune-targeted agents. The authors of this review aim to offer an overview of recent advances in our understanding of lung cancer pathogenesis, detection and management strategies, and the emergence of immunotherapy with a special focus on vaccine delivery. This finding is supported with evidence from testing in non-human and human models, showcasing promising results. Prospects for phytotherapy have also been discussed, in order to combat some pitfalls and limitations. Finally, the future perspectives of vaccine usage in lung cancer management have also been discussed, to offer a holistic perspective to readers, and to prompt further research in the domain.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Daksh Sanjay Gupta
- Vivekanand Education Society's College of Pharmacy, Chembur, Mumbai, Maharashtra, 400074, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Yash Dave
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ketaki Apte
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India.
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Adesh Kumar Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
4
|
Wang X, Niu Y, Bian F. The progress of tumor vaccines clinical trials in non-small cell lung cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03678-z. [PMID: 39179939 DOI: 10.1007/s12094-024-03678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a significant global health challenge, with high mortality rates and limited treatment options. Tumor vaccines have emerged as a potential therapeutic approach, aiming to stimulate the immune system to specifically target tumor cells. METHODS This study screened 283 clinical trials registered on ClinicalTrials.gov through July 31, 2023. After excluding data that did not meet the inclusion criteria, a total of 108 trials were assessed. Data on registered number, study title, study status, vaccine types, study results, conditions, interventions, outcome measures, sponsor, collaborators, drug target, phases, enrollment, start date, completion date and locations were extracted and analyzed. RESULTS The number of vaccines clinical trials for NSCLC has continued to increase in recent years, the majority of which were conducted in the United States. Most of the clinical trials were at stages ranging from Phase I to Phase II. Peptide-based vaccines accounted for the largest proportion. Others include tumor cell vaccines, DNA/RNA vaccines, viral vector vaccines, and DC vaccines. Several promising tumor vaccine candidates have shown encouraging results in early-phase clinical trials. However, challenges such as heterogeneity of tumor antigens and immune escape mechanisms still need to be addressed. CONCLUSION Tumor vaccines represent a promising avenue in the treatment of NSCLC. Ongoing clinical trials are crucial for optimizing vaccine strategies and identifying the most effective combinations. Further research is needed to overcome existing limitations and translate these promising findings into clinical practice, offering new hope for NSCLC patients.
Collapse
Affiliation(s)
- Xiaomu Wang
- Department of Pharmacy, Xiangyang Key Laboratory of Special Preparation of Vitiligo, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yunping Niu
- Department of Laboratory Medicine, The First People's Hospital of Xiangyang, Xiangyang, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Xiangyang Key Laboratory of Special Preparation of Vitiligo, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
5
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
6
|
Xiang Y, Liu X, Wang Y, Zheng D, Meng Q, Jiang L, Yang S, Zhang S, Zhang X, Liu Y, Wang B. Mechanisms of resistance to targeted therapy and immunotherapy in non-small cell lung cancer: promising strategies to overcoming challenges. Front Immunol 2024; 15:1366260. [PMID: 38655260 PMCID: PMC11035781 DOI: 10.3389/fimmu.2024.1366260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Resistance to targeted therapy and immunotherapy in non-small cell lung cancer (NSCLC) is a significant challenge in the treatment of this disease. The mechanisms of resistance are multifactorial and include molecular target alterations and activation of alternative pathways, tumor heterogeneity and tumor microenvironment change, immune evasion, and immunosuppression. Promising strategies for overcoming resistance include the development of combination therapies, understanding the resistance mechanisms to better use novel drug targets, the identification of biomarkers, the modulation of the tumor microenvironment and so on. Ongoing research into the mechanisms of resistance and the development of new therapeutic approaches hold great promise for improving outcomes for patients with NSCLC. Here, we summarize diverse mechanisms driving resistance to targeted therapy and immunotherapy in NSCLC and the latest potential and promising strategies to overcome the resistance to help patients who suffer from NSCLC.
Collapse
Affiliation(s)
- Yuchu Xiang
- West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Xudong Liu
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dawei Zheng
- The College of Life Science, Sichuan University, Chengdu, China
| | - Qiuxing Meng
- Department of Laboratory Medicine, Liuzhou People’s Hospital, Liuzhou, China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People’s Hospital), Liuzhou, China
| | - Lingling Jiang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sha Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Zhongshan Hospital of Fudan University, Xiamen, Fujian, China
| | - Yan Liu
- Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Wang
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Cortés-Jofré M, Rueda-Etxebarria M, Orillard E, Jimenez Tejero E, Rueda JR. Therapeutic vaccines for advanced non-small cell lung cancer. Cochrane Database Syst Rev 2024; 3:CD013377. [PMID: 38470132 PMCID: PMC10929364 DOI: 10.1002/14651858.cd013377.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND New strategies in immunotherapy with specific antigens that trigger an anti-tumour immune response in people with lung cancer open the possibility of developing therapeutic vaccines aimed at boosting the adaptive immune response against cancer cells. OBJECTIVES To evaluate the effectiveness and safety of different types of therapeutic vaccines for people with advanced non-small cell lung cancer. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, Wanfang Data, and China Journal Net (CNKI) up to 22 August 2023. SELECTION CRITERIA We included parallel-group, randomised controlled trials evaluating a therapeutic cancer vaccine, alone or in combination with other treatments, in adults (> 18 years) with advanced non-small cell lung cancer (NSCLC), whatever the line of treatment. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Our primary outcomes were overall survival, progression-free survival, and serious adverse events; secondary outcomes were three- and five-year survival rates and health-related quality of life. MAIN RESULTS We included 10 studies with 2177 participants. The outcome analyses included only 2045 participants (1401 men and 644 women). The certainty of the evidence varied by vaccine and outcome, and ranged from moderate to very low. We report only the results for primary outcomes here. TG4010 The addition of the vector-based vaccine, TG4010, to chemotherapy, compared with chemotherapy alone in first-line treatment, may result in little to no difference in overall survival (hazard ratio (HR) 0.83, 95% confidence interval (CI) 0.65 to 1.05; 2 studies, 370 participants; low-certainty evidence). It may increase progression-free survival slightly (HR 0.74, 95% CI 0.55 to 0.99; 1 study, 222 participants; low-certainty evidence). It may result in little to no difference in the proportion of participants with at least one serious treatment-related adverse event, but the evidence is very uncertain (risk ratio (RR) 0.70, 95% CI 0.23 to 2.19; 2 studies, 362 participants; very low-certainty evidence). Epidermal growth factor vaccine Epidermal growth factor vaccine, compared to best supportive care as switch maintenance treatment after first-line chemotherapy, may result in little to no difference in overall survival (HR 0.82, 95% CI 0.66 to 1.02; 1 study, 378 participants; low-certainty evidence), and in the proportion of participants with at least one serious treatment-related adverse event (RR 1.32, 95% CI 0.88 to 1.98; 2 studies, 458 participants; low-certainty evidence). hTERT (vx-001) The hTERT (vx-001) vaccine compared to placebo as maintenance treatment after first-line chemotherapy may result in little to no difference in overall survival (HR 0.97, 95% CI 0.70 to 1.34; 1 study, 190 participants). Racotumomab Racotumomab compared to placebo as a switch maintenance treatment post-chemotherapy was assessed in one study with 176 participants. It may increase overall survival (HR 0.63, 95% CI 0.46 to 0.87). It may make little to no difference in progression-free survival (HR 0.73, 95% CI 0.53 to 1.00) and in the proportion of people with at least one serious treatment-related adverse event (RR 1.03, 95% CI 0.15 to 7.18). Racotumomab versus docetaxel as switch maintenance therapy post-chemotherapy was assessed in one study with 145 participants. The study did not report hazard rates on overall survival or progression-free survival time, but the difference in median survival times was very small - less than one month. Racotumomab may result in little to no difference in the proportion of people with at least one serious treatment-related adverse event compared with docetaxel (RR 0.89, 95% CI 0.44 to 1.83). Personalised peptide vaccine Personalised peptide vaccine plus docetaxel compared to docetaxel plus placebo post-chemotherapy treatment may result in little to no difference in overall survival (HR 0.80, 95% CI 0.42 to 1.52) and progression-free survival (HR 0.78, 95% CI 0.43 to 1.42). OSE2101 The OSE2101 vaccine compared with chemotherapy, after chemotherapy or immunotherapy, was assessed in one study with 219 participants. It may result in little to no difference in overall survival (HR 0.86, 95% CI 0.62 to 1.19). It may result in a small difference in the proportion of people with at least one serious treatment-related adverse event (RR 0.95, 95% CI 0.91 to 0.99). SRL172 The SRL172 vaccine of killed Mycobacterium vaccae, added to chemotherapy, compared to chemotherapy alone, may result in no difference in overall survival, and may increase the proportion of people with at least one serious treatment-related adverse event (RR 2.07, 95% CI 1.76 to 2.43; 351 participants). AUTHORS' CONCLUSIONS Adding a vaccine resulted in no differences in overall survival, except for racotumomab, which showed some improvement compared to placebo, but the difference in median survival time was very small (1.4 months) and the study only included 176 participants. Regarding progression-free survival, we observed no differences between the compared treatments, except for TG4010, which may increase progression-free survival slightly. There were no differences between the compared treatments in serious treatment-related adverse events, except for SRL172 (killed Mycobacterium vaccae) added to chemotherapy, which was associated with an increase in the proportion of participants with at least one serious treatment-related adverse event, and OSE2101, which may decrease slightly the proportion of people having at least one serious treatment-related adverse event. These conclusions should be interpreted cautiously, as the very low- to moderate-certainty evidence prevents drawing solid conclusions: many vaccines were evaluated in a single study with small numbers of participants and events.
