1
|
Zhang L, Luo Y, Shen HL. Enhancing the effectiveness of immunotherapy in rheumatoid arthritis by delaying immunosenescence triggered by fibroblast-like synoviocytes. J Orthop Surg Res 2025; 20:87. [PMID: 39849518 PMCID: PMC11755870 DOI: 10.1186/s13018-025-05473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disorder primarily targeting the diarthrodial joints. During the progression of RA, fibroblast-like synoviocytes (FLSs) exhibit tumor-like behavior, including increased proliferation, inflammation mediation, and aggressive phenotypes, leading to bone erosion. Additionally, T cells in RA acquire pro-inflammatory characteristics, exacerbating the inflammatory environment in affected joints and associated tissues. Notably, senescent T cells contribute to inflammation, further accelerating the disease process. Metabolic changes in rheumatoid FLSs not only maintain their tumor-like properties but also trigger inflammatory cascades, particularly affecting T lymphocytes. This review examines the molecular alterations in RA FLSs in the context of systemic immune aging, with a focus on thymic insufficiency-associated T cell senescence, and explores potential therapeutic avenues.
Collapse
Affiliation(s)
- Li Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou University, No. 80, Cuiyingmen, Chengguan District, Lanzhou, Gansu Province, 730030, China
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730030, China
| | - Yang Luo
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, 730030, China
| | - Hai-Li Shen
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou University, No. 80, Cuiyingmen, Chengguan District, Lanzhou, Gansu Province, 730030, China.
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, 730030, China.
| |
Collapse
|
2
|
Li W, Jin D, Takai S, Inoue N, Yamanishi K, Tanaka Y, Okamura H. IL-18 primes T cells with an antigen-inexperienced memory phenotype for proliferation and differentiation into effector cells through Notch signaling. J Leukoc Biol 2024; 117:qiae172. [PMID: 39213165 DOI: 10.1093/jleuko/qiae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
Recent studies have revealed that a subset of CD8+ T cells exhibit innate features and can be activated by cytokines. However, the precise mechanisms underlying the proliferation and differentiation of these cells remain unclear. Here, we demonstrated that CD44highCD8+ T cells in the mouse spleen express functional interleukin-18 (IL-18) receptors, whereas CD44lowCD8+ T cells do not. In response to IL-18 stimulation, these cells activated various metabolic pathways, upregulated the expression of surface molecules, such as c-Kit (CD117), CD25, and PD-1, and induced progression through the G1/S phase in the cell cycle. IL-18-primed cells, expressing a high-affinity receptor for IL-2, exhibited robust proliferation in response to IL-2 and underwent differentiation into effector cells. The splenic CD44highCD8+ T cells exhibited high expression levels of CD122, CD62L, CCR7, and CXCR3, along with CD5, indicating their potential for migration to the lymph nodes, where they could undergo expansion and terminal differentiation into effector cells. Additionally, in a tumor model, administration of IL-18 increased the accumulation of CD8+ T cells in both the lymph nodes and tumors. It is noteworthy that stimulation of CD44highCD8+ T cells with IL-18 upregulated the Notch-1 receptor and c-Myc. Moreover, inclusion of γ-secretase inhibitors attenuated the effect of IL-18 on both proliferation and interferon-γ production in the cells. These results demonstrate that IL-18 primes CD44highCD122highCXCR3highCD62LhighCD8+ T cells for expansion and differentiation into effector cells in a Notch signaling-dependent manner.
Collapse
Affiliation(s)
- Wen Li
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Denan Jin
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Shinji Takai
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Natsuko Inoue
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Haruki Okamura
- Department of Innovation Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-cho, Takatsuki, Osaka 569-8686, Japan
- International Cooperation for Medical Innovation Co., Ltd., 1-5-2 Minami-machi, Minatojima, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Ullrich F, Bröckelmann PJ, Turki AT, Khan AM, Chiru ED, Vetter M, von Tresckow B, Wirth R, Cordoba R, Ortiz-Maldonado V, Fülöp T, Neuendorff NR. Impact of immunological aging on T cell-mediated therapies in older adults with multiple myeloma and lymphoma. J Immunother Cancer 2024; 12:e009462. [PMID: 39622581 PMCID: PMC11624774 DOI: 10.1136/jitc-2024-009462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/24/2024] [Indexed: 12/09/2024] Open
Abstract
The treatment landscape for lymphoma and multiple myeloma, which disproportionally affect older adults, has been transformed by the advent of T cell-mediated immunotherapies, including immune checkpoint inhibition, T cell-engaging bispecific antibodies, and chimeric antigen receptor (CAR) T cell therapy, during the last decade. These treatment modalities re-enable the patient's own immune system to combat malignant cells and offer the potential for sustained remissions and cure for various diseases.Age profoundly affects the physiological function of the immune system. The process of biological aging is largely driven by inflammatory signaling, which is reciprocally fueled by aging-related alterations of physiology and metabolism. In the T cell compartment, aging contributes to T cell senescence and exhaustion, increased abundance of terminally differentiated cells, a corresponding attrition in naïve T cell numbers, and a decrease in the breadth of the receptor repertoire. Furthermore, inflammatory signaling drives aging-related pathologies and contributes to frailty in older individuals. Thus, there is growing evidence of biological aging modulating the efficacy and toxicity of T cell-mediated immunotherapies.Here, we review the available evidence from biological and clinical studies focusing on the relationship between T cell-mediated treatment of hematologic malignancies and age. We discuss biological features potentially impacting clinical outcomes in various scenarios, and potential strategies to improve the safety and efficacy of immune checkpoint inhibitors, T cell-engaging bispecific antibodies, and CAR-T cell therapy in older patients.
Collapse
Affiliation(s)
- Fabian Ullrich
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Paul J Bröckelmann
- Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Nordrhein-Westfalen, Germany
| | - Amin T Turki
- Department of Hematology and Oncology, University Hospital Marien Hospital Herne, Herne, Nordrhein-Westfalen, Germany
- Institute for Artificial Intelligence in Medicine, University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Abdullah M Khan
- Division of Hematology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Elena-Diana Chiru
- Cancer Center Baselland, University of Basel Faculty of Medicine, Basel, Liestal, Switzerland
| | - Marcus Vetter
- Cancer Center Baselland, University of Basel Faculty of Medicine, Basel, Liestal, Switzerland
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Duisburg-Essen, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Rainer Wirth
- Department of Geriatrics, Ruhr University Bochum, University Hospital Marien Hospital Herne, Herne, Germany
| | - Raul Cordoba
- Department of Hematology, Lymphoma Unit, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain
| | - Valentín Ortiz-Maldonado
- Department of Hematology, Oncoimmunotherapy Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Tamas Fülöp
- Department of Medicine, Division of Geriatrics, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Rosa Neuendorff
- Department of Geriatrics, Ruhr University Bochum, University Hospital Marien Hospital Herne, Herne, Germany
| |
Collapse
|
4
|
Devan J, Sandalova M, Bitterli P, Herger N, Mengis T, Brender K, Heggli I, Distler O, Dudli S. Massively parallel flow-cytometry-based screening of hematopoietic lineage cell populations from up to 25 donors simultaneously. Methods 2024; 234:45-53. [PMID: 39608688 DOI: 10.1016/j.ymeth.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
This study aimed to develop a method allowing high-dimensional and technically uniform screening of surface markers on cells of hematopoietic origin. High-dimensional screening of cell phenotypes is primarily the domain of single-cell RNA sequencing (RNAseq), which allows simultaneous analysis of the expression of thousands of genes in several thousands of cells. However, rare cell populations can often substantially impact tissue homeostasis or disease pathogenesis, and dysregulation of rare populations can easily be missed when only a few thousand cells are analyzed. With the presented methodological approach, it is possible to screen hundreds of markers on millions of cells in a technically uniform manner and thus identify and characterize changes in rare populations. We utilize the highly expressed markers CD45 on immune cells and CD71 on erythroid progenitors to create unique fluorescent barcodes on each of the 25 samples. Double-barcoded samples are co-stained with a broad immunophenotyping panel. The panel is designed in such a way that allows the addition of PE-labelled antibody, which was used for screening purposes. Multiplexed samples are divided into hundreds of aliquots and co-stained, each aliquot with a different PE-labelled antibody. Utilizing a broad immunophenotyping panel and machine-learning algorithms, we can predict the co-expression of hundreds of screened markers with a high degree of precision. This technique is suitable for screening immune cells in bone marrow from different locations, blood specimens, or any tissue with a substantial presence of immune cells, such as tumors or inflamed tissue areas in autoimmune conditions. It represents an approach that can significantly improve our ability to recognize dysregulated immune cell populations and, if needed, precisely target subsequent experiments covering lower cell counts such as RNAseq.
Collapse
Affiliation(s)
- Jan Devan
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland.
| | - Michaela Sandalova
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland
| | - Pamela Bitterli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland
| | - Nick Herger
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland
| | - Tamara Mengis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland
| | - Kenta Brender
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland
| | - Irina Heggli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland
| | - Stefan Dudli
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Switzerland; Department of Physical Medicine and Rheumatology, Balgrist University Hospital, Balgrist Campus, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Zhou LF, Liao HY, Han Y, Zhao Y. The use of organoids in creating immune microenvironments and treating gynecological tumors. J Transl Med 2024; 22:856. [PMID: 39313812 PMCID: PMC11421176 DOI: 10.1186/s12967-024-05649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Owing to patient-derived tumor tissues and cells, significant advances have been made in personalized cancer treatment and precision medicine, with cancer stem cell-derived three-dimensional tumor organoids serving as crucial in vitro models that accurately replicate the structural, phenotypic, and genetic characteristics of tumors. However, despite their extensive use in drug testing, genome editing, and transplantation for facilitating personalized treatment approaches in clinical practice, the inadequate capacity of these organoids to effectively model immune cells and stromal components within the tumor microenvironment limits their potential. Additionally, effective clinical immunotherapy has led the tumor immune microenvironment to garner considerable attention, increasing the demand for simulating patient-specific tumor-immune interactions. Consequently, co-culture techniques integrating tumor organoids with immune cells and tumor microenvironment constituents have been developed to expand the possibilities for personalized drug response investigations, with recent advancements enhancing the understanding of the strengths, limitations, and applicability of the co-culture approach. Herein, the recent advancements in the field of tumor organoids have been comprehensively reviewed, specifically highlighting the tumor organoid co-culture-related developments with various immune cell models and their implications for clinical research. Furthermore, this review delineates the current state of research and application of organoid models regarding the therapeutic approaches and related challenges for gynecological tumors. This study may provide a theoretical basis for further research on the use of patient-derived organoids in tumor immunity, drug development, and precision medicine.
