1
|
Hao Z, Lu C, Wang M, Li S, Wang Y, Yan Y, Ding Y, Li Y. Systematic investigation on the pharmaceutical components and mechanism of the treatment against zebrafish enteritis by Sporisorium reilianum f. sp. reilianum based on histomorphology and pathology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118574. [PMID: 39019416 DOI: 10.1016/j.jep.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sporisorium reilianum f. sp. reilianum (SSR) is a fungus isolated from a medicinal plant. Recorded in the "Compilation of National Chinese Herbal Medicine" and "Compendium of Materia Medica," it was used for preventing and treating intestinal diseases, enhancing immune function, etc. In this study, we investigated the chemical composition and bioactivity of SSR. Network pharmacology is utilized for predictive analysis and targeting pathway studies of anti-inflammatory bowel disease (IBD) mechanisms. Pharmacological activity against enteritis is evaluated using zebrafish (Danio rerio) as model animals. AIM OF THE STUDY To reveal the treatment of IBD by SSR used as traditional medicine and food, based on molecular biology identification of SSR firstly, and the pharmaceutical components & its toxicities, biological activity & mechanism of SSR were explored. MATERIALS AND METHODS Using chromatography and zebrafish IBD model induced by dextran sulfate sodium (DSS), nine compounds were first identified by nuclear magnetic resonance (NMR). The toxicity of ethanol crude extract and monomers from SSR were evaluated by evaluating the phenotypic characteristics of zebrafish embryos and larvae, histomorphology and pathology of the zebrafish model guided by network pharmacology were conducted. RESULTS The zebrafish embryo development did not show toxicity. The molecular docking and enrichment pathway results predicted that metabolites 3 & 4 (N-trans- feruloyl-3-methoxytyramine & N-cis-feruloyl-3-methoxytyramine) and 7 & 8 (4-N- trans-p-coumaroyltyramine & 4-N-cis--p-coumaroyltyramine) have anti-enteritis activities. This paper lays an experimental foundation for developing new drugs and functional foods.
Collapse
Affiliation(s)
- Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Chang Lu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Mengtong Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Shuxia Li
- Jinmanwu Agricultural Science and Technology Development Co., LTD., Liaoyuan, 136200, China.
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yuli Yan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Walraven T, Busch M, Wang J, Donkers JM, Duijvestein M, van de Steeg E, Kramer NI, Bouwmeester H. Elevated risk of adverse effects from foodborne contaminants and drugs in inflammatory bowel disease: a review. Arch Toxicol 2024; 98:3519-3541. [PMID: 39249550 PMCID: PMC11489187 DOI: 10.1007/s00204-024-03844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this susceptible subgroup of the population in future toxicological assessments.
Collapse
Affiliation(s)
- Tom Walraven
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Gu Y, Lou Y, Zhou Z, Zhao X, Ye X, Wu S, Li H, Ji Y. Resveratrol for inflammatory bowel disease in preclinical studies: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1411566. [PMID: 38948464 PMCID: PMC11211549 DOI: 10.3389/fphar.2024.1411566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic condition that can be managed with treatment, but it is challenging to get IBD cured. Resveratrol, a non-flavonoid polyphenolic organic compound derived from various plants, has a potential effect on IBD. The current research was set out to investigate the therapeutic effects of resveratrol on animal models of IBD. Methods: A comprehensive search of PubMed, Embase, Web of Science, and Chinese databases was performed. The literature search process was completed independently by two people and reviewed by a third person. The risk of bias in the included literature was assessed using the Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Stroke (CAMARADES) 10-point quality checklist. The meta-analysis utilized Review Manager 5.4 software to evaluate the efficacy of resveratrol, with histopathological index as the primary outcome measure. Subgroup analysis was conducted based on this indicator. Additionally, meta-analyses were carried out on different outcomes reported in the literature, including final disease activity index, final body weight change, colon length, splenic index, and inflammatory factors. Results: After conducting a thorough literature search and selection process, a total of 28 studies were ultimately included in the analysis. It was found that over half of the selected studies had more than five items with low risk of bias in the bias risk assessment. Relevant datas from included literature indicated that the histopathological index of the resveratrol group was significantly lower than that of the control group (WMD = -2.58 [-3.29, -1.87]). Subgroup analysis revealed that higher doses of resveratrol (>80 mg/kg) had a better efficacy (WMD = -3.47 [-4.97, -1.98]). Furthermore, The data summary and quantitative analysis results of SI and colon length also showed that resveratrol was effective in alleviating intestinal mucosal pathological injury of IBD. In terms of biochemical indicators, the summary analysis revealed that resveratrol affected interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), interferon-γ (IFN-γ), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and prostaglandin E2 (PGE2) significantly. These effects may be attributed to the mechanism of resveratrol in regulating immune response and inhibiting oxidative stress. Conclusion: This review suggests that resveratrol demonstrated a notable therapeutic impact in preclinical models of IBD, particularly at doses exceeding 80 mg/kg. This efficacy is attributed to the protective mechanisms targeting the intestinal mucosa involved in the pathogenesis of IBD through various pathways. As a result, resveratrol holds promising prospects for potential clinical use in the future.