Collapse
Affiliation(s)
- Marcela Cortés-Jofré
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mikel Rueda-Etxebarria
- Research in Sciences of dissemination and implementation in health services, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Elena Jimenez Tejero
- Independent Cochrane review author, Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - José-Ramón Rueda
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Nursing. University of the Basque Country, Leioa, Spain
| |
Collapse
|
8
|
S V, Balasubramanian S, Perumal E, Santhakumar K. Identification of key genes and signalling pathways in clear cell renal cell carcinoma: An integrated bioinformatics approach. Cancer Biomark 2024; 40:111-123. [PMID: 38427469 PMCID: PMC11191544 DOI: 10.3233/cbm-230271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/10/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Clear cell Renal Cell Carcinoma (ccRCC) is one of the most prevalent types of kidney cancer. Unravelling the genes responsible for driving cellular changes and the transformation of cells in ccRCC pathogenesis is a complex process. OBJECTIVE In this study, twelve microarray ccRCC datasets were chosen from the gene expression omnibus (GEO) database and subjected to integrated analysis. METHODS Through GEO2R analysis, 179 common differentially expressed genes (DEGs) were identified among the datasets. The common DEGs were subjected to functional enrichment analysis using ToppFun followed by construction of protein-protein interaction network (PPIN) using Cytoscape. Clusters within the DEGs PPIN were identified using the Molecular Complex Detection (MCODE) Cytoscape plugin. To identify the hub genes, the centrality parameters degree, betweenness, and closeness scores were calculated for each DEGs in the PPIN. Additionally, Gene Expression Profiling Interactive Analysis (GEPIA) was utilized to validate the relative expression levels of hub genes in the normal and ccRCC tissues. RESULTS The common DEGs were highly enriched in Hypoxia-inducible factor (HIF) signalling and metabolic reprogramming pathways. VEGFA, CAV1, LOX, CCND1, PLG, EGF, SLC2A1, and ENO2 were identified as hub genes. CONCLUSION Among 8 hub genes, only the expression levels of VEGFA, LOX, CCND1, and EGF showed a unique expression pattern exclusively in ccRCC on compared to other type of cancers.
Collapse
Affiliation(s)
- Vinoth S
- Department of Genetic Engineering, Zebrafish Genetics Laboratory, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Satheeswaran Balasubramanian
- Department of Biotechnology, Molecular Toxicology Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ekambaram Perumal
- Department of Biotechnology, Molecular Toxicology Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, Zebrafish Genetics Laboratory, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
9
|
Saavedra D, Añé-Kourí AL, Barzilai N, Caruso C, Cho KH, Fontana L, Franceschi C, Frasca D, Ledón N, Niedernhofer LJ, Pereira K, Robbins PD, Silva A, Suarez GM, Berghe WV, von Zglinicki T, Pawelec G, Lage A. Aging and chronic inflammation: highlights from a multidisciplinary workshop. Immun Ageing 2023; 20:25. [PMID: 37291596 PMCID: PMC10248980 DOI: 10.1186/s12979-023-00352-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
Aging is a gradual, continuous series of natural changes in biological, physiological, immunological, environmental, psychological, behavioral, and social processes. Aging entails changes in the immune system characterized by a decrease in thymic output of naïve lymphocytes, an accumulated chronic antigenic stress notably caused by chronic infections such as cytomegalovirus (CMV), and immune cell senescence with acquisition of an inflammatory senescence-associated secretory phenotype (SASP). For this reason, and due to the SASP originating from other tissues, aging is commonly accompanied by low-grade chronic inflammation, termed "inflammaging". After decades of accumulating evidence regarding age-related processes and chronic inflammation, the domain now appears mature enough to allow an integrative reinterpretation of old data. Here, we provide an overview of the topics discussed in a recent workshop "Aging and Chronic Inflammation" to which many of the major players in the field contributed. We highlight advances in systematic measurement and interpretation of biological markers of aging, as well as their implications for human health and longevity and the interventions that can be envisaged to maintain or improve immune function in older people.
Collapse
Affiliation(s)
- Danay Saavedra
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba.
| | - Ana Laura Añé-Kourí
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, United States
| | - Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan, Republic of Korea
- Raydel Research Institute, Medical Innovation Complex, Seoul, Republic of Korea
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nuris Ledón
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | | | - Karla Pereira
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Paul D Robbins
- University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexa Silva
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Gisela M Suarez
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), University of Antwerp, Wilrijk, 2610, Belgium
- Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, 2610, Belgium
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Agustín Lage
- Department of Clinical Immunology, Center of Molecular Immunology, 216 St, Corner 15, PO Box 16040, Atabey, Havana, Cuba
| |
Collapse
|
10
|
Serrano-Rivero Y, Salazar-Uribe J, Rubio-Carrasquilla M, Camacho-Casanova F, Sánchez-Ramos O, González-Pose A, Moreno E. Selecting Nanobodies Specific for the Epidermal Growth Factor from a Synthetic Nanobody Library. Molecules 2023; 28:molecules28104043. [PMID: 37241784 DOI: 10.3390/molecules28104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The epidermal growth factor (EGF) is one of the most critical ligands of the EGF receptor (EGFR), a well-known oncogene frequently overexpressed in cancerous cells and an important therapeutic target in cancer. The EGF is the target of a therapeutic vaccine aimed at inducing an anti-EGF antibody response to sequester this molecule from serum. However, strikingly, very few investigations have focused on EGF immunotargeting. Since the use of nanobodies (Nbs) for EGF neutralization may be an effective therapeutic strategy in several types of cancer, in this study, we decided to generate anti-EGF Nbs from a recently constructed, phage-displaying synthetic nanobody library. To our knowledge, this is the first attempt to obtain anti-EGF Nbs from a synthetic library. By applying a selection strategy that uses four different sequential elution steps along with three rounds of selection, we obtained four different EGF-specific Nb clones, and also tested their binding capabilities as recombinant proteins. The obtained results are very encouraging and demonstrate the feasibility of selecting nanobodies against small antigens, such as the EGF, from synthetic libraries.
Collapse
Affiliation(s)
| | | | | | - Frank Camacho-Casanova
- Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion 4070386, Chile
| | - Oliberto Sánchez-Ramos
- Pharmacology Department, School of Biological Sciences, University of Concepcion, Concepcion 4070386, Chile
| | - Alaín González-Pose
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia
| | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia
| |
Collapse
|
11
|
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22:40. [PMID: 36810079 PMCID: PMC9942077 DOI: 10.1186/s12943-023-01740-y] [Citation(s) in RCA: 259] [Impact Index Per Article: 259.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 02/23/2023] Open
Abstract
Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Collapse
Affiliation(s)
- Aritraa Lahiri
- grid.417960.d0000 0004 0614 7855Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Avik Maji
- grid.416241.4Department of Radiation Oncology, N. R. S. Medical College & Hospital, 138 A.J.C. Bose Road, Kolkata, 700014 India
| | - Pravin D. Potdar
- grid.414939.20000 0004 1766 8488Department of Molecular Medicine and Stem Cell Biology, Jaslok Hospital and Research Centre, Mumbai, 400026 India
| | - Navneet Singh
- grid.415131.30000 0004 1767 2903Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Purvish Parikh
- Department of Clinical Hematology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan 302022 India ,grid.410871.b0000 0004 1769 5793Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra 400012 India
| | - Bharti Bisht
- grid.19006.3e0000 0000 9632 6718Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Anubhab Mukherjee
- Esperer Onco Nutrition Pvt Ltd, 4BA, 4Th Floor, B Wing, Gundecha Onclave, Khairani Road, Sakinaka, Andheri East, Mumbai, Maharashtra, 400072, India.
| | - Manash K. Paul
- grid.19006.3e0000 0000 9632 6718Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA ,grid.411639.80000 0001 0571 5193Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
12
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
13
|
Rekulapelli A, E. Flausino L, Iyer G, Balkrishnan R. Effectiveness of immunological agents in non-small cell lung cancer. Cancer Rep (Hoboken) 2022; 6:e1739. [PMID: 36289059 PMCID: PMC9981233 DOI: 10.1002/cnr2.1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 08/28/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIM Non-small cell lung cancer (NSCLC) continues to claim millions of lives worldwide. Although its poor prognosis is largely attributed to the lack of adequate and precise detection technologies, cancer cells' suppression of the immune system adds on to the difficulty of identifying abnormal NSCLC tumors in their early stages. Therefore, cancer immunotherapy, which activates the immune system and helps it fight tumors, has recently become the most sought-after technique, especially in the advanced stages of NSCLC, where surgery or chemotherapy may or may not bring about the desired survival benefits in patients. METHODS This review focuses on the various immunotherapeutic interventions and their efficacy in advanced NSCLC clinical trials. Monoclonal antibodies like anti-PD-1/PD-L1 agents and anti-CTLA-4 antibodies, cancer vaccines, oncolytic viruses and adoptive T cell therapy have been discussed in brief. Furthermore, the effects of gender, age, and race on the efficacy of immune checkpoint inhibitors and suggest plausible future approaches in the realm of immuno-oncology. RESULTS Immunotherapy is used alone or in combination either with other immunological agents or with chemotherapy. However, the efficacy of these strategies depends extensively on various demographic variables, as some patients respond perfectly well to immunotherapy, while others do not benefit at all or experience disease progression. By targeting a "hallmark" of cancer (immune evasion), immunotherapy has transformed NSCLC management, though several barriers prevent its complete effectiveness. CONCLUSIONS All these immunological strategies should be interpreted in the current setting of synergistic treatment, in which these agents can be combined with chemotherapy, radiotherapy, and, or surgery following patient and tumor characteristics to proportionate the best-individualized treatment and achieve superior results. To better pursue this goal, further investigations on cost-effectiveness and sex-gender, race, and age differences in immunotherapy are needed.