Collapse
Affiliation(s)
- Ling-Feng Zhou
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China
| | - Hui-Yan Liao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China
| | - Yang Han
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| |
Collapse
|
6
|
Sumaria N, Fiala GJ, Inácio D, Curado-Avelar M, Cachucho A, Pinheiro R, Wiesheu R, Kimura S, Courtois L, Blankenhaus B, Darrigues J, Suske T, Almeida ARM, Minguet S, Asnafi V, Lhermitte L, Mullighan CG, Coffelt SB, Moriggl R, Barata JT, Pennington DJ, Silva-Santos B. Perinatal thymic-derived CD8αβ-expressing γδ T cells are innate IFN-γ producers that expand in IL-7R-STAT5B-driven neoplasms. Nat Immunol 2024; 25:1207-1217. [PMID: 38802512 PMCID: PMC11224017 DOI: 10.1038/s41590-024-01855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αβ heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αβ+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αβ+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αβ+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αβ+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.
Collapse
MESH Headings
- Animals
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Mice
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Thymus Gland/immunology
- Receptors, Interleukin-7/metabolism
- Immunity, Innate
- STAT5 Transcription Factor/metabolism
- Signal Transduction/immunology
- Mice, Inbred C57BL
- CD8-Positive T-Lymphocytes/immunology
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- CD8 Antigens/metabolism
- Female
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Interleukin-7/metabolism
Collapse
Affiliation(s)
- Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Gina J Fiala
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Daniel Inácio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Curado-Avelar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Cachucho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben Pinheiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Robert Wiesheu
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Lucien Courtois
- Hôpital Necker Enfants-Malades, Université de Paris, Paris, France
| | - Birte Blankenhaus
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tobias Suske
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Vahid Asnafi
- Hôpital Necker Enfants-Malades, Université de Paris, Paris, France
| | | | | | - Seth B Coffelt
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Richard Moriggl
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK.
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Yu PJ, Zhou M, Liu Y, Du J. Senescent T Cells in Age-Related Diseases. Aging Dis 2024; 16:AD.2024.0219. [PMID: 38502582 PMCID: PMC11745454 DOI: 10.14336/ad.2024.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Age-induced alterations in human immunity are often considered deleterious and are referred to as immunosenescence. The immune system monitors the number of senescent cells in the body, while immunosenescence may represent the initiation of systemic aging. Immune cells, particularly T cells, are the most impacted and involved in age-related immune function deterioration, making older individuals more prone to different age-related diseases. T-cell senescence can impact the effectiveness of immunotherapies that rely on the immune system's function, including vaccines and adoptive T-cell therapies. The research and practice of using senescent T cells as therapeutic targets to intervene in age-related diseases are in their nascent stages. Therefore, in this review, we summarize recent related literature to investigate the characteristics of senescent T cells as well as their formation mechanisms, relationship with various aging-related diseases, and means of intervention. The primary objective of this article is to explore the prospects and possibilities of therapeutically targeting senescent T cells, serving as a valuable resource for the development of immunotherapy and treatment of age-related diseases.
Collapse
Affiliation(s)
- Pei-Jie Yu
- Beijing Anzhen Hospital, Capital Medical University
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education
- Beijing Collaborative Innovative Research Center for Cardiovascular Diseases
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education
- Beijing Collaborative Innovative Research Center for Cardiovascular Diseases
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yan Liu
- Correspondence should be addressed to: Dr. Jie Du () and Dr. Yan Liu (), Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jie Du
- Correspondence should be addressed to: Dr. Jie Du () and Dr. Yan Liu (), Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
8
|
Kasamatsu T. Implications of Senescent T Cells for Cancer Immunotherapy. Cancers (Basel) 2023; 15:5835. [PMID: 38136380 PMCID: PMC10742305 DOI: 10.3390/cancers15245835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
T-cell senescence is thought to result from the age-related loss of the ability to mount effective responses to pathogens and tumor cells. In addition to aging, T-cell senescence is caused by repeated antigenic stimulation and chronic inflammation. Moreover, we demonstrated that T-cell senescence was induced by treatment with DNA-damaging chemotherapeutic agents. The characteristics of therapy-induced senescent T (TIS-T) cells and general senescent T cells are largely similar. Senescent T cells demonstrate an increase in the senescence-associated beta-galactosidase-positive population, cell cycle arrest, secretion of senescence-associated secretory phenotypic factors, and metabolic reprogramming. Furthermore, senescent T cells downregulate the expression of the co-stimulatory molecules CD27 and CD28 and upregulate natural killer cell-related molecules. Moreover, TIS-T cells showed increased PD-1 expression. However, the loss of proliferative capacity and decreased expression of co-stimulatory molecules associated with T-cell senescence cause a decrease in T-cell immunocompetence. In this review, we discuss the characteristics of senescent T-cells, including therapy-induced senescent T cells.
Collapse
Affiliation(s)
- Tetsuhiro Kasamatsu
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi 371-8514, Gunma, Japan
| |
Collapse
|
9
|
Louie RHY, Cai C, Samir J, Singh M, Deveson IW, Ferguson JM, Amos TG, McGuire HM, Gowrishankar K, Adikari T, Balderas R, Bonomi M, Ruella M, Bishop D, Gottlieb D, Blyth E, Micklethwaite K, Luciani F. CAR + and CAR - T cells share a differentiation trajectory into an NK-like subset after CD19 CAR T cell infusion in patients with B cell malignancies. Nat Commun 2023; 14:7767. [PMID: 38012187 PMCID: PMC10682404 DOI: 10.1038/s41467-023-43656-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is effective in treating B cell malignancies, but factors influencing the persistence of functional CAR+ T cells, such as product composition, patients' lymphodepletion, and immune reconstitution, are not well understood. To shed light on this issue, here we conduct a single-cell multi-omics analysis of transcriptional, clonal, and phenotypic profiles from pre- to 1-month post-infusion of CAR+ and CAR- T cells from patients from a CARTELL study (ACTRN12617001579381) who received a donor-derived 4-1BB CAR product targeting CD19. Following infusion, CAR+ T cells and CAR- T cells shows similar differentiation profiles with clonally expanded populations across heterogeneous phenotypes, demonstrating clonal lineages and phenotypic plasticity. We validate these findings in 31 patients with large B cell lymphoma treated with CD19 CAR T therapy. For these patients, we identify using longitudinal mass-cytometry data an association between NK-like subsets and clinical outcomes at 6 months with both CAR+ and CAR- T cells. These results suggest that non-CAR-derived signals can provide information about patients' immune recovery and be used as correlate of clinically relevant parameters.
Collapse
Affiliation(s)
- Raymond Hall Yip Louie
- School of Computer Science and Engineering, UNSW Sydney, Sydney, NSW, Australia
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Curtis Cai
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jerome Samir
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Ira W Deveson
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | | | - Timothy G Amos
- Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Helen Marie McGuire
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Infection, Immunity and Inflammation Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kavitha Gowrishankar
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Thiruni Adikari
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Martina Bonomi
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia
- Department of Physics, University of Bologna, Bologna, Italy
| | - Marco Ruella
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Bishop
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - David Gottlieb
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory - ICPMR Westmead, Sydney, NSW, Australia
| | - Fabio Luciani
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Garvan Institute for Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Piergallini TJ, Scordo JM, Allué-Guardia A, Pino PA, Zhang H, Cai H, Wang Y, Schlesinger LS, Torrelles JB, Turner J. Acute inflammation alters lung lymphocytes and potentiates innate-like behavior in young mouse lung CD8 T cells, resembling lung CD8 T cells from old mice. J Leukoc Biol 2023; 114:237-249. [PMID: 37196159 PMCID: PMC10473256 DOI: 10.1093/jleuko/qiad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/25/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
Inflammation plays a significant role in lung infection including that caused by Mycobacterium tuberculosis, in which both adaptive and innate lymphocytes can affect infection control. How inflammation affects infection is understood in a broad sense, including inflammaging (chronic inflammation) seen in the elderly, but the explicit role that inflammation can play in regulation of lymphocyte function is not known. To fill this knowledge gap, we used an acute lipopolysaccharide (LPS) treatment in young mice and studied lymphocyte responses, focusing on CD8 T cell subsets. LPS treatment decreased the total numbers of T cells in the lungs of LPS mice while also increasing the number of activated T cells. We demonstrate that lung CD8 T cells from LPS mice became capable of an antigen independent innate-like IFN-γ secretion, dependent on IL-12p70 stimulation, paralleling innate-like IFN-γ secretion of lung CD8 T cells from old mice. Overall, this study provides information on how acute inflammation can affect lymphocytes, particularly CD8 T cells, which could potentially affect immune control of various disease states.