Collapse
Affiliation(s)
- Yuting Gu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yijie Lou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhanyi Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolu Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwen Wu
- Department of Acupuncture and Moxibustion, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhenjiang, China
| | - Haitao Li
- Department of Digestive System, Jinhua Municipal Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Yunxi Ji
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
5
|
Pretorius L, Smith C. Green rooibos (Aspalathus linearis) promotes gut health: insight into mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117379. [PMID: 37923252 DOI: 10.1016/j.jep.2023.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paralleling the increasing incidence of gastrointestinal disorders world-wide, therapeutic investigations of nutraceuticals to promote gastrointestinal health are gaining popularity. Although anecdotally well-known for its gut health promoting potential, sparse scientific evidence supports this action of Aspalathus linearis (Burm.f.) R. Dahlgren - or rooibos - at the gastrointestinal epithelial level. AIM OF THE STUDY Traditionally, rooibos is considered to exert antispasmodic, anti-inflammatory, and anti-nociceptive effects in the gut. However, the direct effect on intestinal epithelium is unknown. Thus, to assess the validity of anecdotal claims, two larval zebrafish models were utilized to evaluate effects of rooibos on intestinal health. MATERIALS AND METHODS Firstly, a larval zebrafish model of gastrointestinal inflammation (2-day TNBS-exposure) was employed. Co-administration of 6α-methylprednisolone served as an internal treatment control. Assessments included live imaging techniques and post-mortem immunofluorescent staining of epithelial tight junction proteins. In addition, whole body H2O2 and prostaglandin E2 assays were performed. Secondly, a gastrointestinal motility assay was performed, with known pro- and anti-kinetic mediators to assess the effect of rooibos to alter functional outcome in vivo. RESULTS Aqueous and ethanol extracts of green rooibos rescued TNBS-induced reductions in neutral red stained length of larval mid-intestines. Subsequent experiments confirmed the rescue capacity of the aqueous green rooibos extract regarding whole body oxidative and inflammatory status. Concerning tight junction proteins, only the aqueous green rooibos extract - and not prednisolone - normalized both zona occludens-1 and occludin expression levels when compared the TNBS group. In terms of gastrointestinal motility, the aqueous green rooibos extract significantly reduced the extent of gut motility dysregulation achieved by kinetic modulators. CONCLUSIONS Data indicates the potential of a 2 mg/ml aqueous extract of green rooibos to improve gastrointestinal integrity and functionality in vivo, suggesting beneficial effects of rooibos may already occur at the level of the gut. This provides some evidence to support indigenous knowledge.
Collapse
Affiliation(s)
- Lesha Pretorius
- Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa.
| | - Carine Smith
- Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa.
| |
Collapse
|
6
|
Bellot M, Carrillo MP, Bedrossiantz J, Zheng J, Mandal R, Wishart DS, Gómez-Canela C, Vila-Costa M, Prats E, Piña B, Raldúa D. From dysbiosis to neuropathologies: Toxic effects of glyphosate in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115888. [PMID: 38150752 DOI: 10.1016/j.ecoenv.2023.115888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Glyphosate, a globally prevalent herbicide known for its selective inhibition of the shikimate pathway in plants, is now implicated in physiological effects on humans and animals, probably due to its impacts in their gut microbiomes which possess the shikimate pathway. In this study, we investigate the effects of environmentally relevant concentrations of glyphosate on the gut microbiota, neurotransmitter levels, and anxiety in zebrafish. Our findings demonstrate that glyphosate exposure leads to dysbiosis in the zebrafish gut, alterations in central and peripheral serotonin levels, increased dopamine levels in the brain, and notable changes in anxiety and social behavior. While the dysbiosis can be attributed to glyphosate's antimicrobial properties, the observed effects on neurotransmitter levels leading to the reported induction of oxidative stress in the brain indicate a novel and significant mode of action for glyphosate, namely the impairment of the microbiome-gut-axis. While further investigations are necessary to determine the relevance of this mechanism in humans, our findings shed light on the potential explanation for the contradictory reports on the safety of glyphosate for consumers.
Collapse
Affiliation(s)
- Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Maria Paula Carrillo
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Maria Vila-Costa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Benjamí Piña
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
7
|
Yu F, Liu Y, Wang W, Yang S, Gao Y, Shi W, Hou H, Chen J, Guo R. Toxicity of TPhP on the gills and intestines of zebrafish from the perspectives of histopathology, oxidative stress and immune response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168212. [PMID: 37918726 DOI: 10.1016/j.scitotenv.2023.168212] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
As an organophosphate ester (OPE), triphenyl phosphate (TPhP) has been frequently detected in aquatic environments, and its environmental risk has been widely studied. The gills and intestines are the most important part of the mucosal immune barrier in fish as the first line of defense against the invasion of harmful substances. TPhP is more abundant in the gill and intestine of fish. However, knowledge of the toxic effects and potential mechanisms of TPhP on the intestine and gill is limited. Herein, the adverse effects of TPhP (0.01, 0.1 and 1 mg/L) on the gills and intestines of zebrafish after 75 days of exposure were investigated from the perspectives of histology, oxidative stress and immune level. The histological results of exposed zebrafish showed that TPhP caused significant damage to gills and intestines. TPhP significantly increased the activities of the antioxidant enzymes catalase (CAT) and glutathione s-transferase (GST), inducing oxidative damage to lipids, proteins, and DNA. Meanwhile, the immune function of the gills and intestines was significantly influenced by TPhP, as evidenced by the upregulation of the expression of interleukin-1β (IL-1β) and interleukin-6 (IL-6), upregulation of the content of complement 3 (C3) and complement 4 (C4), and downregulation of the activity of lysozyme (LZM) and the content of immunoglobulin M (IgM). Oxidative stress and the immune response were more severe in the gills. These findings indicate that TPhP, a typical OPE, caused tissue damage in aquatic organisms by inducing oxidative stress and immune damage and has strong environmental toxicity.