Collapse
Affiliation(s)
- Akhil Rekulapelli
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Lucas E. Flausino
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA,Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Gayatri Iyer
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Rajesh Balkrishnan
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
14
|
Ren X, Li Y, Nishimura C, Zang X. Crosstalk between the B7/CD28 and EGFR pathways: Mechanisms and therapeutic opportunities. Genes Dis 2022; 9:1181-1193. [PMID: 35873032 PMCID: PMC9293717 DOI: 10.1016/j.gendis.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Somatic activating mutations in the epidermal growth factor receptor (EGFR) are one of the most common oncogenic drivers in cancers such as non-small-cell lung cancer (NSCLC), metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Molecular-targeted agents against EGFR signaling pathways have shown robust clinical efficacy, but patients inevitably experience acquired resistance. Although immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have exhibited durable anti-tumor responses in a subset of patients across multiple cancer types, their efficacy is limited in cancers harboring activating gene alterations of EGFR. Increasing studies have demonstrated that upregulation of new B7/CD28 family members such as B7-H3, B7x and HHLA2, is associated with EGFR signaling and may contribute to resistance to EGFR-targeted therapies by creating an immunosuppressive tumor microenvironment (TME). In this review, we discuss the regulatory effect of EGFR signaling on the PD-1/PD-L1 pathway and new B7/CD28 family member pathways. Understanding these interactions may inform combination therapeutic strategies and potentially overcome the current challenge of resistance to EGFR-targeted therapies. We also summarize clinical data of anti-PD-1/PD-L1 therapies in EGFR-mutated cancers, as well as ongoing clinical trials of combination of EGFR-targeted therapies and anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Yixian Li
- Division of Pediatric Hematology/Oncology/Transplant and Cellular Therapy, Children's Hospital at Montefiore, Bronx, NY 10467, USA
| | - Christopher Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, New York, NY 10461, USA.,Department of Urology, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
15
|
Multicenter oncology clinical trials in primary health care in Cuba: evaluation of program implementation in Villa Clara Province, 2010-2020. BJGP Open 2022; 6:BJGPO.2021.0165. [DOI: 10.3399/bjgpo.2021.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/13/2021] [Indexed: 10/31/2022] Open
Abstract
BackgroundThe Centre of Molecular Immunology of Cuba has developed a programme for the conduction of multicenter oncology clinical trials in primary health care centres since 2009.AimTo evaluate the ability to conduct oncology clinical trials in primary health careDesign & settingA longitudinal, prospective, analytical study was developed between July 2010 and August 2020 in the Villa Clara province.MethodStructure, process, and outcome indicators were evaluated by the methods of a structured interview, direct observation, documentary observation and databases analysis. The investigators' curricula vitae, the Investigator Site File, minutes of workshops, the monitoring reports, the clinical trial training records and databases were employed as sources of information. The following criteria were considered: adequate: when the indicator met the standard and not adequate: when the indicator did not meet the standard.ResultsThe six structure indicators reached adequate results and showed that the programme has allowed building of capacities to conduct clinical trials in primary care. The eight processes indicators and two outcome indicators were considered adequate too. Trials conducted in primary care showed better indicators of patient recruitment than secondary care. Both scenarios showed similar behaviour for the process indicators: retention, protocol compliance and safety. Survival and satisfaction with health services were also comparable in both scenariosConclusionsThe evaluation of the programme showed adequate indicators for conducting oncology clinical trials in primary care in Villa Clara and these were comparable to those determined in the secondary care.
Collapse
|
16
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Clinical Application Perspectives of Lung Cancers 3D Tumor Microenvironment Models for In Vitro Cultures. Int J Mol Sci 2022; 23:ijms23042261. [PMID: 35216378 PMCID: PMC8876687 DOI: 10.3390/ijms23042261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the enormous progress and development of modern therapies, lung cancer remains one of the most common causes of death among men and women. The key element in the development of new anti-cancer drugs is proper planning of the preclinical research phase. The most adequate basic research exemplary for cancer study are 3D tumor microenvironment in vitro models, which allow us to avoid the use of animal models and ensure replicable culture condition. However, the question tormenting the scientist is how to choose the best tool for tumor microenvironment research, especially for extremely heterogenous lung cancer cases. In the presented review we are focused to explain the key factors of lung cancer biology, its microenvironment, and clinical gaps related to different therapies. The review summarized the most important strategies for in vitro culture models mimicking the tumor–tumor microenvironmental interaction, as well as all advantages and disadvantages were depicted. This knowledge could facilitate the right decision to designate proper pre-clinical in vitro study, based on available analytical tools and technical capabilities, to obtain more reliable and personalized results for faster introduction them into the future clinical trials.
Collapse
|
17
|
Suárez GM, Catalá M, Peña Y, Portela S, Añé-Kourí AL, González A, Lorenzo-Luaces P, Díaz M, Molina MDLA, Pereira K, Hernández JDLC, Ramos R, Reyes MC, Ledón N, Mazorra Z, Crombet T, Lage A, Saavedra D. Thymic Polypeptide Fraction Biomodulina T Decreases Exhausted and Terminally Differentiated EMRA T Cells in Advanced Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Front Oncol 2022; 12:823287. [PMID: 35155258 PMCID: PMC8828575 DOI: 10.3389/fonc.2022.823287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is the second cause of cancer related deaths worldwide. Chemotherapy and immunotherapy represent the current standard of care for advanced NSCLC. Platinum-based chemotherapy expands late-differentiated T cell populations. Therefore, immune restoration after chemotherapy to adjuvate the immunotherapeutic potential could be crucial. The aim of this study was to evaluate the effect of Biomodulina T (BT), a thymic polypeptide fraction, on peripheral lymphocytes subpopulations in the context of cancer disease. Additionally, whether these effects might induce a better response to CIMAvax-EGF, an epidermal growth factor (EGF) depleting immunotherapy. Eighteen advanced NSCLC patients were evaluated after being treated with platinum-based chemotherapy. We found that the frequency of terminally differentiated effector T cells re-expressing CD45RA (EMRA) CD4+ (p=0.0031) and CD8+ (p=0.0372) T cells decreased with the administration of BT, whereas CD4+ naive T cells increase in more than 70% of the patients. Remarkably, CD4+ and CD8+ T lymphocytes expressing programmed cell death receptor-1 (PD1) significantly decreased after BT administration (p=0.0005 and p<0.0001, respectively). We also found an enhancement of the anti-EGF antibody response with a large percentage of patients treated with CIMAvax-EGF reaching the good antibody response condition after four vaccine doses. Moreover, the median overall survival of patients treated with CIMAvax-EGF was 16.09 months. In conclusion, our results suggest that the immunorestoration generated by the administration of BT after first-line chemotherapy may induce a better immune response to CIMAvax-EGF that could translate into the clinical benefit of patients diagnosed with advanced NSCLC.
Collapse
Affiliation(s)
- Gisela María Suárez
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Mauricio Catalá
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Yadira Peña
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Susana Portela
- Oncology Unit, Medical & Surgical Research Center (CIMEQ), Havana, Cuba
| | - Ana Laura Añé-Kourí
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Amnely González
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | | | - Manuel Díaz
- Pulmonology Hospital "Benéfico Jurídico", Havana, Cuba
| | | | - Karla Pereira
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | | | - Raúl Ramos
- Immunology Department, Instituto de Ciencias Básicas y Preclínicas "Victoria de Girón", Havana, Cuba.,Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | | | - Nuris Ledón
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Zaima Mazorra
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Tania Crombet
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Agustin Lage
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| | - Danay Saavedra
- Clinical Immunology Department, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
18
|
Akache B, Stark FC, Agbayani G, Renner TM, McCluskie MJ. Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods Mol Biol 2022; 2412:179-231. [PMID: 34918246 DOI: 10.1007/978-1-0716-1892-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.
Collapse
Affiliation(s)
- Bassel Akache
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Felicity C Stark
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Tyler M Renner
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | - Michael J McCluskie
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Vaccine-Based Immunotherapy for Head and Neck Cancers. Cancers (Basel) 2021; 13:cancers13236041. [PMID: 34885150 PMCID: PMC8656843 DOI: 10.3390/cancers13236041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Therapeutic vaccines are given to patients with cancer, as opposed to prophylactic vaccines given to a healthy population. The challenge for therapeutic oncological vaccines is to stimulate an immune T cell response against endogenous (or derived) antigens that is sufficiently potent to induce cytotoxic activity and broad enough to take tumor heterogeneity into account. The purpose of this article is to provide an updated review of the prophylactic and therapeutic vaccines that target viral or non-viral antigens, particularly in head and neck cancers. Abstract In 2019, the FDA approved pembrolizumab, a monoclonal antibody targeting PD-1, for the first-line treatment of recurrent or metastatic head and neck cancers, despite only a limited number of patients benefiting from the treatment. Promising effects of therapeutic vaccination led the FDA to approve the use of the first therapeutic vaccine in prostate cancer in 2010. Research in the field of therapeutic vaccination, including possible synergistic effects with anti-PD(L)1 treatments, is evolving each year, and many vaccines are in pre-clinical and clinical studies. The aim of this review article is to discuss vaccines as a new therapeutic strategy, particularly in the field of head and neck cancers. Different vaccination technologies are discussed, as well as the results of the first clinical trials in HPV-positive, HPV-negative, and EBV-induced head and neck cancers.