Collapse
Affiliation(s)
- Tucker J Piergallini
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
- Biomedical Sciences Graduate Program, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, United States
| | - Julia M Scordo
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
- Barshop Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7755, San Antonio, TX 78229, United States
| | - Anna Allué-Guardia
- Population Health Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| | - Paula A Pino
- Population Health Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| | - Hao Zhang
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Hong Cai
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Yufeng Wang
- South Texas Center for Emerging Infectious Diseases, Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| | - Joanne Turner
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227-5302, United States
| |
Collapse
|
11
|
Wang YY, Zhen C, Hu W, Huang HH, Li YJ, Zhou MJ, Li J, Fu YL, Zhang P, Li XY, Yang T, Song JW, Fan X, Zou J, Meng SR, Qin YQ, Jiao YM, Xu R, Zhang JY, Zhou CB, Yuan JH, Huang L, Shi M, Cheng L, Wang FS, Zhang C. Elevated glutamate impedes anti-HIV-1 CD8 + T cell responses in HIV-1-infected individuals on antiretroviral therapy. Commun Biol 2023; 6:696. [PMID: 37419968 PMCID: PMC10328948 DOI: 10.1038/s42003-023-04975-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/24/2023] [Indexed: 07/09/2023] Open
Abstract
CD8 + T cells are essential for long-lasting HIV-1 control and have been harnessed to develop therapeutic and preventive approaches for people living with HIV-1 (PLWH). HIV-1 infection induces marked metabolic alterations. However, it is unclear whether these changes affect the anti-HIV function of CD8 + T cells. Here, we show that PLWH exhibit higher levels of plasma glutamate than healthy controls. In PLWH, glutamate levels positively correlate with HIV-1 reservoir and negatively correlate with the anti-HIV function of CD8 + T cells. Single-cell metabolic modeling reveals glutamate metabolism is surprisingly robust in virtual memory CD8 + T cells (TVM). We further confirmed that glutamate inhibits TVM cells function via the mTORC1 pathway in vitro. Our findings reveal an association between metabolic plasticity and CD8 + T cell-mediated HIV control, suggesting that glutamate metabolism can be exploited as a therapeutic target for the reversion of anti-HIV CD8 + T cell function in PLWH.
Collapse
Affiliation(s)
- You-Yuan Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wei Hu
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Jun Li
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Ming-Ju Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yu-Long Fu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Peng Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Yu Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jun Zou
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Si-Run Meng
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Ya-Qin Qin
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Medical School of Chinese PLA, Beijing, China
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Liang Cheng
- Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fu-Sheng Wang
- Medical School of Chinese PLA, Beijing, China.
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China.
| | - Chao Zhang
- Medical School of Chinese PLA, Beijing, China.
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- Guangxi AIDS Clinical Treatment Centre, The Fourth People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
12
|
Bystander activation in memory and antigen-inexperienced memory-like CD8 T cells. Curr Opin Immunol 2023; 82:102299. [PMID: 36913776 DOI: 10.1016/j.coi.2023.102299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
Antigen-induced memory T cells undergo counterintuitive activation in an antigen-independent manner, which is called bystander response. Although it is well documented that memory CD8+ T cells produce IFNγ and upregulate the cytotoxic program upon the stimulation with inflammatory cytokines, there is only rare evidence that this provides an actual protection against pathogens in immunocompetent individuals. One of the reasons might be numerous antigen-inexperienced memory-like T cells that are also capable of the bystander response. Little is known about the bystander protection of memory and memory-like T cells and their redundancies with innate-like lymphocytes in humans because of the interspecies differences and the lack of controlled experiments. However, it has been proposed that IL-15/NKG2D-driven bystander activation of memory T cells drives protection or immunopathology in particular human diseases.
Collapse
|
13
|
Choi SJ, Koh JY, Rha MS, Seo IH, Lee H, Jeong S, Park SH, Shin EC. KIR +CD8 + and NKG2A +CD8 + T cells are distinct innate-like populations in humans. Cell Rep 2023; 42:112236. [PMID: 36897779 DOI: 10.1016/j.celrep.2023.112236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/16/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Subsets of the human CD8+ T cell population express inhibitory NK cell receptors, such as killer immunoglobulin-like receptors (KIRs) and NKG2A. In the present study, we examine the phenotypic and functional characteristics of KIR+CD8+ T cells and NKG2A+CD8+ T cells. KIRs and NKG2A tend to be expressed by human CD8+ T cells in a mutually exclusive manner. In addition, TCR clonotypes of KIR+CD8+ T cells barely overlap with those of NKG2A+CD8+ T cells, and KIR+CD8+ T cells are more terminally differentiated and replicative senescent than NKG2A+CD8+ T cells. Among cytokine receptors, IL12Rβ1, IL12Rβ2, and IL18Rβ are highly expressed by NKG2A+CD8+ T cells, whereas IL2Rβ is expressed by KIR+CD8+ T cells. IL-12/IL-18-induced production of IFN-γ is prominent in NKG2A+CD8+ T cells, whereas IL-15-induced NK-like cytotoxicity is prominent in KIR+CD8+ T cells. These findings suggest that KIR+CD8+ and NKG2A+CD8+ T cells are distinct innate-like populations with different cytokine responsiveness.
Collapse
Affiliation(s)
- Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do 13620, Republic of Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Genome Insight, Inc., San Diego, La Jolla, CA, USA
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - In-Ho Seo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
14
|
Courtney AN, Tian G, Metelitsa LS. Natural killer T cells and other innate-like T lymphocytes as emerging platforms for allogeneic cancer cell therapy. Blood 2023; 141:869-876. [PMID: 36347021 PMCID: PMC10023720 DOI: 10.1182/blood.2022016201] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
T cells expressing chimeric antigen receptors (CARs) have achieved major clinical success in patients with hematologic malignancies. However, these treatments remain largely ineffective for solid cancers and require significant time and resources to be manufactured in an autologous setting. Developing alternative immune effector cells as cancer immunotherapy agents that can be employed in allogeneic settings is crucial for the advancement of cell therapy. Unlike T cells, Vα24-invariant natural killer T cells (NKTs) are not alloreactive and can therefore be generated from allogeneic donors for rapid infusion into numerous patients without the risk of graft-versus-host disease. Additionally, NKT cells demonstrate inherent advantages over T-cell products, including the ability to traffic to tumor tissues, target tumor-associated macrophages, transactivate NK cells, and cross-prime tumor-specific CD8 T cells. Both unmodified NKTs, which specifically recognize CD1d-bound glycolipid antigens expressed by certain types of tumors, and CAR-redirected NKTs are being developed as the next generation of allogeneic cell therapy products. In this review, we describe studies on the biology of NKTs and other types of innate-like T cells and summarize the clinical experiences of unmodified and CAR-redirected NKTs, including recent interim reports on allogeneic NKTs.
Collapse
Affiliation(s)
- Amy N. Courtney
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX
| | - Gengwen Tian
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX
| | - Leonid S. Metelitsa
- Department of Pediatrics, Center for Advanced Innate Cell Therapy, Baylor College of Medicine, Houston, TX
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
| |
Collapse
|
15
|
Seok J, Cho SD, Seo SJ, Park SH. Roles of Virtual Memory T Cells in Diseases. Immune Netw 2023; 23:e11. [PMID: 36911806 PMCID: PMC9995991 DOI: 10.4110/in.2023.23.e11] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Memory T cells that mediate fast and effective protection against reinfections are usually generated upon recognition on foreign Ags. However, a "memory-like" T-cell population, termed virtual memory T (TVM) cells that acquire a memory phenotype in the absence of foreign Ag, has been reported. Although, like innate cells, TVM cells reportedly play a role in first-line defense to bacterial or viral infections, their protective or pathological roles in immune-related diseases are largely unknown. In this review, we discuss the current understanding of TVM cells, focusing on their distinct characteristics, immunological properties, and roles in various immune-related diseases, such as infections and cancers.
Collapse
Affiliation(s)
- Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST Institute, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
16
|
Viano ME, Baez NS, Savid-Frontera C, Lidon NL, Hodge DL, Herbelin A, Gombert JM, Barbarin A, Rodriguez-Galan MC. Virtual Memory CD8 + T Cells: Origin and Beyond. J Interferon Cytokine Res 2022; 42:624-642. [PMID: 36083273 PMCID: PMC9835308 DOI: 10.1089/jir.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 01/21/2023] Open
Abstract
The presence of CD8+ T cells with a memory phenotype in nonimmunized mice has been noted for decades, but it was not until about 2 decades ago that they began to be studied in greater depth. Currently called virtual memory CD8+ T cells, they consist of a heterogeneous group of cells with memory characteristics, without any previous contact with their specific antigens. These cells were identified in mice, but a few years ago, a cell type with characteristics equivalent to the murine ones was described in healthy humans. In this review, we address the different aspects of its biology mainly developed in murine models and what is currently known about its cellular equivalent in humans.