Collapse
Affiliation(s)
- Fanrui Yu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wuyue Wang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Shunsong Yang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Yaqian Gao
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haiyan Hou
- Qinhuai District Center for Disease Control and Prevention, Nanjing 210001, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Flores E, Dutta S, Bosserman R, van Hoof A, Krachler AM. Colonization of larval zebrafish ( Danio rerio) with adherent-invasive Escherichia coli prevents recovery of the intestinal mucosa from drug-induced enterocolitis. mSphere 2023; 8:e0051223. [PMID: 37971273 PMCID: PMC10732064 DOI: 10.1128/msphere.00512-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/07/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Although inflammatory bowel diseases are on the rise, what factors influence IBD risk and severity, and the underlying mechanisms remain to be fully understood. Although host genetics, microbiome, and environmental factors have all been shown to correlate with the development of IBD, cause and effect are difficult to disentangle in this context. For example, AIEC is a known pathobiont found in IBD patients, but it remains unclear if gut inflammation during IBD facilitates colonization with AIEC, or if AIEC colonization makes the host more susceptible to pro-inflammatory stimuli. It is critical to understand the mechanisms that contribute to AIEC infections in a susceptible host in order to develop successful therapeutics. Here, we show that the larval zebrafish model recapitulates key features of AIEC infections in other animal models and can be utilized to address these gaps in knowledge.
Collapse
Affiliation(s)
- Erika Flores
- Microbiology and Infectious Diseases Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Soumita Dutta
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rachel Bosserman
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ambro van Hoof
- Microbiology and Infectious Diseases Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anne-Marie Krachler
- Microbiology and Infectious Diseases Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
9
|
Zhao X, Liu Y, Xie J, Zhang L, Zhu Q, Su L, Guo C, Li H, Wang G, Zhang W, Cheng Y, Wu N, Xia XQ. The manipulation of cell suspensions from zebrafish intestinal mucosa contributes to understanding enteritis. Front Immunol 2023; 14:1193977. [PMID: 37251394 PMCID: PMC10213505 DOI: 10.3389/fimmu.2023.1193977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Background Although zebrafish are commonly used to study intestinal mucosal immunity, no dedicated procedure for isolating immune cells from zebrafish intestines is currently available. A speedy and simple operating approach for preparing cell suspension from mucosa has been devised to better understanding of intestinal cellular immunity in zebrafish. Methods and results The mucosal villi were separated away from the muscle layer by repeated blows. The complete deprivation of mucosa was done and evidenced by HE and qPCR results. Higher expression of both innate (mpeg1, mpx, and lck) and adaptive immune genes (zap70, blnk, foxp3a, and foxp3b) was revealed compared to cells obtained by typical mesh rubbing. The cytometric results also revealed that the tested operation group had a higher concentration and viability. Further, fluorescent-labelled immune cells from 3mo Tg(lyz:DsRED2), Tg(mpeg1:EGFP), Tg(Rag2:DsRED), and Tg(lck:EGFP), were isolated and evaluated for the proportion, and immune cells' type could be inferred from the expression of marker genes. The transcriptomic data demonstrated that the intestinal immune cell suspension made using the new technique was enriched in immune-related genes and pathways, including il17a/f, il22, cd59, and zap70, as well as pattern recognition receptor signaling and cytokine-cytokine receptor interaction. In addition, the low expression of DEG for the adherent and close junctions indicated less muscular contamination. Also, lower expression of gel-forming mucus-associated genes in the mucosal cell suspension was consistent with the current less viscous cell suspension. To apply and validate the developed manipulation, enteritis was induced by soybean meal diet, and immune cell suspensions were analyzed by flow cytometry and qPCR. The finding that in enteritis samples, there was inflammatory increase of neutrophils and macrophages, was in line with upregulated cytokines (il8 and il10) and cell markers (mpeg1 and mpx). Conclusion As a result, the current work created a realistic technique for studying intestinal immune cells in zebrafish. The immune cells acquired may aid in further research and knowledge of intestinal illness at the cellular level.
Collapse
Affiliation(s)
- Xuyang Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yuhang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Jiayuan Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingsong Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Lian Su
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Heng Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guangxin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Novichkova E, Nayak S, Boussiba S, Gopas J, Zilberg D, Khozin-Goldberg I. Dietary Application of the Microalga Lobosphaera incisa P127 Reduces Severity of Intestinal Inflammation, Modulates Gut-Associated Gene Expression, and Microbiome in the Zebrafish Model of IBD. Mol Nutr Food Res 2023; 67:e2200253. [PMID: 36683256 DOI: 10.1002/mnfr.202200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/30/2022] [Indexed: 01/24/2023]
Abstract
SCOPE Microalgae are an emerging nutritional resource of biomolecules with potential to alleviate gut inflammation. The study explores the anti-inflammatory and immunomodulatory potential of the microalga Lobosphaera incisa P127, which accumulates a rare omega-6 LC-PUFA dihomo-ɣ-linolenic acid (DGLA) under nitrogen starvation. The therapeutic potential of dietary supplementation with P127 is investigated in the zebrafish model of IBD (TNBS-induced colitis). METHODS AND RESULTS Guts are sampled from zebrafish fed experimental diets for 4 weeks, before and 24 h after TNBS challenge. Diets containing 15% non-starved (Ns) and 7.5% and 15% N-starved (St) algal biomass significantly attenuate the severity of gut injury and goblet cell depletion. In contrast, diets containing 7.5% Ns and DGLA ethyl ester have no effect on gut condition. Fish fed 15% St, high-DGLA biomass, have the fewest individuals with pathological alterations in the gut. Dietary inclusion of Ns and St distinctly modulates gut-associated expression of the immune and inflammatory genes. Fish fed 15% Ns biomass display a coordinated boost in immune gene expression and show major changes in the gut microbiome prior challenge. CONCLUSION Dietary inclusion of L. incisa biomass at two physiological states, ameliorates TNBS-induced gut inflammation, suggesting the synergistic beneficial effects of biomass components not limited to DGLA.
