1
|
Cao Q, Wang R, Niu Z, Chen T, Azmi F, Read SA, Chen J, Lee VW, Zhou C, Julovi S, Huang Q, Wang YM, Starkey MR, Zheng G, Alexander SI, George J, Wang Y, Harris DC. Type 2 innate lymphoid cells are protective against hepatic ischaemia/reperfusion injury. JHEP Rep 2023; 5:100837. [PMID: 37691688 PMCID: PMC10482753 DOI: 10.1016/j.jhepr.2023.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 09/12/2023] Open
Abstract
Background and Aims Although type 2 innate lymphoid cells (ILC2s) were originally found to be liver-resident lymphocytes, the role and importance of ILC2 in liver injury remains poorly understood. In the current study, we sought to determine whether ILC2 is an important regulator of hepatic ischaemia/reperfusion injury (IRI). Methods ILC2-deficient mice (ICOS-T or NSG) and genetically modified ILC2s were used to investigate the role of ILC2s in murine hepatic IRI. Interactions between ILC2s and eosinophils or macrophages were studied in coculture. The role of human ILC2s was assessed in an immunocompromised mouse model of hepatic IRI. Results Administration of IL-33 prevented hepatic IRI in association with reduction of neutrophil infiltration and inflammatory mediators in the liver. IL-33-treated mice had elevated numbers of ILC2s, eosinophils, and regulatory T cells. Eosinophils, but not regulatory T cells, were required for IL-33-mediated hepatoprotection in IRI mice. Depletion of ILC2s substantially abolished the protective effect of IL-33 in hepatic IRI, indicating that ILC2s play critical roles in IL-33-mediated liver protection. Adoptive transfer of ex vivo-expanded ILC2s improved liver function and attenuated histologic damage in mice subjected to IRI. Mechanistic studies combining genetic and adoptive transfer approaches identified a protective role of ILC2s through promoting IL-13-dependent induction of anti-inflammatory macrophages and IL-5-dependent elevation of eosinophils in IRI. Furthermore, in vivo expansion of human ILC2s by IL-33 or transfer of ex vivo-expanded human ILC2s ameliorated hepatic IRI in an immunocompromised mouse model of hepatic IRI. Conclusions This study provides insight into the mechanisms of ILC2-mediated liver protection that could serve as therapeutic targets to treat acute liver injury. Impact and Implications We report that type 2 innate lymphoid cells (ILC2s) are important regulators in a mouse model of liver ischaemia/reperfusion injury (IRI). Through manipulation of macrophage and eosinophil phenotypes, ILC2s mitigate liver inflammation and injury during liver IRI. We propose that ILC2s have the potential to serve as a therapeutic tool for protecting against acute liver injury and lay the foundation for translation of ILC2 therapy to human liver disease.
Collapse
Affiliation(s)
- Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Titi Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Farhana Azmi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Scott A. Read
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jianwei Chen
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Vincent W.S. Lee
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Chunze Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Sohel Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yuan Min Wang
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - David C.H. Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Bernard JK, Marakovits C, Smith LG, Francis H. Mast Cell and Innate Immune Cell Communication in Cholestatic Liver Disease. Semin Liver Dis 2023; 43:226-233. [PMID: 37268012 DOI: 10.1055/a-2104-9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells (MCs) contribute to the pathogenesis of cholestatic liver diseases (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]). PSC and PBC are immune-mediated, chronic inflammatory diseases, characterized by bile duct inflammation and stricturing, advancing to hepatobiliary cirrhosis. MCs are tissue resident immune cells that may promote hepatic injury, inflammation, and fibrosis formation by either direct or indirect interactions with other innate immune cells (neutrophils, macrophages/Kupffer cells, dendritic cells, natural killer, and innate lymphoid cells). The activation of these innate immune cells, usually through the degranulation of MCs, promotes antigen uptake and presentation to adaptive immune cells, exacerbating liver injury. In conclusion, dysregulation of MC-innate immune cell communications during liver injury and inflammation can lead to chronic liver injury and cancer.