Collapse
Affiliation(s)
- Maria Estefania Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia Soledad Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolás Leonel Lidon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | - André Herbelin
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1313, Poitiers, France
- Université de Poitiers, Poitiers, France
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1313, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
17
|
Lee JM, Chen MH, Chou KY, Chao Y, Chen MH, Tsai CY. Novel immunoprofiling method for diagnosing SLE and evaluating therapeutic response. Lupus Sci Med 2022; 9:9/1/e000693. [PMID: 35738802 PMCID: PMC9226994 DOI: 10.1136/lupus-2022-000693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Objective Diagnosis of SLE is based on clinical manifestations but is heterogeneous in early onset. Hence, we aimed to evaluate the feature of the immunoprofiling in patients with SLE and apply it to develop an immune signature algorithm for supporting SLE diagnosis. Methods We enrolled 13 newly diagnosed patients with SLE and 9 healthy controls (HCs) followed by analysing their immunoprofilings within their peripheral blood mononuclear cells (PBMCs) through flow cytometry. The immunoprofiling from the patients with SLE and HCs were ranked and formed an immune signature score. Besides, we enrolled four patients with SLE and monitored the changes in their immunoprofilings after immunosuppressant treatment. Results Among 93 immune cell subsets, 29 differed significantly between patients with SLE and HCs, and lower dendritic and natural killer cell percentages and a higher CD8+ T-cell percentage were identified in patients with SLE. In an investigation of immune-tolerant-related cell subsets, higher concentrations of CD8+ regulatory natural killer T cells, programmed cell death 1 (PD-1)+ T cells, and lower concentrations of programmed cell death ligand 1 (PD-L1)+ PBMCs were observed in the SLE group. The immune signature score from patients with SLE was significantly different from that from the HCs. After treatment, the disease activity of the four patients were tended to stable and percentages of PD-L1+ monocytes, PD-1+ CD4 T and CD8 T cells in patients with SLE exhibited positively and negatively correlation with the SLEDAI-2K (Systemic Lupus Erythematosus Disease Activity Index 2000) score, which might associate with the remission of SLE. Conclusions The comparison of immunprofiling between patients with SLE and HCs exhibited a distinct pattern. This difference and its application to immune signature algorithm shed light on the studies of SLE pathogenesis and immune-based diagnostic tool development in the future.
Collapse
Affiliation(s)
- Jan-Mou Lee
- Department of Advanced Research, FullHope Biomedical Co Ltd, New Taipei City, Taiwan
| | - Ming-Huang Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Kai-Yuan Chou
- Department of Advanced Research, FullHope Biomedical Co Ltd, New Taipei City, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Han Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan .,Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Role of NK-Like CD8 + T Cells during Asymptomatic Borrelia burgdorferi Infection. Infect Immun 2022; 90:e0055521. [PMID: 35416707 DOI: 10.1128/iai.00555-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease (LD) due to Borrelia burgdorferi is the most prevalent vector-borne disease in the United States. There is a poor understanding of how immunity contributes to bacterial control, pathology, or both during LD. Dogs in an area of endemicity were screened for B. burgdorferi and Anaplasma exposure and stratified according to seropositivity, presence of LD symptoms, and doxycycline treatment. Significantly elevated serum interleukin-21 (IL-21) and increased circulating CD3+ CD94+ lymphocytes with an NK-like CD8+ T cell phenotype were predominant in asymptomatic dogs exposed to B. burgdorferi. Both CD94+ T cells and CD3- CD94+ lymphocytes, corresponding to NK cells, from symptomatic dogs expressed gamma interferon (IFN-γ) at a 3-fold-higher frequency upon stimulation with B. burgdorferi than the same subset among endemic controls. Surface expression of activating receptor NKp46 was reduced on CD94+ T cells from LD, compared to cells after doxycycline treatment. A higher frequency of NKp46-expressing CD94+ T cells correlated with significantly increased peripheral blood mononuclear cell (PBMC) cytotoxic activity via calcein release assay. PBMCs from dogs with symptomatic LD showed significantly reduced killing ability compared with endemic control PBMCs. An elevated NK-like CD8+ T cell response was associated with protection against development of clinical LD, while excess IFN-γ was associated with clinical disease.
Collapse
|
19
|
Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, Ishiyama K, Wellhausen N, Rennels AK, Ma Y, Tian L, Guedan S, Alexander KA, Zhang Z, Rommel PC, Singh N, Glastad KM, Richardson MW, Watanabe K, Tanyi JL, O'Hara MH, Ruella M, Lacey SF, Moon EK, Schuster SJ, Albelda SM, Lanier LL, Young RM, Berger SL, June CH. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 2021; 184:6081-6100.e26. [PMID: 34861191 DOI: 10.1016/j.cell.2021.11.016] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/13/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.
Collapse
Affiliation(s)
- Charly R Good
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Angela Aznar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Parisa Samareh
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California San Francisco and the Parker Institute for Cancer Immunotherapy at the University of California San Francisco, San Francisco, California 94143, USA
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Austin K Rennels
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yujie Ma
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Guedan
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhen Zhang
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Philipp C Rommel
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathan Singh
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Max W Richardson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keisuke Watanabe
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark H O'Hara
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco and the Parker Institute for Cancer Immunotherapy at the University of California San Francisco, San Francisco, California 94143, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Wang CI, Chang YF, Sie ZL, Ho AS, Chang JS, Peng CL, Cheng CC. Irradiation Suppresses IFNγ-Mediated PD-L1 and MCL1 Expression in EGFR-Positive Lung Cancer to Augment CD8 + T Cells Cytotoxicity. Cells 2021; 10:cells10102515. [PMID: 34685495 PMCID: PMC8533912 DOI: 10.3390/cells10102515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor cells express immune checkpoints to exhaust CD8+ T cells. Irradiation damages tumor cells and augments tumor immunotherapy in clinical applications. However, the radiotherapy-mediated molecular mechanism affecting CD8+ T cell activity remains elusive. We aimed to uncover the mechanism of radiotherapy augmenting cytotoxic CD8+ T cells in non-small-cell lung cancer (NSCLC). EGFR-positive NSCLC cell lines were co-cultured with CD8+ T cells from healthy volunteers. Tumor cell viability and apoptosis were consequently measured. IFNγ was identified secreted by CD8+ T cells and PBMCs. Therefore, RNAseq was used to screen the IFNγ-mediated gene expression in A549 cells. The irradiation effect to IFNγ-mediated gene expression was investigated using qPCR and western blots. We found that the co-culture of tumor cells stimulated the increase of granzyme B and IFNγ in CD8+ T, but A549 exhibited resistance against CD8+ T cytotoxicity compared to HCC827. Irradiation inhibited A549 proliferation and enhanced apoptosis, augmenting PBMCs-mediated cytotoxicity against A549. We found that IFNγ simultaneously increased phosphorylation on STAT1 and STAT3 in EGFR-positive lung cancer, resulting in overexpression of PD-L1 (p < 0.05). In RNAseq analysis, MCL1 was identified and increased by the IFNγ-STAT3 axis (p < 0.05). We demonstrated that irradiation specifically inhibited phosphorylation on STAT1 and STAT3 in IFNγ-treated A549, resulting in reductions of PD-L1 and MCL1 (both p < 0.05). Moreover, knockdowns of STAT3 and MCL1 increased the PBMCs-mediated anti-A549 effect. This study demonstrated that A549 expressed MCL1 to resist CD8+ T cell-mediated tumor apoptosis. In addition, we found that irradiation suppressed IFNγ-mediated STAT3 phosphorylation and PD-L1 and MCL1 expression, revealing a potential mechanism of radiotherapy augmenting immune surveillance.
Collapse
Affiliation(s)
- Chun-I. Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-I.W.); (Z.-L.S.)
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan;
- Laboratory of Good Clinical Research Center, Department of Medical Research, Mackay Memorial Hospital, Tamsui District, New Taipei City 251, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Zong-Lin Sie
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-I.W.); (Z.-L.S.)
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei 112, Taiwan;
| | - Jung-Shan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Liang Peng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 325, Taiwan;
| | - Chun-Chia Cheng
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou 333, Taiwan; (C.-I.W.); (Z.-L.S.)
- Correspondence:
| |
Collapse
|
21
|
Méndez-Lagares G, Chin N, Chang WW, Lee J, Rosás-Umbert M, Kieu HT, Merriam D, Lu W, Kim S, Adamson L, Brander C, Luciw PA, Barry PA, Hartigan-O’Connor DJ. Cytomegalovirus mediates expansion of IL-15-responsive innate-memory cells with SIV killing function. J Clin Invest 2021; 131:148542. [PMID: 34153005 PMCID: PMC8321572 DOI: 10.1172/jci148542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Interindividual immune variability is driven predominantly by environmental factors, including exposure to chronic infectious agents such as cytomegalovirus (CMV). We investigated the effects of rhesus CMV (RhCMV) on composition and function of the immune system in young macaques. Within months of infection, RhCMV was associated with impressive changes in antigen presenting cells, T cells, and NK cells-and marked expansion of innate-memory CD8+ T cells. These cells express high levels of NKG2A/C and the IL-2 and IL-15 receptor beta chain, CD122. IL-15 was sufficient to drive differentiation of the cells in vitro and in vivo. Expanded NKG2A/C+CD122+CD8+ T cells in RhCMV-infected macaques, but not their NKG2-negative counterparts, were endowed with cytotoxicity against class I-deficient K562 targets and prompt IFN-γ production in response to stimulation with IL-12 and IL-18. Because RhCMV clone 68-1 forms the viral backbone of RhCMV-vectored SIV vaccines, we also investigated immune changes following administration of RhCMV 68-1-vectored SIV vaccines. These vaccines led to impressive expansion of NKG2A/C+CD8+ T cells with capacity to inhibit SIV replication ex vivo. Thus, CMV infection and CMV-vectored vaccination drive expansion of functional innate-like CD8 cells via host IL-15 production, suggesting that innate-memory expansion could be achieved by other vaccine platforms expressing IL-15.