Collapse
Affiliation(s)
- Ekaterina Novichkova
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Sagar Nayak
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
- The Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Sammy Boussiba
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jacob Gopas
- Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8400501, Israel
| | - Dina Zilberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Inna Khozin-Goldberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
11
|
Pretorius L, Smith C. Tyramine-induced gastrointestinal dysregulation is attenuated via estradiol associated mechanisms in a zebrafish larval model. Toxicol Appl Pharmacol 2023; 461:116399. [PMID: 36716863 DOI: 10.1016/j.taap.2023.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Development of targeted therapeutics to alleviate gastrointestinal (GI) inflammation and its debilitating consequences are required. In this context, the trace aminergic system may link together sex, diet and inflammation. Utilising a zebrafish larval model of GI inflammation, the current study aimed to investigate mechanisms by which excess amounts of trace amines (TAs) may influence GI health. In addition, we probed the potential role of 17β-estradiol (E2) and its receptors, given the known female-predominance of many GI disorders. To assess GI functionality and integrity, live imaging techniques (neutral red staining) and post-mortem immunofluorescent staining of tight junction proteins (occludin and ZO-1) were analyzed respectively. In addition, behavioural assays, as an indication of overall wellbeing, as well as whole body H2O2 and prostaglandin E2 assays were performed to inform on oxidative and inflammatory status. Excess β-phenethylamine (PEA), tryptamine (TRP) and ρ-tyramine (TYR) resulted in adverse GI and systemic effects. In this regard, clear beneficial effects of E2 to modulate the effects of PEA, TRP and TYR was evident. Moreover, agmatine displayed potential protective effects on GI epithelium and whole body oxidative status, however, potential to induce systemic inflammation suggests the importance of dosage and administration optimisation. Taken together, TYR seems like the most prominent TA to have damaging GI effects, feasibly exacerbating GI inflammation. In this context, the relative lack of E2 may provide mechanistic insights into the reported female-predominance of GI disorders. Moreover, an effective therapeutic in this context may be required to maintain GI TA load despite fluctuating E2 levels.
Collapse
Affiliation(s)
- L Pretorius
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - C Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
12
|
Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, Ahmad S. In Silico Study and Effects of BDMC33 on TNBS-Induced BMP Gene Expressions in Zebrafish Gut Inflammation-Associated Arthritis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238304. [PMID: 36500396 PMCID: PMC9740523 DOI: 10.3390/molecules27238304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
Collapse
Affiliation(s)
- Farhana Mostofa
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Suhaili Shamsi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nur Fatihah Mohd-Yusoff
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Bimolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science & Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-97696724
| |
Collapse
|
13
|
Dietary Strategies to Modulate the Health Condition and Immune Responses in Gilthead Seabream (Sparus aurata) Juveniles Following Intestinal Inflammation. Animals (Basel) 2022; 12:ani12213019. [PMID: 36359143 PMCID: PMC9657010 DOI: 10.3390/ani12213019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Feed additives are known to have biological proprieties that can improve fish health. This work assessed the effect of two feed additives (Phaeodactylum tricornutum extracts rich in β-glucans and curcumin) on the gilthead seabream health condition, and its modulatory effects following dextran sodium sulphate (DSS) administration as a chemical inducer of intestinal inflammation. While minor immune-enhancing changes were observed among fish fed dietary treatments at the end of the feeding trial, after the inflammatory stimulus, the feed additives were able to alleviate, to some extent, the DSS-induced effects at both the intestinal and systemic levels. Abstract Several feed additives have proved to be beneficial in eliciting fish health. Β-glucans and curcumin are compounds with immunomodulatory capacities known to increase growth performance, stimulate immunity, improve general health, and enhance disease resistance in fish. The present study aimed to evaluate the effects of dietary Phaeodactylum tricornutum extracts rich in β-glucans and curcumin on gilthead seabream health status prior to and following an intestinal inflammatory stimulus. Three experimental diets were formulated: a practical commercial-type diet (CTRL), a CTRL diet supplemented with 1% microalgae-derived β-glucans extract (BG), and a CTRL diet supplemented with 0.2% of curcumin (CUR). After 30 days of the feeding trial, fish were sampled and subjected to an oral administration of 1% dextran sodium sulphate (DSS) to induce intestinal inflammation. Four groups were considered: a group of fish continued to be fed on the CTRL diet while the remaining groups were exposed to DSS, including CTRL-D (CTRL + DSS), BG-D (BG + DSS), and CUR-D (CUR + DSS), for 6 days. Growth, plasma and gut humoral immunity, liver and gut oxidative stress biomarkers, and intestinal gene expression were evaluated. No significant differences were found in growth after 30 days of feeding; however, seabream fed BG had decreased anti-protease activity and nitric oxide concentration in plasma while those fed CUR had increased mRNA levels of the tnfα, csf1r, and hep genes compared to those fed CTRL. After the inflammatory stimulus, hematocrit was enhanced in fish fed BG-D and CUR-D while red blood cell counts increased in those fed CTRL-D. Superoxide dismutase activity decreased in the intestine of all DSS groups while lipid peroxidation increased in the gut of fish fed CTRL-D and BG-D compared to CTRL. Moreover, the mRNA expression levels of csfr1 and sod decreased in fish fed CTRL-D and BG-D compared to CTRL, respectively. Despite the mild intestinal inflammatory condition induced by DSS, CUR was able to partially ameliorate its effects, improving the hematological profile and assisting against the oxidative stress.