Collapse
Grants
- IK6BX005226 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- 1I01BX003031 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- DK108959 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
- DK119421 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
Collapse
Affiliation(s)
- Jessica K Bernard
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah G Smith
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
3
|
Heinrich B, Gertz EM, Schäffer AA, Craig AJ, Ruf B, Subramanyam V, McVey JC, Diggs LP, Heinrich S, Rosato U, Ma C, Yan C, Hu Y, Zhao Y, Shen TW, Kapoor V, Telford W, Kleiner D, Stovroff MK, Dhani HS, Kang J, Fishbein TM, Wang XW, Ruppin E, Kroemer A, Greten TF, Korangy F. The tumour microenvironment shapes innate lymphoid cells in patients with hepatocellular carcinoma. Gut 2022; 71:1161-1175. [PMID: 34340996 PMCID: PMC8807808 DOI: 10.1136/gutjnl-2021-325288] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) represents a typical inflammation-associated cancer. Tissue resident innate lymphoid cells (ILCs) have been suggested to control tumour surveillance. Here, we studied how the local cytokine milieu controls ILCs in HCC. DESIGN We performed bulk RNA sequencing of HCC tissue as well as flow cytometry and single-cell RNA sequencing of enriched ILCs from non-tumour liver, margin and tumour core derived from 48 patients with HCC. Simultaneous measurement of protein and RNA expression at the single-cell level (AbSeq) identified precise signatures of ILC subgroups. In vitro culturing of ILCs was used to validate findings from in silico analysis. Analysis of RNA-sequencing data from large HCC cohorts allowed stratification and survival analysis based on transcriptomic signatures. RESULTS RNA sequencing of tumour, non-tumour and margin identified tumour-dependent gradients, which were associated with poor survival and control of ILC plasticity. Single-cell RNA sequencing and flow cytometry of ILCs from HCC livers identified natural killer (NK)-like cells in the non-tumour tissue, losing their cytotoxic profile as they transitioned into tumour ILC1 and NK-like-ILC3 cells. Tumour ILC composition was mediated by cytokine gradients that directed ILC plasticity towards activated tumour ILC2s. This was liver-specific and not seen in ILCs from peripheral blood mononuclear cells. Patients with high ILC2/ILC1 ratio expressed interleukin-33 in the tumour that promoted ILC2 generation, which was associated with better survival. CONCLUSION Our results suggest that the tumour cytokine milieu controls ILC composition and HCC outcome. Specific changes of cytokines modify ILC composition in the tumour by inducing plasticity and alter ILC function.
Collapse
Affiliation(s)
- Bernd Heinrich
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - E. Michael Gertz
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alejandro A. Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Amanda J. Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Benjamin Ruf
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Varun Subramanyam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John C. McVey
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laurence P. Diggs
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sophia Heinrich
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Umberto Rosato
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chi Ma
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chunhua Yan
- The Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20950, USA
| | - Ying Hu
- The Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20950, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, USA
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21701, USA
| | - Veena Kapoor
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William Telford
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Merril K. Stovroff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Harmeet S. Dhani
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Thomas M. Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Xin W. Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Tim F. Greten
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Firouzeh Korangy
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Lead Contact
| |
Collapse
|
4
|
Heinrich B, Korangy F. Plasticity of Innate Lymphoid Cells in Cancer. Front Immunol 2022; 13:886520. [PMID: 35663967 PMCID: PMC9160464 DOI: 10.3389/fimmu-13-886520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogenous population of the innate immune system, enriched at mucosal surfaces and are pivotal regulators of immune homeostasis. ILCs are the innate counterpart of T cells. Like T cells, ILC subsets are highly plastic with their composition and function controlled by alterations in their microenvironment. This plasticity allows for the trans-differentiation between the subsets to rapidly respond to their immune environment. The tumor microenvironment (TME) is a heterogeneous milieu characterized by different cytokines and growth factors. Through interaction with the tumor microenvironment, ILCs can transdifferentiate into different subsets resulting in pro or anti-tumor immunity. Thus, studying ILC plasticity might result in new therapeutic approaches for cancer therapy. In this review, we summarize current findings of the functional and plastic heterogeneity of ILCs in homeostasis as well as disease settings with a specific focus on cancer. We specifically highlight tumor-driven plasticity and how ILC-induced inflammation can impact the tumor microenvironment and anti-tumor immunity.