Collapse
Affiliation(s)
- Gema Méndez-Lagares
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Ning Chin
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - W.L. William Chang
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Jaewon Lee
- Graduate Group in Immunology, and
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | | | - Hung T. Kieu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - David Merriam
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Wenze Lu
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
| | - Sungjin Kim
- Department of Medical Microbiology and Immunology
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Lourdes Adamson
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paul A. Luciw
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Peter A. Barry
- California National Primate Research Center
- Center for Immunology and Infectious Diseases, University of California Davis, Davis, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center
- Department of Medical Microbiology and Immunology
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
DiGiuseppe JA. Issue Highlights-July 2021. CYTOMETRY PART B-CLINICAL CYTOMETRY 2021; 100:393-396. [PMID: 34292659 DOI: 10.1002/cyto.b.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Daniel L, Tassery M, Lateur C, Thierry A, Herbelin A, Gombert JM, Barbarin A. Allotransplantation Is Associated With Exacerbation of CD8 T-Cell Senescence: The Particular Place of the Innate CD8 T-Cell Component. Front Immunol 2021; 12:674016. [PMID: 34367138 PMCID: PMC8334557 DOI: 10.3389/fimmu.2021.674016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Immunosenescence is a physiological process that is associated with changes in the immune system, particularly among CD8 T-cells. Recent studies have hypothesized that senescent CD8 T-cells are produced with chronologic age by chronic stimulation, leading to the acquisition of hallmarks of innate-like T-cells. While conventional CD8 T-cells are quite well characterized, CD8 T-cells sharing features of NK cells and memory CD8 T-cells, are a newly described immune cell population. They can be distinguished from conventional CD8 T-cells by their combined expression of panKIR/NKG2A and Eomesodermin (E), a unique phenotype closely associated with IFN-γ production in response to innate stimulation. Here, we first provided new evidence in favor of the innate character of panKIR/NKG2A(+) E(+) CD8 T-cells in normal subjects, documenting their position at an intermediate level in the innateness gradient in terms of both innate IFN-γ production and diminished mitochondrial mass. We also revealed that CD8 E(+) panKIR/NKG2A(+) T-cells, hereafter referred to as Innate E(+) CD8 T-cells, exhibit increased senescent (CD27(-) CD28(-)) phenotype, compared to their conventional memory counterparts. Surprisingly, this phenomenon was not dependent on age. Given that inflammation related to chronic viral infection is known to induce NK-like marker expression and a senescence phenotype among CD8 T-cells, we hypothesized that innate E(+) CD8 T-cells will be preferentially associated with exacerbated cellular senescence in response to chronic alloantigen exposure or CMV infection. Accordingly, in a pilot cohort of stable kidney allotransplant recipients, we observed an increased frequency of the Innate E(+) CD8 T-cell subset, together with an exacerbated senescent phenotype. Importantly, this phenotype cannot be explained by age alone, in clear contrast to their conventional memory counterparts. The senescent phenotype in CD8 T-cells was further increased in cytomegalovirus (CMV) positive serology transplant recipients, suggesting that transplantation and CMV, rather than aging by itself, may promote an exacerbated senescent phenotype of innate CD8 T-cells. In conclusion, we proposed that kidney transplantation, via the setting of inflammatory stimuli of alloantigen exposure and CMV infection, may exogenously age the CD8 T-cell compartment, especially its innate component. The physiopathological consequences of this change in the immune system remain to be elucidated.
Collapse
Affiliation(s)
- Lauren Daniel
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Marion Tassery
- Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - Clara Lateur
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Antoine Thierry
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - André Herbelin
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1082, Poitiers, France.,CHU de Poitiers, Poitiers, France
| |
Collapse
|
24
|
Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine 2021; 68:103409. [PMID: 34049248 PMCID: PMC8170103 DOI: 10.1016/j.ebiom.2021.103409] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
The failure of T cells to eradicate tumour cells in the tumour microenvironment is mainly due to the dysfunction of T cells. Senescent T cells, with defects in proliferation and effector functions, accumulate in ageing, chronic viral infections, and autoimmune disorders where antigen stimulation persists. Increasing evidence suggests that inducing T cell senescence is a key strategy used by malignant tumours to evade immune surveillance. In this review, we summarize the general features, functional regulation, and signalling network of senescent T cells in tumour development and highlight their potential as prognostic biomarkers in multiple cancer treatments, including chemotherapy, radiotherapy, and immunotherapy. Moreover, we discuss possible therapeutic strategies for preventing or rejuvenating senescence in tumour-specific T cells. Understanding these critical issues may provide novel strategies to enhance cancer immunotherapy.
Collapse
|
25
|
Huot N, Rascle P, Tchitchek N, Wimmer B, Passaes C, Contreras V, Desjardins D, Stahl-Hennig C, Le Grand R, Saez-Cirion A, Jacquelin B, Müller-Trutwin M. Role of NKG2a/c +CD8 + T cells in pathogenic versus non-pathogenic SIV infections. iScience 2021; 24:102314. [PMID: 33870131 PMCID: PMC8040270 DOI: 10.1016/j.isci.2021.102314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Some viruses have established an equilibrium with their host. African green monkeys (AGM) display persistent high viral replication in the blood and intestine during Simian immunodeficiency virus (SIV) infection but resolve systemic inflammation after acute infection and lack intestinal immune or tissue damage during chronic infection. We show that NKG2a/c+CD8+ T cells increase in the blood and intestine of AGM in response to SIVagm infection in contrast to SIVmac infection in macaques, the latter modeling HIV infection. NKG2a/c+CD8+ T cells were not expanded in lymph nodes, and CXCR5+NKG2a/c+CD8+ T cell frequencies further decreased after SIV infection. Genome-wide transcriptome analysis of NKG2a/c+CD8+ T cells from AGM revealed the expression of NK cell receptors, and of molecules with cytotoxic effector, gut homing, and immunoregulatory and gut barrier function, including CD73. NKG2a/c+CD8+ T cells correlated negatively with IL-23 in the intestine during SIVmac infection. The data suggest a potential regulatory role of NKG2a/c+CD8+ T cells in intestinal inflammation during SIV/HIV infections. Molecular determination of NKG2a/c+CD8+ T cells in two species of nonhuman primates Tissue distribution of NKG2a/c+CD8+ T cell is profoundly sculpted by SIV infections Intestinal NKG2a/c+CD8+ T cells correlated negatively with IL-23 in SIV infection NKG2a/c+CD8+ T cells might play a protective gut barrier function in HIV/SIV infection
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Benedikt Wimmer
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Delphine Desjardins
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Christiane Stahl-Hennig
- Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
26
|
Sukeda M, Shiota K, Kondo M, Nagasawa T, Nakao M, Somamoto T. Innate cell-mediated cytotoxicity of CD8 + T cells against the protozoan parasite Ichthyophthirius multifiliis in the ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103886. [PMID: 33045272 DOI: 10.1016/j.dci.2020.103886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Cytotoxic T cells are known to have the ability to kill microbe-infected host cells, which makes them essential in the adaptive immunity processes of various vertebrates. In this study, we demonstrated innate cell-mediated cytotoxicity of CD8+ T cells against protozoan parasites found in the ginbuna crucian carp. When isolated effector cells such as CD8+, CD4+ (CD4-1+), or CD8- CD4- (double-negative, DN), from naïve ginbuna crucian carp were co-incubated with target parasites (Ichthyophthirius multifiliis), CD8+ cells from the kidney and gill showed the highest cytotoxic activity. On the other hand, DN cells, which include macrophages and CD4- CD8- lymphocytes, showed the lowest cytotoxic activity against I. multifiliis. Additionally, the cytotoxic activity of CD8+ cells was found to significantly decrease in the presence of a membrane separating the effector cells from I. multifiliis. Furthermore, the serine protease inhibitor 3,4-dichloroisocoumarin and perforin inhibitor concanamycin A significantly inhibited the cytotoxic activity of CD8+ cells. These results demonstrate that CD8+ T cells of ginbuna crucian carp can kill extracellular parasites in a contact-dependent manner via serine proteases and perforin. Therefore, we conclude that CD8+ T cells play an essential role in anti-parasite innate immunity of teleost fish.
Collapse
Affiliation(s)
- Masaki Sukeda
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Koumei Shiota
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
27
|
Poniewierska-Baran A, Tokarz-Deptuła B, Deptuła W. The role of innate lymphoid cells in selected disease states - cancer formation, metabolic disorder and inflammation. Arch Med Sci 2021; 17:196-206. [PMID: 33488872 PMCID: PMC7811321 DOI: 10.5114/aoms.2019.89835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently described group of immune cells that can regulate homeostasis and protect mammalian organisms, including humans, from infections and diseases. Considering this, ILC research is still ongoing to better understand the biology of these cells and their roles in the human body. ILCs are a multifunctional group of immune cells, making it important for the medical community to be familiar with the latest research about the ILC families and their functions in selected disease states, such as cancer formation, metabolic disorders and inflammation. By discovering the roles of ILC populations and their participation in many disorders, we can improve disease diagnostics and patient healthcare.
Collapse
Affiliation(s)
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Wiesław Deptuła
- Veterinary Center of the Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
28
|
Wu CY, Chuang HY, Wong CH. Influenza virus neuraminidase regulates host CD8 + T-cell response in mice. Commun Biol 2020; 3:748. [PMID: 33293641 PMCID: PMC7722854 DOI: 10.1038/s42003-020-01486-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022] Open
Abstract
Influenza A virus (IAV)-specific CD8+ T-cell response was shown to provide protection against pandemic and seasonal influenza infections. However, the response was often relatively weak and the mechanism was unclear. Here, we show that the composition of IAV released from infected cells is regulated by the neuraminidase (NA) activity and the cells infected by NA-defective virus cause intracellular viral protein accumulation and cell death. In addition, after uptake of NA-defective viruses by dendritic cells (DCs), an expression of the major histocompatibility complex class I is induced to activate IAV-specific CD8+ T-cell response. When mice were infected by NA-defective IAV, a CD8+ T-cell response to the highly conserved viral antigens including PB1, NP, HA, M1, M2 and NS1 was observed along with the increasing expression of IL10, IL12 and IL27. Vaccination of mice with NA-defective H1N1 A/WSN/33 induced a strong IAV-specific CD8+ T cell response against H1N1, H3N2 and H5N1. This study reveals the role of NA in the IAV-specific CD8+ T-cell response and virion assembly process, and provides an alternative direction toward the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Hong-Yang Chuang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist., Taipei, 115, Taiwan.