Collapse
|
14
|
Mousavi T, Hassani S, Baeeri M, Rahimifard M, Vakhshiteh F, Gholami M, Ghafour-Broujerdi E, Abdollahi M. Comparison of the safety and efficacy of fingolimod and tofacitinib in the zebrafish model of colitis. Food Chem Toxicol 2022; 170:113509. [DOI: 10.1016/j.fct.2022.113509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
15
|
Charlie-Silva I, Feitosa NM, Pontes LG, Fernandes BH, Nóbrega RH, Gomes JMM, Prata MNL, Ferraris FK, Melo DC, Conde G, Rodrigues LF, Aracati MF, Corrêa-Junior JD, Manrique WG, Superio J, Garcez AS, Conceição K, Yoshimura TM, Núñez SC, Eto SF, Fernandes DC, Freitas AZ, Ribeiro MS, Nedoluzhko A, Lopes-Ferreira M, Borra RC, Barcellos LJG, Perez AC, Malafaia G, Cunha TM, Belo MAA, Galindo-Villegas J. Plasma proteome responses in zebrafish following λ-carrageenan-Induced inflammation are mediated by PMN leukocytes and correlate highly with their human counterparts. Front Immunol 2022; 13:1019201. [PMID: 36248846 PMCID: PMC9559376 DOI: 10.3389/fimmu.2022.1019201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Collapse
Affiliation(s)
| | - Natália M. Feitosa
- Integrated Laboratory of Translational Bioscience, Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Macaé, Brazil
| | | | - Bianca H. Fernandes
- Laboratório de Controle Genético e Sanitário, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Juliana M. M. Gomes
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana N. L. Prata
- Department of Pharmacology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Fausto K. Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniela C. Melo
- Laboratory of Zebrafish from Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Letícia F. Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Mayumi F. Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - José D. Corrêa-Junior
- Department of Morphology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Wilson G. Manrique
- Veterinary College, Federal University of Rondonia, Rolim de Moura, Brazil
| | - Joshua Superio
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Katia Conceição
- Peptide Biochemistry Laboratory, Universidade Federal de São Paulo (UNIFESP), Sao Jose Dos Campos, Brazil
| | - Tania M. Yoshimura
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Silvia C. Núñez
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Silas F. Eto
- Development and Innovation Laboratory, Center of Innovation and Development, Butantan Institute, São Paulo, Brazil
| | - Dayanne C. Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Anderson Z. Freitas
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Ricardo C. Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Leonardo J. G. Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Bioexperimentation. University of Passo Fundo, Rio Grande do Sul, Brazil
| | - Andrea C. Perez
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guilheme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco A. A. Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
16
|
Zvolský M, Schaar M, Seeger S, Rakers S, Rafecas M. Development of a digital zebrafish phantom and its application to dedicated small-fish PET. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac71ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. We are developing a small-fish positron emission tomography (PET) scanner dedicated to small aquatic animals relevant for biomedical and biological research, e.g. zebrafish. We plan to use Monte Carlo simulations to optimize its configuration and the required water-filled imaging chambers. Our objectives were: (1) to create a digital 3D zebrafish phantom using conventional micro-CT, (2) include the phantom into a simulated PET environment based on the framework GATE, and (3) investigate the effects of the water environment on the reconstructed images. Approach. To create the phantom, we performed ex vivo measurements of zebrafish specimen using a tabletop micro-CT and compared three methods to fixate the specimen. From segmented micro-CT images we created digital emission and transmission phantoms which were incorporated in GATE via tessellated volumes. Two chamber sizes were considered. For reference, a simulation with the zebrafish in air was implemented. The simulated data were reconstructed using CASToR. For attenuation correction, we used the exact attenuation information or a uniform distribution (only water). Several realizations of each scenario were performed; the reconstructed images were quantitatively evaluated. Main results. Fixation in formalin led to the best soft-tissue contrast at the cost of some specimen deformation. After attenuation correction, no significant differences were found between the reconstructed images. The PET images reflected well the higher uptake simulated in the brain and heart, despite their small size and surrounding background activity; the swim bladder (no activity) was clearly identified. The simplified attenuation map, consisting only of water, slightly worsened the images. Significance. A conventional micro-CT can provide sufficient image quality to generate numerical phantoms of small fish without contrast media. Such phantoms are useful to evaluate in-silico small aquatic animal imaging concepts and develop imaging protocols. Our results support the feasibility of zebrafish PET with an aqueous environment.
Collapse
|
17
|
Wei Y, Du X, Guo Y, Chang M, Deng B, Liu J, Cao J. Elucidation of physicochemical properties of polysaccharides extracted from Cordyceps militaris fruiting bodies with different drying treatments and their effects on ulcerative colitis in zebrafish. Front Nutr 2022; 9:980357. [PMID: 36118767 PMCID: PMC9481070 DOI: 10.3389/fnut.2022.980357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Dry fruiting bodies of Cordyceps militaris (CMF) have been widely used in folk tonic foods and traditional herbal medicine in East Asia. Drying treatment serves as the last step in CMF industrial processes. In this work, the physicochemical properties of polysaccharides from C. militaris fruiting bodies (CMFPs) with hot air drying (HD), far-infrared radiation drying (ID) and vacuum freeze-drying (FD) treatments were analyzed, and their effects on ulcerative colitis (UC) were further investigated in oxazolone-induced zebrafish. The results showed that physicochemical properties of CMFP-H, CMFP-I and CMFP-F were obvious different. CMFPs could repair the intestinal mucosal barrier, inhibit ROS generation and the activities of MDA and MPO, and improve the activities of SOD, CAT, ACP, AKP and LZM. Further detection indicated that CMFPs could better improve UC via activating the MyD88/NF-κB signaling pathway in vivo. However, CMFP-H, CMFP-F and CMFP-I exhibited diverse regulation effects on specific immune-related enzymes and cytokines. The data would be helpful for finding practical and rapid drying methods for macro-fungi and further exploring CMFPs as functional food ingredients or complementary medicines for the treatments of UC.