Collapse
Affiliation(s)
- Bernd Heinrich
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Firouzeh Korangy
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Firouzeh Korangy,
| |
Collapse
|
5
|
Schroeder JH, Howard JK, Lord GM. Transcription factor-driven regulation of ILC1 and ILC3. Trends Immunol 2022; 43:564-579. [PMID: 35618586 PMCID: PMC10166716 DOI: 10.1016/j.it.2022.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Mammalian innate lymphoid cells (ILCs) have functional relevance under both homeostatic and disease settings, such as inflammatory bowel disease (IBD), particularly in the context of maintaining the integrity of mucosal surfaces. Early reports highlighted group 1 and 3 ILC regulatory transcription factors (TFs), T-box expressed in T cells (T-bet; Tbx21) and RAR-related orphan nuclear receptor γt (RORγt; Rorc), as key regulators of ILC biology. Since then, other canonical TFs have been shown to have a role in the development and function of ILC subsets. In this review, we focus on recent insights into the balance between mature ILC1 and ILC3 based on these TFs and how they interact with other key cell-intrinsic molecular pathways. We outline how this TF interplay might be explored to identify novel candidate therapeutic avenues for human diseases.
Collapse
|
6
|
Delphin M, Desmares M, Schuehle S, Heikenwalder M, Durantel D, Faure-Dupuy S. How to get away with liver innate immunity? A viruses' tale. Liver Int 2021; 41:2547-2559. [PMID: 34520597 DOI: 10.1111/liv.15054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
In their never-ending quest towards persistence within their host, hepatitis viruses have developed numerous ways to counteract the liver innate immunity. This review highlights the different and common mechanisms employed by these viruses to (i) establish in the liver (passive entry or active evasion from immune recognition) and (ii) actively inhibit the innate immune response (ie modulation of pattern recognition receptor expression and/or signalling pathways, modulation of interferon response and modulation of immune cells count or phenotype).
Collapse
Affiliation(s)
- Marion Delphin
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Manon Desmares
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France.,DEVweCAN Laboratory of Excellence, Lyon, France
| | - Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Mogilenko DA, Caiazzo R, L'homme L, Pineau L, Raverdy V, Noulette J, Derudas B, Pattou F, Staels B, Dombrowicz D. IFNγ-producing NK cells in adipose tissue are associated with hyperglycemia and insulin resistance in obese women. Int J Obes (Lond) 2021; 45:1607-1617. [PMID: 33934108 DOI: 10.1038/s41366-021-00826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/04/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND/OBJECTIVES Innate lymphoid cells (ILCs) play an important role in the maintenance of immune and metabolic homeostasis in adipose tissue (AT). The crosstalk between AT ILCs and adipocytes and other immune cells coordinates adipocyte differentiation, beiging, glucose metabolism and inflammation. Although the metabolic and homeostatic functions of mouse ILCs have been extensively investigated, little is known about human adipose ILCs and their roles in obesity and insulin resistance (IR). SUBJECTS/METHODS Here we characterized T and NK cell populations in omental AT (OAT) from women (n = 18) with morbid obesity and varying levels of IR and performed an integrated analysis of metabolic parameters and adipose tissue transcriptomics. RESULTS In OAT, we found a distinct population of CD56-NKp46+EOMES+ NK cells characterized by expression of cytotoxic molecules, pro-inflammatory cytokines, and markers of cell activation. AT IFNγ+ NK cells, but not CD4, CD8 or γδ T cells, were positively associated with glucose levels, glycated hemoglobin (HbA1c) and IR. AT NK cells were linked to a pro-inflammatory gene expression profile in AT and developed an effector phenotype in response to IL-12 and IL-15. Moreover, integrated transcriptomic analysis revealed a potential implication of AT IFNγ+ NK cells in controlling adipose tissue inflammation, remodeling, and lipid metabolism. CONCLUSIONS Our results suggest that a distinct IFNγ-producing NK cell subset is involved in metabolic homeostasis in visceral AT in humans with obesity and may be a potential target for therapy of IR.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