- Department of Chemistry, The Scripps Research Institute, 10550N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
29
|
Kasakovski D, Zeng X, Lai J, Yu Z, Yao D, Chen S, Zha X, Li Y, Xu L. Characterization of
KIR
+
NKG2A
+ Eomes−
NK
‐like
CD8
+ T cells and their decline with age in healthy individuals. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:467-475. [PMID: 32830898 DOI: 10.1002/cyto.b.21945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Dimitri Kasakovski
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Jing Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Zhi Yu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated HospitalJinan University Guangzhou China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Department of HematologyFirst Affiliated Hospital, Jinan University Guangzhou China
- The Clinical Medicine Postdoctoral Research StationJinan University Guangzhou China
| |
Collapse
|
30
|
Hofmann L, Ludwig S, Schuler PJ, Hoffmann TK, Brunner C, Theodoraki MN. The Potential of CD16 on Plasma-Derived Exosomes as a Liquid Biomarker in Head and Neck Cancer. Int J Mol Sci 2020; 21:ijms21113739. [PMID: 32466374 PMCID: PMC7312379 DOI: 10.3390/ijms21113739] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are highly immune suppressive and aggressive malignancies. As part of the tumor microenvironment, exosomes contribute to this immune suppression. The Fc receptor CD16 is widely expressed on monocytes, neutrophils, and natural killer (NK) cells and is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). Here, surface levels of CD16 on total exosomes and tumor-derived exosomes (TEX) from plasma of HNSCC patients were analyzed regarding their potential as liquid biomarkers for disease stage. Exosomes were isolated from plasma using mini size exclusion chromatography. TEX were enriched by immune affinity capture with CD44v3 antibodies. On-bead flow cytometry was used to measure CD16 levels on total exosomes and TEX. The results were correlated with clinicopathological parameters. Total exosomes from HNSCC patients had significantly higher CD16 levels compared to TEX. Further, CD16 surface levels of total exosomes, but not TEX, correlated with clinicopathological parameters. Patients with advanced tumor stages T3/4 and Union for International Cancer Control (UICC) stages III/IV had significantly higher CD16 levels on total exosomes compared to patients with early tumor stages T1/2 and UICC stages I/II, respectively. Overall, CD16 positive exosomes have the potential as liquid biomarkers for HNSCC tumor stage and aggressiveness.
Collapse
Affiliation(s)
- Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
| | - Sonja Ludwig
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, 68167 Mannheim, Germany;
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
- Correspondence:
| |
Collapse
|
31
|
MHC class I-independent activation of virtual memory CD8 T cells induced by chemotherapeutic agent-treated cancer cells. Cell Mol Immunol 2020; 18:723-734. [PMID: 32427883 DOI: 10.1038/s41423-020-0463-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 11/09/2022] Open
Abstract
Cancer cells can evade immune recognition by losing major histocompatibility complex (MHC) class I. Hence, MHC class I-negative cancers represent the most challenging cancers to treat. Chemotherapeutic drugs not only directly kill tumors but also modulate the tumor immune microenvironment. However, it remains unknown whether chemotherapy-treated cancer cells can activate CD8 T cells independent of tumor-derived MHC class I and whether such MHC class I-independent CD8 T-cell activation can be exploited for cancer immunotherapy. Here, we showed that chemotherapy-treated cancer cells directly activated CD8 T cells in an MHC class I-independent manner and that these activated CD8 T cells exhibit virtual memory (VM) phenotypes. Consistently, in vivo chemotherapeutic treatment preferentially increased tumor-infiltrating VM CD8 T cells. Mechanistically, MHC class I-independent activation of CD8 T cells requires cell-cell contact and activation of the PI3K pathway. VM CD8 T cells contribute to a superior therapeutic effect on MHC class I-deficient tumors. Using humanized mouse models or primary human CD8 T cells, we also demonstrated that chemotherapy-treated human lymphomas activated VM CD8 T cells independent of tumor-derived MHC class I. In conclusion, CD8 T cells can be directly activated in an MHC class I-independent manner by chemotherapy-treated cancers, and these activated CD8 T cells may be exploited for developing new strategies to treat MHC class I-deficient cancers.
Collapse
|
32
|
Jin JH, Huang HH, Zhou MJ, Li J, Hu W, Huang L, Xu Z, Tu B, Yang G, Shi M, Jiao YM, Fan X, Song JW, Zhang JY, Zhang C, Wang FS. Virtual memory CD8+ T cells restrain the viral reservoir in HIV-1-infected patients with antiretroviral therapy through derepressing KIR-mediated inhibition. Cell Mol Immunol 2020; 17:1257-1265. [PMID: 32210395 DOI: 10.1038/s41423-020-0408-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 01/10/2023] Open
Abstract
The viral reservoir is the major hurdle in developing and establishing an HIV cure. Understanding factors affecting the size and decay of this reservoir is crucial for the development of therapeutic strategies. Recent work highlighted that CD8+ T cells are involved in the control of viral replication in ART-treated HIV-1-infected individuals, but how CD8+ T cells sense and restrict the HIV reservoir are not fully understood. Here, we demonstrate that a population of unconventional CD45RA+, PanKIR+, and/or NKG2A+ virtual memory CD8+ T cells (TVM cells), which confer rapid and robust protective immunity against pathogens, plays an important role in restraining the HIV DNA reservoir in HIV-1-infected patients with effective ART. In patients undergoing ART, TVM cells negatively correlate with HIV DNA and positively correlate with circulating IFN-α2 and IL-15. Moreover, TVM cells constitutively express high levels of cytotoxic granule components, including granzyme B, perforin and granulysin, and demonstrate the capability to control HIV replication through both cytolytic and noncytolytic mechanisms. Furthermore, by using an ex vivo system, we showed that HIV reactivation is effectively suppressed by TVM cells through KIR-mediated recognition. This study suggests that TVM cells are a promising target to predict posttreatment virological control and to design immune-based interventions to reduce the reservoir size in ART-treated HIV-1-infected individuals.
Collapse
Affiliation(s)
- Jie-Hua Jin
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming-Ju Zhou
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Jing Li
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China.,Bengbu Medical University, Bengbu, China
| | - Wei Hu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lei Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Guang Yang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Peking University 302 Clinical Medical School, Beijing, China.,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China.,National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Fu-Sheng Wang
- Peking University 302 Clinical Medical School, Beijing, China. .,Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China. .,National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
33
|
Barbarin A, Abdallah M, Lefèvre L, Piccirilli N, Cayssials E, Roy L, Gombert JM, Herbelin A. Innate T-αβ lymphocytes as new immunological components of anti-tumoral "off-target" effects of the tyrosine kinase inhibitor dasatinib. Sci Rep 2020; 10:3245. [PMID: 32094501 PMCID: PMC7039999 DOI: 10.1038/s41598-020-60195-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
Kinase inhibitors hold great potential as targeted therapy against malignant cells. Among them, the tyrosine kinase inhibitor dasatinib is known for a number of clinically relevant off-target actions, attributed in part to effects on components of the immune system, especially conventional T-cells and natural killer (NK)-cells. Here, we have hypothesized that dasatinib also influences non-conventional T-αβ cell subsets known for their potential anti-tumoral properties, namely iNKT cells and the distinct new innate CD8 T-cell subset. In mice, where the two subsets were originally characterized, an activated state of iNKT cells associated with a shift toward an iNKT cell Th1-phenotype was observed after dasatinib treatment in vivo. Despite decreased frequency of the total memory CD8 T-cell compartment, the proportion of innate-memory CD8 T-cells and their IFNγ expression in response to an innate-like stimulation increased in response to dasatinib. Lastly, in patients administered with dasatinib for the treatment of BCR-ABL-positive leukemias, we provided the proof of concept that the kinase inhibitor also influences the two innate T-cell subsets in humans, as attested by their increased frequency in the peripheral blood. These data highlight the potential immunostimulatory capacity of dasatinib on innate T-αβ cells, thereby opening new opportunities for chemoimmunotherapy.
Collapse
Affiliation(s)
- Alice Barbarin
- INSERM, 1082, Poitiers, France.,CHU de Poitiers, Poitiers, France
| | | | | | | | - Emilie Cayssials
- INSERM, 1082, Poitiers, France.,CHU de Poitiers, Poitiers, France.,Service d'Oncologie Hématologique de Thérapie Cellulaire, CHU de Poitiers, Poitiers, France.,INSERM CIC-1402, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Lydia Roy
- Service Clinique d'Hématologie, Hôpital Henri-Mondor, Créteil, France.,Université Paris-Est Créteil, Créteil, France
| | - Jean-Marc Gombert
- INSERM, 1082, Poitiers, France.,CHU de Poitiers, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - André Herbelin
- INSERM, 1082, Poitiers, France. .,CHU de Poitiers, Poitiers, France. .,Université de Poitiers, Poitiers, France.
| |
Collapse
|
34
|
Kourelis TV, Jevremovic D, Jessen E, Dasari S, Villasboas JC, Dispenzieri A, Kumar S. Mass cytometry identifies expansion of double positive and exhausted T cell subsets in the tumour microenvironment of patients with POEMS syndrome. Br J Haematol 2020; 190:79-83. [PMID: 32080834 DOI: 10.1111/bjh.16522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/13/2020] [Indexed: 11/28/2022]
Abstract
We sought to dissect the tumour microenvironment in a small cohort (N = 10) of patients with POEMS at diagnosis and after therapy using mass cytometry. We included 10 MGUS patients as controls. We identified 29 immune cell subsets in the CD45+ and CD3+ compartments. Double positive T cells and PD-1 positive CD4 T cells were expanded and naïve CD4 T cells were decreased in the bone marrow of patients with newly diagnosed/progressing POEMS. These findings provide evidence for possible antigenic-driven selection as a driver of disease pathogenesis in POEMS.