Collapse
|
20
|
Xiong AW, Fang JM, Ren SX, Li W, Wang J, Zhao Y, Chen GY, Xu Q, Zhou CC. A Novel Combined Conjugate Therapeutic Cancer Vaccine, Recombinant EGF-CRM197, in Patients With Advanced Solid Tumors: A Phase I Clinical Study. Front Oncol 2021; 11:745699. [PMID: 34804932 PMCID: PMC8602890 DOI: 10.3389/fonc.2021.745699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction The therapeutic cancer vaccine recombinant Epidermal Growth Factor (EGF)-CRM197 is a novel combined conjugate EGF with CRM197 as a carrier protein. Immunization with the EGF-CRM197 vaccine can induce high levels of neutralizing anti-EGF antibodies that inhibit EGF/EGFR signaling and thereby suppress growth of tumors that rely on this signaling pathway. Herein, we characterize the humoral immune responses elicited by the recombinant EGF-CRM197 vaccine in patients with advanced solid tumors in a phase I clinical trial and assess the safety, tolerability, and immunogenicity of this vaccine (CTR20190473). Methods A total of 16 subjects were enrolled in this study. Under 6 + 3 design, patients in each dosing cohort were administrated subcutaneously at a dosage of 0.4 mg, 0.8 mg, and 1.6 mg, respectively. The patients received vaccinations for immune induction (once a week for 4 consecutive weeks) and booster vaccinations (once every 4 weeks). Safety evaluation was performed 1 week after the immune induction. Booster vaccination was given until the occurrence of disease progression, intolerance, withdrawal of informed consent by the patient, or negative result of anti-EGF test after two booster vaccinations. Results Vaccination with EGF-CRM197 is safe and well-tolerated in patients with advanced solid tumors. Adverse reactions at the injection site were the most common adverse events (AEs) in recipients. No severe adverse reactions post vaccination were observed in the present study. Vaccinated patients developed a robust neutralizing antibody response triggered by EGF-CRM197 that significantly reduced the levels of EGF in serum. For lung cancer patients who were super good antibody responders (sGAR) to EGF-CRM197, the median progress-free survival (PFS) was 4.83 months, significantly longer than that of the good antibody responder (GAR) patients with lung cancer whose median PFS was 2.10 months (P=0.0018). The median overall survival (OS) of GAR lung cancer patients was 10.67 months while the OS) for sGAR lung cancer patients was not reached until analysis was performed. The median follow-up of the sGAR lung cancer patients was 14.6 months. Conclusion Our study demonstrates that the recombinant EGF-CRM197 therapeutic cancer vaccine can induce a good immune response in patients with advanced solid tumors and is safe and well tolerated, which ensures further clinical development of the vaccine for extending the survival time of EGF-CRM197 sensitive patients with advanced solid tumors. Clinical Trial Registration http://www.chinadrugtrials.org.cn, identifier CTR20190473, EGF-CRM197.
Collapse
Affiliation(s)
- An-Wen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jue-Min Fang
- Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Sheng-Xiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhao
- Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Guo-You Chen
- Shanghai Humantech Biotechnology Co., Ltd, Shanghai, China
| | - Qing Xu
- Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Cai-Cun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
JNJ-64041757 (JNJ-757), a Live, Attenuated, Double-Deleted Listeria monocytogenes-Based Immunotherapy in Patients With NSCLC: Results From Two Phase 1 Studies. JTO Clin Res Rep 2021; 2:100103. [PMID: 34589981 PMCID: PMC8474274 DOI: 10.1016/j.jtocrr.2020.100103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction JNJ-64041757 (JNJ-757) is a live, attenuated, double-deleted Listeria monocytogenes-based immunotherapy expressing human mesothelin. JNJ-757 was evaluated in patients with advanced NSCLC as monotherapy (phase 1) and in combination with nivolumab (phase 1b/2). Methods Patients with stage IIIB/IV NSCLC who had received previous therapy were treated with JNJ-757 (1 × 108 or 1 × 109 colony-forming units [CFUs]) alone (NCT02592967) or JNJ-757 (1 × 109 CFU) plus intravenous nivolumab 240 mg (NCT03371381). Study objectives included the assessment of immunogenicity, safety, and efficacy. Results In the monotherapy study, 18 patients (median age 63.5 y; women 61%) were treated with JNJ-757 (1 × 108 or 1 × 109 CFU) with a median duration of 1.4 months (range: 0-29). The most common adverse events (AEs) were pyrexia (72%) and chills (61%), which were usually mild and resolved within 48 hours. Peripheral proinflammatory cytokines and lymphocyte activation were induced posttreatment with transient mesothelin-specific T-cell responses in 10 of 13 biomarker-evaluable patients. With monotherapy, four of 18 response-evaluable patients had stable disease of 16 or more weeks, including one patient with a reduction in target lesions. In the combination study, 12 patients were enrolled (median age 63.5 y; women 33%). The most common AEs with combination therapy were pyrexia (67%) and chills (58%); six patients had grade 3 AEs or greater, including two cases of treatment-related fatal pneumonitis. The best overall response for the combination was stable disease in four of nine response-evaluable patients. Conclusions As monotherapy, JNJ-757 was immunogenic and tolerable, with mild infusion-related fever and chills. The limited efficacy of JNJ-757, alone or with nivolumab, did not warrant further investigation of the combination.
Collapse
|
22
|
Xue T, Zhao X, Zhao K, Lu Y, Yao J, Ji X. Immunotherapy for lung cancer: Focusing on chimeric antigen receptor (CAR)-T cell therapy. Curr Probl Cancer 2021; 46:100791. [PMID: 34538649 DOI: 10.1016/j.currproblcancer.2021.100791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
Besides traditional treatment strategies, including surgery, radiotherapy, and chemotherapy for lung cancer as the leading cause of cancer incidence and death, immunotherapy has also emerged as a new treatment strategy. The goal of immunotherapy is to stimulate the immune system responses against cancer, using various approaches such as therapeutic vaccines, monoclonal antibodies, immune checkpoint inhibitors, and T-cell therapy. Chimeric antigen receptor (CAR)-T cells, one of the most popular cancer immunotherapy approaches in the last decade, are genetically engineered T-cells to redirect patients' immune responses to recognize and eliminate tumor-associated antigens (TAA)-expressing tumor cells. CAR-T cell therapy provides promising benefits in lung tumors. In this review, we summarize different immunotherapy approaches for lung cancer, the structure of CAR-T cells, currently undergoing CARs in clinical trials, and various TAAs are being investigated as potential targets in designing CAR-T cells for lung cancer.
Collapse
Affiliation(s)
- Tongqing Xue
- Department of Pain and Intervention Management, Huaian Hospital of Huaian City, Huaian 223200, Jiangsu, China
| | - Xiang Zhao
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China
| | - Kun Zhao
- Department of oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China
| | - Yan Lu
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China
| | - Juan Yao
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China.
| | - Xianguo Ji
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian 223200, Huaian, Jiangsu, China.
| |
Collapse
|
23
|
Immunotherapy for non-small cell lung cancer (NSCLC), as a stand-alone and in combination therapy. Crit Rev Oncol Hematol 2021; 164:103417. [PMID: 34242772 DOI: 10.1016/j.critrevonc.2021.103417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/05/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is of major concern for society as it is associated with high mortality and is one of the most commonly occurring of all cancers. Due to the number of mutational variants and general heterogeneity of this type of cancer, treatment using conventional modalities has been challenging. Therefore, it is important to have improved therapeutic treatments like immunotherapy, that can specifically treat the disease while causing minimal damage to healthy tissue and additionally provide systemic immunity. Cancer vaccines are an important element of cancer immunotherapy and have been approved for treatment of a limited number of cancers, including NSCLC. This article highlights scientific evidence for several therapeutic treatment strategies for NSCLC, alone or in combination, which offers new hope for those suffering. Although cancer vaccines have had some success as a monotherapy, their potential in a combination therapy needs to be critically analyzed for future applications.
Collapse
|
24
|
Crombet Ramos T, Santos Morales O, Dy GK, León Monzón K, Lage Dávila A. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Front Oncol 2021; 11:639745. [PMID: 34211836 PMCID: PMC8240591 DOI: 10.3389/fonc.2021.639745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) has faced a therapeutic revolution with the advent of tyrosine kinase inhibitors (TKIs) and immune checkpoints inhibitors (ICIs) approved for first and subsequent therapies. CIMAvax-EGF is a chemical conjugate between human-recombinant EGF and P64, a recombinant protein from Neisseria meningitides, which induces neutralizing antibodies against EGF. In the last 15 years, it has been extensively evaluated in advanced NSCLC patients. CIMAvax-EGF is safe, even after extended use, and able to keep EGF serum concentration below detectable levels. In a randomized phase III study, CIMAvax-EGF increased median overall survival of advanced NSCLC patients with at least stable disease after front-line chemotherapy. Patients bearing squamous-cell or adenocarcinomas and serum EGF concentration above 870 pg/ml had better survival compared to control patients treated with best supportive care as maintenance, confirming tumors' sensitivity to the EGF depletion. This manuscript reviews the state-of-the-art NSCLC therapy and proposes the most promising scenarios for evaluating CIMAvax-EGF, particularly in combination with TKIs or ICIs. We hypothesize that the optimal combination of CIMAvax-EGF with established therapies can further contribute to transform advanced cancer into a manageable chronic disease, compatible with years of good quality of life.