- Washington University School of Medicine, Department of Pathology & Immunology, Saint Louis, MO, USA
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID, Lille, France
| | - Laurent L'homme
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laurent Pineau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Violeta Raverdy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID, Lille, France
| | - Jerome Noulette
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Francois Pattou
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1190-EGID, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
8
|
Pervin M, Hasan I, Kobir MA, Akter L, Karim MR. Immunophenotypic analysis of the distribution of hepatic macrophages, lymphocytes and hepatic stellate cells in the adult rat liver. Anat Histol Embryol 2021; 50:736-745. [PMID: 34128248 DOI: 10.1111/ahe.12718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023]
Abstract
The liver consists of parenchymal hepatocytes and non-parenchymal cells. Non-parenchymal cells, Kupffer cells, hepatic stellate cells and cholangiocytes have crucial roles in liver homeostasis and liver pathology. To establish baseline data, this study investigated immunohistochemically the distribution of non-parenchymal cells in perivenular areas (PV), periportal areas (PP) and Glisson's sheath (GS) of adult rat liver. Liver tissues were collected from the left lateral lobe of rats. CD163-positive macrophages were seen along the sinusoid of PV and PP areas, indicating Kupffer cells. Double immunofluorescence showed, Kupffer cells partly co-expressed CD68 and MHC class II antigens in the liver. The numbers of Kupffer cells were significantly high in PP areas as compared with PV or GS areas. CD68-positive exudative macrophages were highly localized in PP and GS areas and a comparatively low PV area. MHC class II-positive dendritic cells (activated macrophages) were localized mainly in GS. Granzyme B-positive NK cells were mainly localized in the Glisson's sheath. CD3-positive T cells and CD20-positive B cells were distributed along the sinusoids of the PP and PV areas of hepatic lobules. Vimentin and glial fibrillary acidic protein (GFAP)-positive hepatic stellate cells were localized along sinusoids in the hepatic lobules of the liver. Cholangiocytes reacting to cytokeratin 19 were seen on interlobular bile ducts in Glisson's sheath of the liver. This study shows that heterogeneous macrophage populations, liver-resident lymphocytes and hepatic stellate cells localized in PP and PV areas or GS areas of the liver with cells specific patterns.
Collapse
Affiliation(s)
- Munmun Pervin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Imam Hasan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Alamgir Kobir
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Latifa Akter
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Rabiul Karim
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
9
|
Liu M, Liang S, Zhang C. NK Cells in Autoimmune Diseases: Protective or Pathogenic? Front Immunol 2021; 12:624687. [PMID: 33777006 PMCID: PMC7994264 DOI: 10.3389/fimmu.2021.624687] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases generally result from the loss of self-tolerance (i.e., failure of the immune system to distinguish self from non-self), and are characterized by autoantibody production and hyperactivation of T cells, which leads to damage of specific or multiple organs. Thus, autoimmune diseases can be classified as organ-specific or systemic. Genetic and environmental factors contribute to the development of autoimmunity. Recent studies have demonstrated the contribution of innate immunity to the onset of autoimmune diseases. Natural killer (NK) cells, which are key components of the innate immune system, have been implicated in the development of multiple autoimmune diseases such as systemic lupus erythematosus, type I diabetes mellitus, and autoimmune liver disease. However, NK cells have both protective and pathogenic roles in autoimmunity depending on the NK cell subset, microenvironment, and disease type or stage. In this work, we review the current knowledge of the varied roles of NK cell subsets in systemic and organic-specific autoimmune diseases and their clinical potential as therapeutic targets.