Collapse
Affiliation(s)
| | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Erik Jessen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jose C Villasboas
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Angela Dispenzieri
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
De La Motte Rouge T, Corné J, Cauchois A, Le Boulch M, Poupon C, Henno S, Rioux-Leclercq N, Le Pabic E, Laviolle B, Catros V, Levêque J, Fautrel A, Le Gallo M, Legembre P, Lavoué V. Serum CD95L Level Correlates with Tumor Immune Infiltration and Is a Positive Prognostic Marker for Advanced High-Grade Serous Ovarian Cancer. Mol Cancer Res 2019; 17:2537-2548. [DOI: 10.1158/1541-7786.mcr-19-0449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022]
|
36
|
Mass cytometry dissects T cell heterogeneity in the immune tumor microenvironment of common dysproteinemias at diagnosis and after first line therapies. Blood Cancer J 2019; 9:72. [PMID: 31462637 PMCID: PMC6713712 DOI: 10.1038/s41408-019-0234-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Dysproteinemias progress through a series of clonal evolution events in the tumor cell along with the development of a progressively more “permissive” immune tumor microenvironment (iTME). Novel multiparametric cytometry approaches, such as cytometry by time-of-flight (CyTOF) combined with novel gating algorithms can rapidly characterize previously unknown phenotypes in the iTME of tumors and better capture its heterogeneity. Here, we used a 33-marker CyTOF panel to characterize the iTME of dysproteinemia patients (MGUS, multiple myeloma—MM, smoldering MM, and AL amyloidosis) at diagnosis and after standard of care first line therapies (triplet induction chemotherapy and autologous stem cell transplant—ASCT). We identify novel subsets, some of which are unique to the iTME and absent from matched peripheral blood samples, with potential roles in tumor immunosurveillance as well as tumor immune escape. We find that AL amyloidosis has a distinct iTME compared to other dysproteinemias with higher myeloid and “innate-like” T cell subset infiltration. We show that T cell immune senescence might be implicated in disease pathogenesis in patients with trisomies. Finally, we demonstrate that the early post-ASCT period is associated with an increase of senescent and exhausted subsets, which might have implications for the rational selection of post-ASCT therapies.
Collapse
|
37
|
Wolski D, Lauer GM. Hepatitis C Virus as a Unique Human Model Disease to Define Differences in the Transcriptional Landscape of T Cells in Acute versus Chronic Infection. Viruses 2019; 11:v11080683. [PMID: 31357397 PMCID: PMC6723887 DOI: 10.3390/v11080683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus is unique among chronic viral infections in that an acute outcome with complete viral elimination is observed in a minority of infected patients. This unique feature allows direct comparison of successful immune responses with those that fail in the setting of the same human infection. Here we review how this scenario can be used to achieve better understanding of transcriptional regulation of T-cell differentiation. Specifically, we discuss results from a study comparing transcriptional profiles of hepatitis C virus (HCV)-specific CD8 T-cells during early HCV infection between patients that do and do not control and eliminate HCV. Identification of early gene expression differences in key T-cell differentiation molecules as well as clearly distinct transcriptional networks related to cell metabolism and nucleosomal regulation reveal novel insights into the development of exhausted and memory T-cells. With additional transcriptional studies of HCV-specific CD4 and CD8 T-cells in different stages of infection currently underway, we expect HCV infection to become a valuable model disease to study human immunity to viruses.
Collapse
Affiliation(s)
- David Wolski
- Liver Center at the Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Georg M Lauer
- Liver Center at the Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Edholm ESI, De Jesús Andino F, Yim J, Woo K, Robert J. Critical Role of an MHC Class I-Like/Innate-Like T Cell Immune Surveillance System in Host Defense against Ranavirus (Frog Virus 3) Infection. Viruses 2019; 11:v11040330. [PMID: 30959883 PMCID: PMC6521289 DOI: 10.3390/v11040330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Besides the central role of classical Major Histocompatibility Complex (MHC) class Ia-restricted conventional Cluster of Differentiation 8 (CD8) T cells in antiviral host immune response, the amphibian Xenopus laevis critically rely on MHC class I-like (mhc1b10.1.L or XNC10)-restricted innate-like (i)T cells (iVα6 T cells) to control infection by the ranavirus Frog virus 3 (FV3). To complement and extend our previous reverse genetic studies showing that iVα6 T cells are required for tadpole survival, as well as for timely and effective adult viral clearance, we examined the conditions and kinetics of iVα6 T cell response against FV3. Using a FV3 knock-out (KO) growth-defective mutant, we found that upregulation of the XNC10 restricting class I-like gene and the rapid recruitment of iVα6 T cells depend on detectable viral replication and productive FV3 infection. In addition, by in vivo depletion with XNC10 tetramers, we demonstrated the direct antiviral effector function of iVα6 T cells. Notably, the transitory iV6 T cell defect delayed innate interferon and cytokine gene response, resulting in long-lasting negative inability to control FV3 infection. These findings suggest that in Xenopus and likely other amphibians, an immune surveillance system based on the early activation of iT cells by non-polymorphic MHC class-I like molecules is important for efficient antiviral immune response.
Collapse
Affiliation(s)
- Eva-Stina Isabella Edholm
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
- The Norwegian College of Fishery Science, University of Tromsø, the Arctic university of Norway, 9037, Tromsø, Norway.
| | - Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jinyeong Yim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Katherine Woo
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
39
|
Courau T, Bonnereau J, Chicoteau J, Bottois H, Remark R, Assante Miranda L, Toubert A, Blery M, Aparicio T, Allez M, Le Bourhis L. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer 2019; 7:74. [PMID: 30871626 PMCID: PMC6417026 DOI: 10.1186/s40425-019-0553-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Background Immunotherapies still fail to benefit colorectal cancer (CRC) patients. Relevant functional assays aimed at studying these failures and the efficacy of cancer immunotherapy in human are scarce. 3D tumor cultures, called tumor organoids or spheroids, represent interesting models to study cancer treatments and could help to challenge these issues. Methods We analyzed heterotypic cocultures of human colon tumor-derived spheroids with immune cells to assess the infiltration, activation and function of T and NK cells toward human colorectal tumors in vitro. Results We showed that allogeneic T and NK cells rapidly infiltrated cell line-derived spheroids, inducing immune-mediated tumor cell apoptosis and spheroid destruction. NKG2D, a key activator of cytotoxic responses, was engaged on infiltrating cells. We thus assessed the therapeutic potential of an antibody targeting the specific ligands of NKG2D, MICA and MICB, in this system. Anti-MICA/B enhanced immune-dependent destruction of tumor spheroid by driving an increased NK cells infiltration and activation. Interestingly, tumor cells reacted to immune infiltration by upregulating HLA-E, ligand of the inhibitory receptor NKG2A expressed by CD8 and NK cells. NKG2A was increased after anti-MICA/B treatment and, accordingly, combination of anti-MICA/B and anti-NKG2A was synergistic. These observations were ultimately confirmed in a clinical relevant model of coculture between CRC patients-derived spheroids and autologous tumor-infiltrating lymphocytes. Conclusions Altogether, we show that tumor spheroids represent a relevant tool to study tumor-lymphocyte interactions on human tissues and revealed the antitumor potential of immunomodulatory antibodies targeting MICA/B and NKG2A. Electronic supplementary material The online version of this article (10.1186/s40425-019-0553-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tristan Courau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France
| | - Julie Bonnereau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | - Justine Chicoteau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Hugo Bottois
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | | | | | - Antoine Toubert
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France
| | | | - Thomas Aparicio
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Matthieu Allez
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.,Paris-Diderot University, Sorbonne Paris Cité, Paris, France.,Gastroenterology and Digestive Oncology Department, Saint Louis Hospital, AP-HP, Paris, France
| | - Lionel Le Bourhis
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Paris, France.
| |
Collapse
|
40
|
Baez NS, Cerbán F, Savid-Frontera C, Hodge DL, Tosello J, Acosta-Rodriguez E, Almada L, Gruppi A, Viano ME, Young HA, Rodriguez-Galan MC. Thymic expression of IL-4 and IL-15 after systemic inflammatory or infectious Th1 disease processes induce the acquisition of "innate" characteristics during CD8+ T cell development. PLoS Pathog 2019; 15:e1007456. [PMID: 30608984 PMCID: PMC6319713 DOI: 10.1371/journal.ppat.1007456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/05/2018] [Indexed: 01/28/2023] Open
Abstract
Innate CD8+ T cells express a memory-like phenotype and demonstrate a strong cytotoxic capacity that is critical during the early phase of the host response to certain bacterial and viral infections. These cells arise in the thymus and depend on IL-4 and IL-15 for their development. Even though innate CD8+ T cells exist in the thymus of WT mice in low numbers, they are highly enriched in KO mice that lack certain kinases, leading to an increase in IL-4 production by thymic NKT cells. Our work describes that in C57BL/6 WT mice undergoing a Th1 biased infectious disease, the thymus experiences an enrichment of single positive CD8 (SP8) thymocytes that share all the established phenotypical and functional characteristics of innate CD8+ T cells. Moreover, through in vivo experiments, we demonstrate a significant increase in survival and a lower parasitemia in mice adoptively transferred with SP8 thymocytes from OT I—T. cruzi-infected mice, demonstrating that innate CD8+ thymocytes are able to protect against a lethal T. cruzi infection in an Ag-independent manner. Interestingly, we obtained similar results when using thymocytes from systemic IL-12 + IL-18-treated mice. This data indicates that cytokines triggered during the acute stage of a Th1 infectious process induce thymic production of IL-4 along with IL-15 expression resulting in an adequate niche for development of innate CD8+ T cells as early as the double positive (DP) stage. Our data demonstrate that the thymus can sense systemic inflammatory situations and alter its conventional CD8 developmental pathway when a rapid innate immune response is required to control different types of pathogens. Murine innate CD8+ T cells demonstrate strong cytotoxic capacity during the early phase of certain bacterial and viral infections. Such cells have been reported to be present in both mice and humans but many questions remain as to their differentiation and maturation process. Innate CD8+ T cells arise in the thymus and depend on IL-4 and IL-15 for their development. A description of the cellular and molecular mechanisms involved during their thymic development has been obtained from KO mice that lack kinases and transcription factors important for TCR signaling. In these mice, SP8 thymocytes with an innate phenotype are highly enriched over the conventional SP8 cells. Our work describes, for the first time, that in WT mice, thymic IL-4 and IL-15 expression triggered by Th1 infectious processes induce an adequate niche for development of innate rather than conventional CD8+ T cells. Our data show that the thymus is able to sense a systemic inflammatory response (probably mediated by systemic IL-12 and IL-18 production) and alter its ontogeny when pathogen control is needed.