Collapse
Affiliation(s)
| | | | - Grace K. Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | | |
Collapse
|
25
|
Suárez GM, Añé-Kourí AL, González A, Lorenzo-Luaces P, Neninger E, Salomón EE, Cordero L, Catalá M, Ledón N, Pereira K, Sánchez MG, García B, Crombet T, Mazorra Z, Saavedra D, Lage A. Associations among cytokines, EGF and lymphocyte subpopulations in patients diagnosed with advanced lung cancer. Cancer Immunol Immunother 2021; 70:1735-1743. [PMID: 33388995 DOI: 10.1007/s00262-020-02823-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Aging is considered the single most significant risk factor for the majority of common malignances including lung cancer. Together immunosenescence, changes occurring with aging in the immune system, and inflammaging, characterizes by a chronic, subclinical accumulation of pro-inflammatory factors, are suggested to stand at the origin of most of the diseases of the elderly, such as cancer. The aim of this study was to determine associations among lymphocyte subpopulations, pro-inflammatory cytokines and epidermal growth factor (EGF) in patients diagnosed with non-small cell lung cancer (NSCLC). Forty-six advanced NSCLC patients were enrolled. Sixteen patients with newly diagnosed and before treatment and 30 patients after first-line platinum-based chemotherapy. Peripheral blood subpopulations were studied by flow cytometry and serum concentrations of soluble factors by ELISA. The frequency of naïve CD4+ T cells, naïve B cells and central memory CD8+ T cells were significantly lower in NSCLC patients after chemotherapy, while effector memory CD4+ T cells and terminally differentiated CD8+ T cells were significantly higher. IL-1β and TNFα significantly correlated among them before and after platinum-based chemotherapy. Terminally differentiated T cells expressing CD57+ significantly correlated with TNFα and IL-1β. For the first time, associations between EGF serum levels and terminally differentiated CD4+ T cells, and memory B cells were detected. This study confirms the association among terminally differentiated lymphocytes and pro-inflammatory cytokines in patients diagnosed with lung cancer, reinforcing the interconnection between terminally differentiated lymphocytes and pro-inflammatory cytokines. Clinical trial registration number: RPCEC00000205, http://registroclinico.sld.cu/.
Collapse
Affiliation(s)
- Gisela María Suárez
- Clinical Research Direction, Center of Molecular Immunology, 216 St., Corner 15, PO Box 16040, Atabey, Playa, Havana, Cuba
| | - Ana Laura Añé-Kourí
- Biochemical Department, Instituto de Ciencias Básicas Y Preclínicas "Victoria de Girón", Havana, Cuba
| | - Amnely González
- Clinical Research Direction, Center of Molecular Immunology, 216 St., Corner 15, PO Box 16040, Atabey, Playa, Havana, Cuba
| | - Patricia Lorenzo-Luaces
- Clinical Research Direction, Center of Molecular Immunology, 216 St., Corner 15, PO Box 16040, Atabey, Playa, Havana, Cuba
| | | | | | | | | | - Nuris Ledón
- Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Karla Pereira
- Clinical Research Direction, Center of Molecular Immunology, 216 St., Corner 15, PO Box 16040, Atabey, Playa, Havana, Cuba
| | | | | | - Tania Crombet
- Clinical Research Direction, Center of Molecular Immunology, 216 St., Corner 15, PO Box 16040, Atabey, Playa, Havana, Cuba
| | - Zaima Mazorra
- Clinical Research Direction, Center of Molecular Immunology, 216 St., Corner 15, PO Box 16040, Atabey, Playa, Havana, Cuba
| | - Danay Saavedra
- Clinical Research Direction, Center of Molecular Immunology, 216 St., Corner 15, PO Box 16040, Atabey, Playa, Havana, Cuba.
| | - Agustin Lage
- Clinical Research Direction, Center of Molecular Immunology, 216 St., Corner 15, PO Box 16040, Atabey, Playa, Havana, Cuba
| |
Collapse
|
26
|
Qiao M, Jiang T, Liu X, Mao S, Zhou F, Li X, Zhao C, Chen X, Su C, Ren S, Zhou C. Immune Checkpoint Inhibitors in EGFR-Mutated NSCLC: Dusk or Dawn? J Thorac Oncol 2021; 16:1267-1288. [PMID: 33915248 DOI: 10.1016/j.jtho.2021.04.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Although immune checkpoint inhibitors (ICIs) that target programmed cell death protein-1/programmed cell death ligand-1 axis have significantly shifted the treatment paradigm in advanced NSCLC, clinical benefits of these agents are limited in patients with EGFR-mutated NSCLC. Several predictive biomarkers (e.g., programmed cell death ligand-1 expression, tumor mutation burden), which have been validated in EGFR-wild type NSCLC, however, are not efficacious in EGFR-mutated tumors, suggesting the unique characteristics of tumor microenvironment of EGFR-mutated NSCLC. Here, we first summarized the clinical evidence on the efficacy of ICIs in patients with EGFR-mutated NSCLC. Then, the cancer immunogram features of EGFR-mutated NSCLC was depicted to visualize the state of cancer-immune system interactions, including tumor foreignness, tumor sensitivity to immune effectors, metabolism, general immune status, immune cell infiltration, cytokines, and soluble molecules. We further discussed the potential subpopulations with EGFR mutations that could benefit from ICI treatment. Lastly, we put forward future strategies to adequately maximize the efficacy of ICI treatment in patients with EGFR-mutated NSCLC in the upcoming era of combination immunotherapies.
Collapse
Affiliation(s)
- Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
27
|
Abstract
I examine in this article a movement in Cuba known as cronicidad (chronicity), to reimagine advanced cancer as a normal social experience. In Cuba, cronicidad is particularly visible through treatments called therapeutic vaccines designed to slow the growth of tumors. I explore how cronicidad becomes possible through the Cuban socialist integration of biotechnology and public health. Drawing from interviews with and observations of Cuban cancer researchers and clinicians involved with a novel lung cancer vaccine, I argue that cronicidad differs from chronicity as an area of anthropological inquiry in its emplacement of advanced cancer within routine care in Cuba's socialist biomedical system.Examino un movimiento en Cuba para re-imaginar cáncer avanzado como una experiencia normal conocido como cronicidad. En Cuba, cronicidad es particularmente visible por tratamientos denominados vacunas terapéuticas diseñadas para retardar el crecimiento de tumores. Exploro como cronicidad se pone posible por la integración de biotecnología y salud pública del sistema socialista cubana. Partiendo de entrevistas y observaciones de investigadores y clínicos cubanos involucrados en el uso de una vacuna novedosa contra cáncer, sostengo que la cronicidad difiere de las discusiones de enfermedades crónicas analizados dentro de antropología en su colocación de cáncer avanzado dentro de cuidado rutina en el sistema de salud en Cuba.
Collapse
Affiliation(s)
- Naomi C Schoenfeld
- Department of Humanities and Social Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
28
|
Dey Sarkar R, Sinha S, Biswas N. Manipulation of Inflammasome: A Promising Approach Towards Immunotherapy of Lung Cancer. Int Rev Immunol 2021; 40:171-182. [PMID: 33508984 DOI: 10.1080/08830185.2021.1876044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation has emerged as a key player at different stages of cancer development. A prominent signaling pathway for acute and chronic inflammation is the activation of the caspase-1 inflammasomes. These are complexes that assemble on activation of certain nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs), AIM2-like receptors (ALRs), or pyrin due to activation via PAMPs or DAMPs. Of these, five complexes-NLRP1, NLRP3, NLRC4, Pyrin, and AIM2 are of importance in the context of cancer for their activities in modulating immune responses, cell proliferation, and apoptosis. Inflammasomes have emerged as clinically relevant in multiple forms of cancer making them highly promising targets for cancer therapy. As lungs are a tissue niche that is prone to inflammation owing to its exposure to external substances, inflammasomes play a vital role in the development and pathogenesis of lung cancer. Therefore, manipulation of inflammasome by various immunomodulatory means could prove a full-proof strategy for the treatment of lung cancer. Here, in this review, we tried to explore the various strategies to target the inflammasomes for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rupak Dey Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Samraj Sinha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
29
|
Stolk DA, de Haas A, Vree J, Duinkerken S, Lübbers J, van de Ven R, Ambrosini M, Kalay H, Bruijns S, van der Vliet HJ, de Gruijl TD, van Kooyk Y. Lipo-Based Vaccines as an Approach to Target Dendritic Cells for Induction of T- and iNKT Cell Responses. Front Immunol 2020; 11:990. [PMID: 32536918 PMCID: PMC7267035 DOI: 10.3389/fimmu.2020.00990] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
In this study we developed a liposome-based vaccine containing palmitoylated synthetic long peptides (SLP) and alpha galactosylceramide (αGC) to specifically target dendritic cells (DC) for activation of both innate (invariant natural killer T-cells [iNKT]) and adaptive (CD8+ T-cells) players of the immune system. Combination of model tumor specific antigens (gp100/MART-1) formulated as a SLP and αGC in one liposome results in strong activation of CD8+ and iNKT, as measured by IFNγ secretion. Moreover, addition of lipo-Lewis Y (LeY) to the liposomes for C-type lectin targeting increased not only uptake by monocyte-derived dendritic cells (moDC), dermal dendritic cells and Langerhans cells but also enhanced gp100-specific CD8+ T- and iNKT cell activation by human skin-emigrated antigen presenting cells in an ex vivo explant model. Loading of moDC with liposomes containing LeY also showed priming of MART-126−35L specific CD8+ T-cells. In conclusion, chemically linking a lipid tail to a glycan-based targeting moiety and SLP combined with αGC in one liposome allows for easy generation of vaccine formulations that target multiple skin DC subsets and induce tumor antigen specific CD8+ T- and iNKT cells. These liposomes present a new vaccination strategy against tumors.