Collapse
Affiliation(s)
- Yin Wei
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Xiao Du
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Yangbian Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taiyuan, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
- Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Jinzhong, China
| | - Bing Deng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taiyuan, China
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taiyuan, China
- Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Jinzhong, China
- *Correspondence: Jingyu Liu
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taiyuan, China
- Jinling Cao
| |
Collapse
|
18
|
Li Y, Liu XJ, Su SL, Yan H, Guo S, Qian DW, Duan JA. Evaluation of Anti-Inflammatory and Antioxidant Effectsof Chrysanthemum Stem and Leaf Extract on Zebrafish Inflammatory Bowel Disease Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072114. [PMID: 35408512 PMCID: PMC9000279 DOI: 10.3390/molecules27072114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Present studies have shown that Flos Chrysanthemi has anti-inflammatory and other effects and regulates intestinal function, while the chrysanthemum stem and leaf as non-medicinal parts of chrysanthemum have similar chemical components with chrysanthemum, but the activity and mechanisms are rarely elucidated. Therefore, this study used a DSS-induced zebrafish inflammatory bowel disease model to study the anti-inflammatory and antioxidant effects of chrysanthemum stem and leaf extracts. The results indicate that DSS induction leads to increased secretion of acidic mucin in the intestines of juvenile fish, enlargement of the intestinal lumen and the emergence of intestinal inflammation. Compared with the model group, each administration group differentially inhibited the expression of IL-1β, IL-8 and MMP9 in DSS-induced zebrafish, while upregulating the activity of superoxide dismutase. The quantitative analysis results showed that the flavonoids (including Linarin, Diosmetin-7-glucoside, Tilianin, etc.) and phenolic acids (including Isochlorogenic acid C, Isochlorogenic acid A, 1,3-Dicaffeoylquinic acid, etc.) in the alcohol extract were closely related with both anti-inflammatory and antioxidant activity, while the polysaccharides were also shown a certain anti-inflammatory and antioxidant activity. In conclusion, this study suggests that the flavonoids, phenolic acids and polysaccharides from chrysanthemum stem and leaf extracts can improve inflammatory bowel disease of zebrafish by regulating the expressions of IL-1β, IL-8 and MMP9.
Collapse
Affiliation(s)
| | | | - Shu-Lan Su
- Correspondence: (S.-L.S.); (J.-A.D.); Tel.: +86-13809043258 (S.-L.S.)
| | | | | | | | - Jin-Ao Duan
- Correspondence: (S.-L.S.); (J.-A.D.); Tel.: +86-13809043258 (S.-L.S.)
| |
Collapse
|
19
|
Padovani BN, Abrantes do Amaral M, Fénero CM, Paredes LC, Boturra de Barros GJ, Xavier IK, Hiyane MI, Ghirotto B, Feijóo CG, Saraiva Câmara NO, Takiishi T. Different wild type strains of zebrafish show divergent susceptibility to TNBS-induced intestinal inflammation displaying distinct immune cell profiles. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:13-22. [PMID: 35496825 PMCID: PMC9040082 DOI: 10.1016/j.crimmu.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/05/2021] [Accepted: 12/26/2021] [Indexed: 12/09/2022] Open
Abstract
Little is known about the diversity in immune profile of the different wild type strains of zebrafish (Danio rerio), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits. To address the differences in immune responses between two commonly used wild type strains of zebrafish, AB and Tübingen (TU), we used an intestinal inflammation model induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) and characterized the susceptibility and immune profile in these two strains. Our data demonstrates significant differences in survival between AB and TU strains when exposed to TNBS, suggesting important physiological differences in how these strains respond to inflammatory challenges. We observed that the AB strain presented increased mortality, higher neutrophilic intestinal infiltration, decreased goblet cell numbers and decreased IL-10 expression when exposed to TNBS, compared to the TU strain. In summary, our study demonstrates strain-specific immunological responses in AB and TU animals. Finally, the significant variations in strain-related susceptibility to inflammation and the differences in the immune profile shown here, highlight that the background of each strain need to be considered when utilizing zebrafish to model diseases and for drug screening purposes, thus better immune characterization of the diverse wild type strains of zebrafish is imperative. Strain-specific immunological profiles exist in wild-type zebrafish strains (AB and TU). AB and TU showed different responses to induced intestinal inflammation. AB strain had increased mortality and higher inflammatory profile. TU strain had better survival and higher IL-10 expression.
Collapse
|
20
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
21
|
Sireswar S, Dey G, Biswas S. Influence of fruit-based beverages on efficacy of Lacticaseibacillus rhamnosus GG (Lactobacillus rhamnosus GG) against DSS-induced intestinal inflammation. Food Res Int 2021; 149:110661. [PMID: 34600663 DOI: 10.1016/j.foodres.2021.110661] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Different lines of evidences from clinical, epidemiological and biochemical studies have established that optimal nutrition including probiotic and fruit phenolics can mitigate the risk and morbidity associated with some chronic diseases. The basis for this observation is the potential synergies that may exist between probiotic strains and different bioactive components of food matrices. This study was conceptualized to compare the efficiency of a probiotic strain in two different fruit matrices. Two fruits, viz., sea buckthorn (Hippophae rhamnoides) (SBT) and apples (Malus pumila) (APJ) were chosen and the anti-inflammatory effects of L. rhamnosus GG (ATCC 53103) (LR) fortified in SBT and APJ were analysed against dextran sulphate sodium (DSS) induced colitis in zebrafish (Danio rerio). The results showed that administration of probiotic (LR) fortified, malt supplemented SBT beverage (SBT + M + LR) had better restorative potential on the intestinal barrier function and mucosal damage, in comparison to LR fortified, malt supplemented APJ beverage (APJ + M + LR). SBT + M + LR demonstrated adequate anti-oxidant potential by enhancing the CAT, SOD, GPx and GSH activities, impaired due to DSS administration. The increase in the expressions of toll like receptor (TLR)-2, TLR-4 and TLR-5 induced by DSS were significantly inhibited by SBT + M + LR administration. Gene expression of pro-inflammatory markers, (NF-κB, TNF-α, IL-1β, IL-6, IL-8, CCL20, MPO and MMP9) were attenuated by SBT + M + LR treatment in intestinal tissues of DSS-treated zebrafishes. Notably, SBT + M + LR increased the expression of anti-inflammatory cytokine, IL-10. The study provides evidence that specific interactions between fruit matrix and probiotic strain can provide adjunct therapeutic strategy to manage intestinal inflammation.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India
| | - Gargi Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha 751024. India.