Collapse
Affiliation(s)
- Natalia S. Baez
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabio Cerbán
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Deborah L. Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Jimena Tosello
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eva Acosta-Rodriguez
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Almada
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Estefania Viano
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Maria Cecilia Rodriguez-Galan
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
41
|
Raam L, Kaleviste E, Šunina M, Vaher H, Saare M, Prans E, Pihlap M, Abram K, Karelson M, Peterson P, Rebane A, Kisand K, Kingo K. Lymphoid Stress Surveillance Response Contributes to Vitiligo Pathogenesis. Front Immunol 2018; 9:2707. [PMID: 30515176 PMCID: PMC6255962 DOI: 10.3389/fimmu.2018.02707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/01/2018] [Indexed: 11/13/2022] Open
Abstract
Vitiligo is a chronic multifactorial depigmentation disorder characterized by the destruction and functional loss of melanocytes. Although a direct cytotoxic T cell attack is thought to be responsible for melanocyte damage, the events leading to the loss of self-tolerance toward melanocytic antigens are not understood. This research aimed to identify novel cellular and molecular factors that participate in vitiligo pathogenesis through the application of gene expression and immunofluorescence analysis of skin biopsy samples along with immunophenotyping of circulating cells. Our study provides insights into the mechanisms involved in melanocyte destruction. The upregulation of stress-ligand MICA/MICB, recognized by activating receptors on innate and innate-like T cells, imply involvement of lymphoid stress surveillance responses in vitiligo lesions. A simultaneous increase in the expression of transcription factor EOMES that is characteristic for innate-like virtual memory T cells, suggest a similar scenario. Local lymphoid stress surveillance has been previously associated with the amplification of systemic humoral responses that were mirrored in our study by increased T follicular helper cells and switched memory B cell proportions in patients with active vitiligo. In addition, microtubule-associated protein light chain 3 staining was compatible with the activation of autophagy in keratinocytes and in the remaining melanocytes of vitiligo lesional skin.
Collapse
Affiliation(s)
- Liisi Raam
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Epp Kaleviste
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Marina Šunina
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Helen Vaher
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mario Saare
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ele Prans
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maire Pihlap
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Abram
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Maire Karelson
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology, University of Tartu, Tartu, Estonia.,Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
42
|
Frostegård J, Hellström C, Nilsson P, Frostegård AG, Ajeganova S. Autoantibody profiling reveals four protein candidate autoantigens associated with systemic lupus erythematosus. Lupus 2018; 27:1670-1678. [PMID: 30041579 DOI: 10.1177/0961203318788153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objectives In systemic lupus erythematosus (SLE) there are typically many autoantibodies. The disease heterogeneity could be better understood with discovery of phenotype-specific antigens targeted by autoantibodies. We here aimed to identify novel autoantigens potentially related to SLE disease and a major complication, atherosclerosis. Methods Antigen microarrays were used to profile IgG autoantibody reactivity against 77 protein fragments (20-140 amino acids (aa) long, median 89 aa) produced within the Human Protein Atlas project, in serum samples from SLE patients ( n = 107) and age- and sex-matched population-based controls ( n = 107). Common carotid intima-media thickness, plaque occurrence and echogenicity were determined by B-mode ultrasound. Results We determined significant differences between patients and controls in IgG reactivity against four proteins. In patients compared to controls, there was an increase of IgG reactivity against zinc finger protein 688 (ZNF688), early B cell factor 2 (EBF2), crystallin, alpha B (CRYAB) and tumor necrosis factor receptor superfamily member 13C (TNFRSF13C). Of these four antigens, only anti-ZNF688 was associated with carotid atherosclerosis (plaque occurrence) and vulnerable plaques in SLE. There was a weak association between anti-EBF2 and SLE disease activity but no significant associations were determined for other measured IgG reactivity. Conclusions In this discovery screening we here demonstrate new candidate autoantigens with differential reactivity (reflecting autoantibody levels) in SLE patients and in controls and in relation to atherosclerosis in SLE.
Collapse
Affiliation(s)
- J Frostegård
- 1 Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Hellström
- 2 Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - P Nilsson
- 2 Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - A G Frostegård
- 1 Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S Ajeganova
- 3 Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.,4 Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
43
|
The Role of Invariant NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can J Gastroenterol Hepatol 2018; 2018:8197937. [PMID: 30046564 PMCID: PMC6038587 DOI: 10.1155/2018/8197937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct lineage of T cells which express both the T cell receptor (TCR) and natural killer (NK) cell markers. Invariant NKT (iNKT) cells bear an invariant TCR and recognize a small variety of glycolipid antigens presented by CD1d (nonclassical MHC-I). CD1d-restricted iNKT cells are regulators of immune responses and produce cytokines that may be proinflammatory (such as interferon-gamma (IFN-γ)) or anti-inflammatory (such as IL-4). iNKT cells also appear to play a role in B cell regulation and antibody production. Alpha-galactosylceramide (α-GalCer), a derivative of the marine sponge, is a potent stimulator of iNKT cells and has been proposed as a therapeutic iNKT cell activator. Invariant NKT cells have been implicated in the development and perpetuation of several autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus (SLE). Animal models of SLE have shown abnormalities in iNKT cells numbers and function, and an inverse correlation between the frequency of NKT cells and IgG levels has also been observed. The role of iNKT cells in autoimmune liver disease (AiLD) has not been extensively studied. This review discusses the current data with regard to iNKT cells function in AiLD, in addition to providing an overview of iNKT cells function in other autoimmune conditions and animal models. We also discuss data regarding the immunomodulatory effects of vitamin D on iNKT cells, which may serve as a potential therapeutic target, given that deficiencies in vitamin D have been reported in various autoimmune disorders.
Collapse
|
44
|
Barbarin A, Herbelin A, Gombert JM. [The CD8 + T cell innate function in the war against cancer]. Med Sci (Paris) 2017; 33:927-929. [PMID: 29200385 DOI: 10.1051/medsci/20173311004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alice Barbarin
- Inserm U1082, Université de Poitiers - UFR Faculté de sciences fondamentales et appliquées (SFA), Pôle biologie santé (PBS) B36, 1, rue Georges Bonnet - TSA 51106, 86073 Poitiers Cedex 9, France - CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| | - André Herbelin
- Inserm U1082, Université de Poitiers - UFR Faculté de sciences fondamentales et appliquées (SFA), Pôle biologie santé (PBS) B36, 1, rue Georges Bonnet - TSA 51106, 86073 Poitiers Cedex 9, France - CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1082, Université de Poitiers - UFR Faculté de sciences fondamentales et appliquées (SFA), Pôle biologie santé (PBS) B36, 1, rue Georges Bonnet - TSA 51106, 86073 Poitiers Cedex 9, France - CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| |
Collapse
|
45
|
Effect of Cytomegalovirus (CMV) and Ageing on T-Bet and Eomes Expression on T-Cell Subsets. Int J Mol Sci 2017; 18:ijms18071391. [PMID: 28661443 PMCID: PMC5535884 DOI: 10.3390/ijms18071391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
The differential impact of ageing and cytomegalovirus (CMV) latent infection on human T-cell subsets remains to some extent controversial. The purpose of this study was to analyse the expression of the transcription factors T-bet and Eomes and CD57 on CD4+, CD4hiCD8lo and CD8+ T-cell subsets in healthy individuals, stratified by age and CMV serostatus. The percentage of CD4+ T-cells expressing T-bet or Eomes was very low, in particular in CD4+ T-cells from young CMV-seronegative individuals, and were higher in CMV-seropositive older individuals, in both CD57− and CD57+ CD4+ T-cells. The study of the minor peripheral blood double-positive CD4hiCD8lo T-cells showed that the percentage of these T-cells expressing both Eomes and T-bet was higher compared to CD4+ T-cells. The percentage of CD4hiCD8lo T-cells expressing T-bet was also associated with CMV seropositivity and the coexpression of Eomes, T-bet and CD57 on CD4hiCD8lo T-cells was only observed in CMV-seropositive donors, supporting the hypothesis that these cells are mature effector memory cells. The percentage of T-cells expressing Eomes and T-bet was higher in CD8+ T-cells than in CD4+ T-cells. The percentages of CD8+ T-cells expressing Eomes and T-bet increased with age in CMV-seronegative and -seropositive individuals and the percentages of CD57− CD8+ and CD57+ CD8+ T-cells coexpressing both transcription factors were similar in the different groups studied. These results support that CMV chronic infection and/or ageing are associated to the expansion of highly differentiated CD4+, CD4hiCD8lo and CD8+ T-cells that differentially express T-bet and Eomes suggesting that the expression of these transcription factors is essential for the generation and development of an effector-memory and effector T lymphocytes involved in conferring protection against chronic CMV infection.
Collapse
|