Collapse
Affiliation(s)
- Dorian A Stolk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aram de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jana Vree
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sanne Duinkerken
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joyce Lübbers
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rieneke van de Ven
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Otolaryngology/Head and Neck Surgery, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,LAVA Therapeutics, Utrecht, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Popa X, García B, Fuentes KP, Huerta V, Alvarez K, Viada CE, Neninger E, Rodríguez PC, González Z, González A, Crombet T, Mazorra Z. Anti-EGF antibodies as surrogate biomarkers of clinical efficacy in stage IIIB/IV non-small-cell lung cancer patients treated with an optimized CIMAvax-EGF vaccination schedule. Oncoimmunology 2020; 9:1762465. [PMID: 32923124 PMCID: PMC7458606 DOI: 10.1080/2162402x.2020.1762465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously reported that CIMAvax-EGF vaccine is safe, immunogenic and efficacious to treat advanced non-small-cell lung cancer (NSCLC) patients. A phase III trial was designed using an optimized immunization schedule. It included higher antigen dose and injections at multiple sites. Immune response and circulating biomarkers were studied in a subset of patients. EGF-specific antibody titers, IgG subclasses, peptide immunodominance and circulating biomarkers were assessed by ELISA. In vitro EGF-neutralization capacity of immune sera and EGF-IgG binding kinetics was evaluated by Western Blot and Surface Plasmon Resonance (SPR) technology, respectively. We show that CIMAvax-EGF elicited mainly IgG3/IgG4 antibodies at titers exceeding 1:4000 in 80% of vaccinated patients after 3 months of treatment. The EGF-specific humoral response was directed against the central region of the EGF molecule. For the first time, the kinetic constants of EGF-specific antibodies were measured evidencing affinity maturation of antibody repertoire up to month 12 of vaccination. Notably, the capacity of post-immune sera to inhibit EGFR phosphorylation significantly increased during the course of the immunization scheme and was related to clinical outcome (P = .013, log-rank test). Basal concentrations of EGF and TGFα in the serum were affected by EGF-based immunization. In conclusion, the CIMAvax-EGF vaccine induces an EGF-specific protective humoral response in a high percent of NSCLC vaccinated patients, the quantity and quality of which were associated with clinical benefit (clinical trial registration number: RPCEC00000161, http://registroclinico.sld.cu/). Abbreviations EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; Ab: antibody; AR: amphiregulin; NSCLC: non-small-cell lung cancer; rhEGF: recombinant human epidermal growth factor; BSC: best supportive care; TGFα: tumor growth factor alpha; IL-8: interleukin 8; MAb: monoclonal antibody; SPR: surface plasmon resonance
Collapse
Affiliation(s)
- Xitlally Popa
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Beatriz García
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Karla P Fuentes
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Vivian Huerta
- Systems Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Karen Alvarez
- Systems Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Carmen E Viada
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Elia Neninger
- Oncology Department, Hermanos Ameijeiras University Hospital, Havana, Cuba
| | - Pedro C Rodríguez
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Zuyen González
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Amnely González
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Tania Crombet
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| | - Zaima Mazorra
- Clinical Research Direction, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
31
|
A Third Shot at EGFR: New Opportunities in Cancer Therapy. Trends Pharmacol Sci 2019; 40:941-955. [DOI: 10.1016/j.tips.2019.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
32
|
Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis 2019; 23:93-112. [PMID: 29322476 DOI: 10.1007/s10495-018-1440-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer is a primary cause of human fatality and conventional cancer therapies, e.g., chemotherapy, are often associated with adverse side-effects, tumor drug-resistance, and recurrence. Molecularly targeted therapy, composed of small-molecule inhibitors and immunotherapy (e.g., monoclonal antibody and cancer vaccines), is a less harmful alternative being more effective against cancer cells whilst preserving healthy tissues. Drug-resistance, however, caused by negative regulation of cell death signaling pathways, is still a challenge. Circumvention of negative regulators of cell death pathways or development of predictive and response biomarkers is, therefore, quintessential. This review critically discusses the current state of knowledge on targeting negative regulators of cell death signaling pathways including apoptosis, ferroptosis, necroptosis, autophagy, and anoikis and evaluates the recent advances in clinical and preclinical research on biomarkers of negative regulators. It aims to provide a comprehensive platform for designing efficacious polytherapies including novel agents for restoring cell death signaling pathways or targeting alternative resistance pathways to improve the chances for antitumor responses. Overall, it is concluded that nonapoptotic cell death pathways are a potential research arena for drug discovery, development of novel biomarkers and targeted therapies.
Collapse
|
33
|
Cortés-Jofré M, Uranga R, Torres Pombert A, Arango Prado MDC, Caballero Aguirrechu I, Pacheco C, Ortiz Reyes RM, Chuecas F, Mas Bermejo PI. Therapeutic vaccines for advanced non-small cell lung cancer. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2019. [DOI: 10.1002/14651858.cd013377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marcela Cortés-Jofré
- Universidad Católica de la Santísima; Concepción Chile
- Autonomous University of Barcelona; Doctoral Program in Research Methodology and Public Health; Barcelona Spain
| | - Rolando Uranga
- Centro Nacional Coordinador de Ensayos Clínicos (CENCEC); Manejo y Procesamiento de Datos; Ave 5ta A e/60 y 62 Miramar, Playa La Habana Cuba 11300
| | - Ania Torres Pombert
- Centro Nacional Coordinador de Ensayos Clínicos (CENCEC); Head of Scientific Information Management Unit; 5th avenue E 60th Street, 2nd Floor. Miramar Havana Cuba 11300
| | - Maria del Carmen Arango Prado
- Instituto Nacional de Oncología y Radiobiología (INOR); Departamento de Investigaciones Básicas; 29 and F, Vedado La Habana La Habana Cuba 10400
| | - Iraida Caballero Aguirrechu
- MINSAP - Hermanos Ameijeiras Hospital (HHA); Clinical Oncology; San Lazaro 701 Centro Habana La Habana Cuba 10400
| | - Cecilia Pacheco
- Clinica Alemana, Universidad del Desarrollo; Centro de Información Médica; Av. Manquehue 1499 - Vitacura Santiago Región metropolitana Chile 6750567
| | - Rosa Maria Ortiz Reyes
- Instituto Nacional de Oncología y Radiobiología (INOR); Departmento de Investigaciones Clinicas; 29 y F . Vedado La Habana La Habana Cuba 10400
| | - Fernando Chuecas
- Catholic University; Faculty of Medicine; Alonso de Ribera 2850 Concepción Chile 4090541
| | - Pedro Inocente Mas Bermejo
- Tropical Medicine Institute "Pedro Kouri"; Department of Epidemiology and Public Health; Autopista del Mediodia km 6 La Lisa Cuba Marianao 13
| |
Collapse
|
34
|
Saavedra D, Fuertes SA, Suárez GM, González A, Lorenzo-Luaces P, García B, Aznar E, Mazorra Z, Crombet T, Speiser DE, Lage A. Biomodulina T partially restores immunosenescent CD4 and CD8 T cell compartments in the elderly. Exp Gerontol 2019; 124:110633. [PMID: 31207285 DOI: 10.1016/j.exger.2019.110633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022]
Abstract
The changes that occur in the immune system with aging are commonly termed immunosenescence. Immunosenescence affects almost all components and functions of the immune response. The most commonly described change is a decrease in numbers and proportions of naïve T cells combined with the increase of terminally differentiated T lymphocytes, mainly affecting CD8+ T cells. The changes in the naïve T cell compartment are principally attributed to thymic involution and lifelong chronic antigen stimulation, among other triggers. Several strategies such as hormonal products, thymic peptides, or cytokines have been proposed for the restoration of the immune system. Here we show the effects of Biomodulina T (BT) on several populations of the immune system when administered to elderly patients diagnosed with recurrent respiratory infections. BT is a polypeptide fraction of bovine thymus, a Cuban product that obtained sanitary registration in 1994 for its immunomodulatory effects. We found that CD4+ naïve T, CD8+ stem cell-like memory (SCM) T, CD4+ recent thymic emigrants (RTE) T and CD4+ CD31+ naïve T cells increased with the administration of BT, whereas CD4+ and CD8+ T cells expressing PD1 decreased after the treatment with BT. Additionally, the proliferative capacity of CD4+ T cells measured by Ki67 expression, and the CD4+ T cell ability to produce IFN-γ were also improved by BT. Moreover, BT did not increase CD4+ Tregs. Altogether, these findings suggest that BT administration is a promising strategy for immune restoration in elderly patients and improvement of immunotherapeutic potential in cancer patients.