| | - Sutapa Biswas
- Care Hospital, Chandrasekharpur, Bhubaneswar, Odisha 751016, India
| |
Collapse
|
22
|
Morales Fénero C, Amaral MA, Xavier IK, Padovani BN, Paredes LC, Takiishi T, Lopes-Ferreira M, Lima C, Colombo A, Saraiva Câmara NO. Short chain fatty acids (SCFAs) improves TNBS-induced colitis in zebrafish. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:142-154. [PMID: 35492385 PMCID: PMC9040093 DOI: 10.1016/j.crimmu.2021.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
The short-chain fatty acids (SCFAs) are metabolites originated from the fermentation of dietary fibers and amino acids produced by the bacteria of the intestinal microbiota. The most abundant SCFAs, acetate, propionate, and butyrate, have been proposed as a treatment for inflammatory bowel diseases (IBDs) due to their anti-inflammatory properties. This work aimed to analyze the effects of the treatment of three combined SCFAs in TNBS-induced intestinal inflammation in zebrafish larvae. Here, we demonstrated that SCFAs significantly increased the survival of TNBS-exposed larvae, preserved the intestinal endocytic function, reduced the expression of inflammatory cytokines and the intestinal recruitment of neutrophils caused by TNBS. However, SCFAs treatment did not appear to avoid TNBS-induced tissue damage in the intestinal wall and did not restore the number of mucus-producing goblet cells. Finally, exposure to TNBS induced dysbiosis of the microbiota with an increase in Betaproteobacteria and Actinobacteria, while the treatment with SCFAs maintained these population levels similar to control. Thus, we demonstrate that the treatment of three combined SCFAs presented anti-inflammatory properties previously seen in mammals, opening an opportunity to use zebrafish to explore the potential benefit of these and other metabolites to treat inflammation.
Collapse
Affiliation(s)
- Camila Morales Fénero
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Izabella Karina Xavier
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Barbara Nunes Padovani
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lais Cavalieri Paredes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana Takiishi
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Mônica Lopes-Ferreira
- Center of Toxins, Immune Response and Cellular Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Carla Lima
- Center of Toxins, Immune Response and Cellular Signalling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alicia Colombo
- Department of Pathologic Anatomy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Nephrology Division, Federal University of São Paulo, Brazil
| |
Collapse
|
23
|
Carnovali M, Valli R, Banfi G, Porta G, Mariotti M. Soybean Meal-Dependent Intestinal Inflammation Induces Different Patterns of Bone-Loss in Adult Zebrafish Scale. Biomedicines 2021; 9:biomedicines9040393. [PMID: 33917641 PMCID: PMC8067592 DOI: 10.3390/biomedicines9040393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease have been linked to several health issues, including high risk of low bone mineral density. Danio rerio (zebrafish) is a good model to verify the effects of intestinal inflammation, since its gastrointestinal and immune systems are closely related to that of mammalians. Zebrafish is also a powerful model to study bone metabolism using the scale as the read-out model. Food strongly impacts zebrafish gut physiology, and it is well known that soybean meal induces intestinal inflammation. Adult zebrafish fed with defatted soybean meal (SBM) exhibited an intestinal inflammation evidenced by morphological alterations, inflammatory infiltrate, and increased mRNA expression of inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10, TGFβ, TNF-α). The peak of acute intestinal inflammation, spanning between week 2 and 3, correlates with a transitory osteoporosis-like phenotype in the scale border. Later, a chronic inflammatory condition, associated with persistent IL-8 expression, correlates with the progression of resorption lacunae in the scale center. Both types of resorption lacunae were associated with intense osteoclastic tartrate-resistant acid phosphatase (TRAP) activity. After 3 weeks of SBM treatment, osteoclast activity decreased in the scale border but not in the center. At the same time, alkaline phosphatase (ALP) is activated in the border to repair the bone matrix. This model can contribute to elucidate in vivo the molecular mechanisms that links intestinal inflammation and bone metabolism in IBD.
Collapse
Affiliation(s)
- Marta Carnovali
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
| | - Roberto Valli
- Centro di Medicina Genomica, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (R.V.); (G.P.)
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (R.V.); (G.P.)