Collapse
Affiliation(s)
- Danay Saavedra
- Clinical Immunology Department, Center of Molecular Immunology, 216 St, corner 15, PO box 16040, Atabey, Havana, Cuba.
| | - Silvia A Fuertes
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Gisela M Suárez
- Clinical Immunology Department, Center of Molecular Immunology, 216 St, corner 15, PO box 16040, Atabey, Havana, Cuba
| | - Amnely González
- Clinical Immunology Department, Center of Molecular Immunology, 216 St, corner 15, PO box 16040, Atabey, Havana, Cuba
| | - Patricia Lorenzo-Luaces
- Clinical Immunology Department, Center of Molecular Immunology, 216 St, corner 15, PO box 16040, Atabey, Havana, Cuba
| | - Beatriz García
- Clinical Immunology Department, Center of Molecular Immunology, 216 St, corner 15, PO box 16040, Atabey, Havana, Cuba
| | - Elisa Aznar
- Centro Nacional de Biopreparados, Bejucal, Mayabeque, Cuba
| | - Zaima Mazorra
- Clinical Immunology Department, Center of Molecular Immunology, 216 St, corner 15, PO box 16040, Atabey, Havana, Cuba
| | - Tania Crombet
- Clinical Immunology Department, Center of Molecular Immunology, 216 St, corner 15, PO box 16040, Atabey, Havana, Cuba
| | - Daniel E Speiser
- Ludwig Cancer Research Center and Department of Oncology, University of Lausanne (UNIL), CH-1066 Epalinges, Switzerland
| | - Agustin Lage
- Clinical Immunology Department, Center of Molecular Immunology, 216 St, corner 15, PO box 16040, Atabey, Havana, Cuba
| |
Collapse
|
35
|
Spagnuolo A, Gridelli C. Combining immunotherapies to treat non-small cell lung cancer. Expert Rev Respir Med 2019; 13:621-634. [PMID: 31116072 DOI: 10.1080/17476348.2019.1623027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: In recent years, immunotherapy has become an integral part of the treatment of many cancers, including non-small cell lung cancer (NSCLC). Precious therapeutic weapons impacting survival are monoclonal antibodies directed against the programmed death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint. Areas covered: Unfortunately, not all patients treated with checkpoint inhibitors have durable clinical responses. However, a better understanding of the complexity of interactions between the immune system and cancer, the latter capable of adopting evasion mechanisms, indicates different opportunities to enhance anti-tumor immunity. Expert opinion: In this paper, we review multiple strategies of combining immunotherapies that exploit not only additional immune checkpoint receptors and ligands but also other synergistic approaches such as vaccines or indoleamine 2,3-dioxygenase (IDO) inhibitors with the potential to extend the number of NSCLC patients achieving successful outcomes.
Collapse
Affiliation(s)
- Alessia Spagnuolo
- a Division of Medical Oncology , 'S. G. Moscati' Hospital , Avellino , Italy
| | - Cesare Gridelli
- a Division of Medical Oncology , 'S. G. Moscati' Hospital , Avellino , Italy
| |
Collapse
|
36
|
McCaffery JN, Fonseca JA, Singh B, Cabrera-Mora M, Bohannon C, Jacob J, Arévalo-Herrera M, Moreno A. A Multi-Stage Plasmodium vivax Malaria Vaccine Candidate Able to Induce Long-Lived Antibody Responses Against Blood Stage Parasites and Robust Transmission-Blocking Activity. Front Cell Infect Microbiol 2019; 9:135. [PMID: 31119106 PMCID: PMC6504793 DOI: 10.3389/fcimb.2019.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Malaria control and interventions including long-lasting insecticide-treated nets, indoor residual spraying, and intermittent preventative treatment in pregnancy have resulted in a significant reduction in the number of Plasmodium falciparum cases. Considerable efforts have been devoted to P. falciparum vaccines development with much less to P. vivax. Transmission-blocking vaccines, which can elicit antibodies targeting Plasmodium antigens expressed during sexual stage development and interrupt transmission, offer an alternative strategy to achieve malaria control. The post-fertilization antigen P25 mediates several functions essential to ookinete survival but is poorly immunogenic in humans. Previous clinical trials targeting this antigen have suggested that conjugation to a carrier protein could improve the immunogenicity of P25. Here we report the production, and characterization of a vaccine candidate composed of a chimeric P. vivax Merozoite Surface Protein 1 (cPvMSP1) genetically fused to P. vivax P25 (Pvs25) designed to enhance CD4+ T cell responses and its assessment in a murine model. We demonstrate that antibodies elicited by immunization with this chimeric protein recognize both the erythrocytic and sexual stages and are able to block the transmission of P. vivax field isolates in direct membrane-feeding assays. These findings provide support for the continued development of multi-stage transmission blocking vaccines targeting the life-cycle stage responsible for clinical disease and the sexual-stage development accountable for disease transmission simultaneously.
Collapse
Affiliation(s)
- Jessica N. McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jairo A. Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Caitlin Bohannon
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Joshy Jacob
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
37
|
Filipić B, Stojić-Vukanić Z. Active immunotherapy of cancer: An overview of therapeutic vaccines. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
38
|
Tagliamento M, Rijavec E, Barletta G, Biello F, Rossi G, Grossi F, Genova C. CIMAvax-EGF, a therapeutic non-small cell lung cancer vaccine. Expert Opin Biol Ther 2018; 18:829-835. [PMID: 29936901 DOI: 10.1080/14712598.2018.1492539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Lung cancer represents the most common cause of cancer death worldwide. While the prognosis remains poor, immunotherapy is giving a positive impact on survival. Cancer vaccines represent a form of active immunotherapy that historically has given modest results in terms of efficacy. The overexpression of the EGFR by tumor cells was reported in more than half of cases of lung cancer, representing a mechanism of cancerogenesis. CIMAvax-EGF, a therapeutic vaccine for non-small cell lung cancer (NSCLC) developed in Cuba, consists of a human recombinant EGF able to induce antibodies against the autologous EGF, resulting in serum EGF withdrawal and lower EGF-EGFR interaction. Area covered: We critically reviewed the existing literature about CIMAvax-EGF, from the Pilot studies to the efficacy controlled studies. We also overviewed the ongoing trials. Expert opinion: CIMAvax-EGF demonstrated to be safe and immunogenic. In a phase III randomized study CIMAvax-EGF, used as a switch maintenance treatment after platinum-based chemotherapy, did not significantly improve survival. Current data are not sufficient to recommend CIMAvax-EGF as a treatment option for advanced stage NSCLC. Further studies, conducted in a context of worldwide standardized clinical practice, are needed to better define if a subpopulation of patients can benefit from the vaccination.
Collapse
Affiliation(s)
- Marco Tagliamento
- a Lung Cancer Unit , Ospedale Policlinico San Martino , Genoa , Italy
| | - Erika Rijavec
- a Lung Cancer Unit , Ospedale Policlinico San Martino , Genoa , Italy
| | - Giulia Barletta
- a Lung Cancer Unit , Ospedale Policlinico San Martino , Genoa , Italy
| | - Federica Biello
- a Lung Cancer Unit , Ospedale Policlinico San Martino , Genoa , Italy
| | - Giovanni Rossi
- a Lung Cancer Unit , Ospedale Policlinico San Martino , Genoa , Italy
| | - Francesco Grossi
- a Lung Cancer Unit , Ospedale Policlinico San Martino , Genoa , Italy
| | - Carlo Genova
- a Lung Cancer Unit , Ospedale Policlinico San Martino , Genoa , Italy.,b Department of Internal Medicine and Medical Specialties (DIMI) , University of Genoa , Genoa , Italy
| |
Collapse
|
39
|
Saavedra D, Neninger E, Rodriguez C, Viada C, Mazorra Z, Lage A, Crombet T. CIMAvax-EGF: Toward long-term survival of advanced NSCLC. Semin Oncol 2018; 45:34-40. [PMID: 30318082 DOI: 10.1053/j.seminoncol.2018.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/20/2018] [Indexed: 12/24/2022]
Abstract
Lung cancer remains one of the leading causes of cancer-related deaths. Non-small cell lung cancer (NSCLC) is the most common histologic type of lung cancer. Medical and scientific progress has led to longer survival in an increasing number of patients suffering from cancer. Concerning patients with advanced NSCLC, there is a subgroup with long-term survival. The human epidermal growth factor receptor (EGFR) family plays a key role in tumor development. This cluster of genes is associated with augmented angiogenesis and enhanced proliferation, survival, and migration of tumor cells. The CIMAvax-EGF vaccine consists of a chemical conjugate of the EGF with the P64 protein derived from the Meningitis B bacteria and the Montanide ISA 51, as adjuvant. The vaccine induces antibodies against EGF that results in EGF withdrawal. CIMAvax-EGF has been demonstrated to be safe and immunogenic in advanced NSCLC patients. Here we summarize the current knowledge of the mechanism of action of CIMAvax-EGF, highlighting the impact of this anti-EGF-based vaccine on the long-term survival of advanced NSCLC patients.
Collapse
Affiliation(s)
- Danay Saavedra
- Clinical Immunology Direction, Center of Molecular Immunology, Havana, Cuba.
| | | | - Camilo Rodriguez
- Clinical Immunology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Carmen Viada
- Clinical Immunology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Zaima Mazorra
- Clinical Immunology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Agustin Lage
- Clinical Immunology Direction, Center of Molecular Immunology, Havana, Cuba
| | - Tania Crombet
- Clinical Immunology Direction, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
40
|
Oliveres H, Caglevic C, Passiglia F, Taverna S, Smits E, Rolfo C. Vaccine and immune cell therapy in non-small cell lung cancer. J Thorac Dis 2018; 10:S1602-S1614. [PMID: 29951309 PMCID: PMC5994506 DOI: 10.21037/jtd.2018.05.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Despite new advances in therapeutics, lung cancer remains the first cause of mortality among different types of malignancies. To improve survival, different strategies have been developed such as chemotherapy combinations, targeted therapies and more recently immunotherapy. Immunotherapy is based on the capability of the immune system to differentiate cancer cells from normal cells to fight against the tumor. The two main checkpoint inhibitors that have been widely studied in non-small cell lung cancer (NSCLC) are PD-1/PD-L1 and CTLA-4. However, interactions between tumor and immune system are much more complex with several different elements that take part and probably many new interactions to be discovered and studied for a better comprehension of those pathways. Vaccines are part of the prophylaxis and of the treatment for different infectious diseases. For that reason, they have allowed us to improve global survival worldwide. This same idea can be used for cancer treatment. First reports in clinical trials that used therapeutic vaccines in NSCLC were discouraging, but currently vaccines have a new chance in cancer therapy with the identification of new targetable antigens, adjuvant treatments and most interestingly, the combination of vaccines with anti-PD-1/PD-L1 and anti-CTLA-4 drugs. The aim of this article is to describe the scientific evidence that has been reported for the different types of vaccines and their mechanisms of action in the fight against NSCLC tumors to improve disease control.
Collapse
Affiliation(s)
- Helena Oliveres
- Phase I-Early Clinical Trials Unit, Antwerp University Hospital, Edegem, Belgium
- Department of Oncology, Parc Taulí Hospital, Sabadell, Spain
| | | | - Francesco Passiglia
- Phase I-Early Clinical Trials Unit, Antwerp University Hospital, Edegem, Belgium
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology Palermo, University of Palermo, Palermo, Italy
| | - Simona Taverna
- Phase I-Early Clinical Trials Unit, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research Antwerp, University of Antwerp, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research Antwerp, University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Christian Rolfo
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
41
|
Pérez NR, Pérez CV, Trujillo NM, Suárez IM, Torres EM, Estévez IF, Sao MP, Rojo YT, González VGS. [Science and technological innovation in health in Cuba: results in selected problemsCiência e inovação tecnológica em saúde em Cuba: resultados em problemas selecionados]. Rev Panam Salud Publica 2018; 42:e32. [PMID: 31093061 PMCID: PMC6386005 DOI: 10.26633/rpsp.2018.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/20/2017] [Indexed: 01/05/2023] Open
Abstract
In Cuba, health research is based on the priorities of national scientific policy, derived from the health status of the population. The objective of this article is to describe the characteristics of the System of Science and Technological Innovation and how the results of its research benefit the health of the population groups. To this end, research related to the generation of products and technologies, diabetes, dengue and disability was selected. This system follows a methodology outlined by the Ministry of Science, Technology and Environment and has 37 research entities. It is organized into programs and projects that favor basic and applied research, with a multidisciplinary and intersectoral approach; these programs and projects are funded mostly by the State and are organized in self-contained cycles, i.e., the same entity is responsible for the entire process, from research to marketing, including market studies and post-marketing surveillance. The selected research shows an alignment between the research, the generalization of the results and its effect in improving health and universal access to health in the population. Positive results were obtained in diagnostic methods, preventive and therapeutic vaccines, warning signs for the prognosis and treatment of dengue, prevention of congenital malformations, and policies and programs that have benefited people with disabilities and their families. The will of the State to develop and fund scientific research, intersectoral action, the definition of research priorities, and the systematic training and attention to human resources have been key factors for the fulfillment of the objectives of the system.
Collapse
|
42
|
Zappasodi R, Merghoub T, Wolchok JD. Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell 2018; 33:581-598. [PMID: 29634946 PMCID: PMC5896787 DOI: 10.1016/j.ccell.2018.03.005] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/13/2018] [Accepted: 03/05/2018] [Indexed: 12/20/2022]
Abstract
Checkpoint blockade has formally demonstrated that reactivating anti-tumor immune responses can regress tumors. However, this only occurs in a fraction of patients. Incorporating these therapies in more powerful combinations is thus a logical next step. Here, we review functional roles of immune checkpoints and molecular determinants of checkpoint-blockade clinical activity. Limited-size T cell-infiltrated tumors, differing substantially from "self," generally respond to checkpoint blockade. Therefore, we propose that reducing tumor burden and increasing tumor immunogenicity are key factors to improve immunotherapy. Lastly, we outline criteria to select proper immunotherapy combination partners and highlight the importance of activity biomarkers for timely treatment optimization.
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Taha Merghoub
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
43
|
Morera-Díaz Y, Gavilondo JV, Bequet-Romero M, Sánchez Ramírez J, Hernández-Bernal F, Selman-Housein KH, Perez L, Ayala-Ávila M. Specific active immunotherapy with the HEBERSaVax VEGF-based cancer vaccine: From bench to bedside. Semin Oncol 2018; 45:68-74. [DOI: 10.1053/j.seminoncol.2018.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 12/31/2022]
|
44
|
Reginald K, Chan Y, Plebanski M, Poh CL. Development of Peptide Vaccines in Dengue. Curr Pharm Des 2018; 24:1157-1173. [PMID: 28914200 PMCID: PMC6040172 DOI: 10.2174/1381612823666170913163904] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
Abstract
Dengue is one of the most important arboviral infections worldwide, infecting up to 390 million people and causing 25,000 deaths annually. Although a licensed dengue vaccine is available, it is not efficacious against dengue serotypes that infect people living in South East Asia, where dengue is an endemic disease. Hence, there is an urgent need to develop an efficient dengue vaccine for this region. Data from different clinical trials indicate that a successful dengue vaccine must elicit both neutralizing antibodies and cell mediated immunity. This can be achieved by designing a multi-epitope peptide vaccine comprising B, CD8+ and CD4+ T cell epitopes. As recognition of T cell epitopes are restricted by human leukocyte antigens (HLA), T cell epitopes which are able to recognize several major HLAs will be preferentially included in the vaccine design. While peptide vaccines are safe, biocompatible and cost-effective, it is poorly immunogenic. Strategies to improve its immunogenicity by the use of long peptides, adjuvants and nanoparticle delivery mechanisms are discussed.
Collapse
Affiliation(s)
| | | | | | - Chit Laa Poh
- Address correspondence to this author at the Research Centre for Biomedical Sciences, School of Science and Technology, Sunway University, 5 Jalan University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Tel: +60-3-7491 8622 ext. 7338; E-mail:
| |
Collapse
|
45
|
Zuo J, Wen M, Li S, Lv X, Wang L, Ai X, Lei M. Overexpression of CXCR4 promotes invasion and migration of non-small cell lung cancer via EGFR and MMP-9. Oncol Lett 2017; 14:7513-7521. [PMID: 29344197 PMCID: PMC5755025 DOI: 10.3892/ol.2017.7168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/13/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to verify whether overexpression of CXC receptor 4 (CXCR4) promotes the invasion and migration of non-small cell lung cancer (NSCLC) via epidermal growth factor receptor (EGFR) and matrix metallopeptidase-9 (MMP-9), and to detect the association between CXCR4, EGFR and MMP-9. The effects of overexpression of CXCR4 on lung cancer cell functions were investigated by migration and invasion assays. Western blotting and zymograph assays were used to analyze the protein expression levels of EGFR and the production of MMP-9, respectively. Immunohistochemistry was applied to analyze the expression of EGFR, CXCR4 and MMP-9 in NSCLC. Statistical analyses were used to detect the associations among EGFR, CXCR4 and MMP-9 in NSCLC. Finally, survival analyses were performed. CXCR4 overexpression enhanced cell motility and invasion. CXCR4 also promoted expression of EGFR and elevated MMP-9 production. CXCR4, EGFR and MMP-9 were highly expressed in NSCLC, and were not identified as associated with age and sex (P>0.05). However, they were associated with tumor differentiation and lymph node metastasis (P<0.05). CXCR4, EGFR and CXCR4 expression were positively associated with one another in NSCLC (P<0.05). In addition, patients with positive expression of CXCR4, EGFR or MMP-9 in tumors exhibited significantly shorter overall survival compared with those with negative expression (P<0.05). In conclusion, CXCR4 overexpression enhanced cell motility and invasion via EGFR and MMP-9. CXCR4, EGFR and MMP-9 were identified as highly expressed in NSCLC, and there was positive correlation among them.
Collapse
Affiliation(s)
- Jianhong Zuo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Meiling Wen
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Sai Li
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiu Lv
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lei Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohong Ai
- Department of Radiotherapy, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingsheng Lei
- Department of Respiratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Department of Respiratory and Critical Care Medicine, The People's Hospital of Zhangjiajie City, Zhangjiajie, Hunan 427000, P.R. China
| |
Collapse
|
46
|
Huang Y, Zou Y, Lin L, Zheng R. Ginsenoside Rg1 Activates Dendritic Cells and Acts as a Vaccine Adjuvant Inducing Protective Cellular Responses Against Lymphomas. DNA Cell Biol 2017; 36:1168-1177. [PMID: 29058460 DOI: 10.1089/dna.2017.3923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Ruiji Zheng
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|