| | - Massimo Mariotti
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (M.C.); (G.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
24
|
Peñate Medina T, Kolb JP, Hüttmann G, Huber R, Peñate Medina O, Ha L, Ulloa P, Larsen N, Ferrari A, Rafecas M, Ellrichmann M, Pravdivtseva MS, Anikeeva M, Humbert J, Both M, Hundt JE, Hövener JB. Imaging Inflammation - From Whole Body Imaging to Cellular Resolution. Front Immunol 2021; 12:692222. [PMID: 34248987 PMCID: PMC8264453 DOI: 10.3389/fimmu.2021.692222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Imaging techniques have evolved impressively lately, allowing whole new concepts like multimodal imaging, personal medicine, theranostic therapies, and molecular imaging to increase general awareness of possiblities of imaging to medicine field. Here, we have collected the selected (3D) imaging modalities and evaluated the recent findings on preclinical and clinical inflammation imaging. The focus has been on the feasibility of imaging to aid in inflammation precision medicine, and the key challenges and opportunities of the imaging modalities are presented. Some examples of the current usage in clinics/close to clinics have been brought out as an example. This review evaluates the future prospects of the imaging technologies for clinical applications in precision medicine from the pre-clinical development point of view.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| | - Jan Philip Kolb
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Gießen, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Oula Peñate Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Institute for Experimental Cancer Research (IET), University of Kiel, Kiel, Germany
| | - Linh Ha
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein Lübeck (UKSH), Lübeck, Germany
| | - Patricia Ulloa
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Naomi Larsen
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arianna Ferrari
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), University of Lübeck, Lübeck, Germany
| | - Mark Ellrichmann
- Interdisciplinary Endoscopy, Medical Department1, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Mariya S. Pravdivtseva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mariia Anikeeva
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jennifer E. Hundt
- Lübeck Institute for Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center, Schleswig-Holstein Kiel University, Kiel, Germany
- *Correspondence: Tuula Peñate Medina, ; Jan-Bernd Hövener,
| |
Collapse
|
25
|
Effects of MP Polyethylene Microparticles on Microbiome and Inflammatory Response of Larval Zebrafish. TOXICS 2020; 8:toxics8030055. [PMID: 32796641 PMCID: PMC7560425 DOI: 10.3390/toxics8030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Plastic polymers have quickly become one of the most abundant materials on Earth due to their low production cost and high versatility. Unfortunately, some of the discarded plastic can make its way into the environment and become fragmented into smaller microscopic particles, termed secondary microplastics (MP). In addition, primary MP, purposely manufactured microscopic plastic particles, can also make their way into our environment via various routes. Owing to their size and resilience, these MP can then be easily ingested by living organisms. The effect of MP particles on living organisms is suspected to have negative implications, especially during early development. In this study, we examined the effects of polyethylene MP ingestion for four and ten days of exposure starting at 5 days post-fertilization (dpf). In particular, we examined the effects of polyethylene MP exposure on resting metabolic rate, on gene expression of several inflammatory and oxidative stress linked genes, and on microbiome composition between treatments. Overall, we found no evidence of broad metabolic disturbances or inflammatory markers in MP-exposed fish for either period of time. However, there was a significant increase in the oxidative stress mediator L-FABP that occurred at 15 dpf. Furthermore, the microbiome was disrupted by MP exposure, with evidence of an increased abundance of Bacteroidetes in MP fish, a combination frequently found in intestinal pathologies. Thus, it appears that acute polyethylene MP exposure can increase oxidative stress and dysbiosis, which may render the animal more susceptible to diseases.
Collapse
|
26
|
Modeling gut-brain interactions in zebrafish. Brain Res Bull 2019; 148:55-62. [DOI: 10.1016/j.brainresbull.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
|
27
|
Wang Z, Lin L, Chen W, Zheng X, Zhang Y, Liu Q, Yang D. Neutrophil plays critical role during Edwardsiella piscicida immersion infection in zebrafish larvae. FISH & SHELLFISH IMMUNOLOGY 2019; 87:565-572. [PMID: 30742890 DOI: 10.1016/j.fsi.2019.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Edwardsiella piscicida is a facultative intracellular pathogen that causes hemorrhagic septicemia and haemolytic ascites disease in aquaculture fish. During bacterial infection, macrophages and neutrophils are the first line of host innate immune system. However, the role of neutrophils in response to E. piscicida infection in vivo remains poorly understood. Here, through developing an immersion infection model in the 5 day-post fertilization (dpf) zebrafish larvae, we found that E. piscicida was mainly colonized in intestine, and resulted into significant pathological changes in paraffin sections. Moreover, a dynamic up-regulation of inflammatory cytokines (TNF-α, IL-1β, GCSFb, CXCL8 and MMP9) was detected in zebrafish larvae during E. piscicida infection. Furthermore, a significant recruitment of neutrophils was observed during the E. piscicida infection in Tg(mpx:eGFP) zebrafish larvae. Thus, we utilized the CRISPR/Cas9 system to generate the neutrophil-knockdown (gcsfr-/- crispants) larvae, and found a comparative higher mortality and bacterial colonization in gcsfr-/- crispants, which reveals the critical role of fish neutrophils in bacterial clearance. Taken together, our results developed an effective E. piscicida immersion challenge model in zebrafish larvae to clarify the dynamic of bacterial infection in vivo, which would provide a better understanding of the action about innate immune cells during infection.
Collapse
Affiliation(s)
- Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingyun Lin
- Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
28
|
How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics 2018; 208:833-851. [PMID: 29487144 PMCID: PMC5844338 DOI: 10.1534/genetics.117.300124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases.
Collapse
|
29
|
de Abreu MS, Giacomini ACVV, Zanandrea R, Dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018; 92:1-12. [PMID: 29609110 DOI: 10.1016/j.psyneuen.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Despite the high prevalence of neural and immune disorders, their etiology and molecular mechanisms remain poorly understood. As the zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in biomedical research, mounting evidence suggests these fish as a useful tool to study neural and immune mechanisms and their interplay. Here, we discuss zebrafish neuro-immune mechanisms and their pharmacological and genetic modulation, the effect of stress on cytokines, as well as relevant models of microbiota-brain interplay. As many human brain diseases are based on complex interplay between the neural and the immune system, here we discuss zebrafish models, as well as recent successes and challenges, in this rapidly expanding field. We particularly emphasize the growing utility of zebrafish models in translational immunopsychiatry research, as they improve our understanding of pathogenetic neuro-immune interactions, thereby fostering future discovery of potential therapeutic agents.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rodrigo Zanandrea
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | | | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Research Institute of Physiology and Basic Medicine SB RAS, and Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine SB RAS, Novosibirsk, Russia.
| |
Collapse
|