Collapse
Affiliation(s)
- Meifang Liu
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Shujuan Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Cai Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Institute of Immunopharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
10
|
Poniewierska-Baran A, Tokarz-Deptuła B, Deptuła W. The role of innate lymphoid cells in selected disease states - cancer formation, metabolic disorder and inflammation. Arch Med Sci 2021; 17:196-206. [PMID: 33488872 PMCID: PMC7811321 DOI: 10.5114/aoms.2019.89835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently described group of immune cells that can regulate homeostasis and protect mammalian organisms, including humans, from infections and diseases. Considering this, ILC research is still ongoing to better understand the biology of these cells and their roles in the human body. ILCs are a multifunctional group of immune cells, making it important for the medical community to be familiar with the latest research about the ILC families and their functions in selected disease states, such as cancer formation, metabolic disorders and inflammation. By discovering the roles of ILC populations and their participation in many disorders, we can improve disease diagnostics and patient healthcare.
Collapse
Affiliation(s)
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Wiesław Deptuła
- Veterinary Center of the Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
11
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
12
|
Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol 2020; 18:57-72. [PMID: 33041339 DOI: 10.1038/s41423-020-00561-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a lymphoid organ with unique immunological properties, particularly, its predominant innate immune system. The balance between immune tolerance and immune activity is critical to liver physiological functions and is responsible for the sensitivity of this organ to numerous diseases, including hepatotropic virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, autoimmune liver disease, and liver cancer, which are major health problems globally. In the past decade, with the discovery of liver-resident natural killer cells, the importance of innate lymphocytes with tissue residency has gradually become the focus of research. In this review, we address the current knowledge regarding hepatic innate lymphocytes with unique characteristics, including NK cells, ILC1/2/3s, NKT cells, γδ T cells, and MAIT cells, and their potential roles in liver homeostasis maintenance and the progression of liver diseases and cancer. A better understanding of the immunopathogenesis of hepatic innate lymphocytes will be helpful for proposing effective treatments for liver diseases and cancer.
Collapse
|
13
|
Lymphocyte Landscape after Chronic Hepatitis C Virus (HCV) Cure: The New Normal. Int J Mol Sci 2020; 21:ijms21207473. [PMID: 33050486 PMCID: PMC7589490 DOI: 10.3390/ijms21207473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic HCV (CHC) infection is the only chronic viral infection for which curative treatments have been discovered. These direct acting antiviral (DAA) agents target specific steps in the viral replication cycle with remarkable efficacy and result in sustained virologic response (SVR) or cure in high (>95%) proportions of patients. These treatments became available 6–7 years ago and it is estimated that their real impact on HCV related morbidity, including outcomes such as cirrhosis and hepatocellular carcinoma (HCC), will not be known for the next decade or so. The immune system of a chronically infected patient is severely dysregulated and questions remain regarding the immune system’s capacity in limiting liver pathology in a cured individual. Another important consequence of impaired immunity in patients cleared of HCV with DAA will be the inability to generate protective immunity against possible re-infection, necessitating retreatments or developing a prophylactic vaccine. Thus, the impact of viral clearance on restoring immune homeostasis is being investigated by many groups. Among the important questions that need to be answered are how much the immune system normalizes with cure, how long after viral clearance this recalibration occurs, what are the consequences of persisting immune defects for protection from re-infection in vulnerable populations, and does viral clearance reduce liver pathology and the risk of developing hepatocellular carcinoma in individuals cured with these agents. Here, we review the recent literature that describes the defects present in various lymphocyte populations in a CHC patient and their status after viral clearance using DAA treatments.
Collapse
|
14
|
Detecting and analyzing murine innate lymphoid cells. Methods Enzymol 2020. [PMID: 31948555 DOI: 10.1016/bs.mie.2019.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During the last 10 years, different subsets of Innate lymphoid cells (ILCs) have been identified in murine models. ILCs play and important role in maintaining immune barriers, tissue homeostasis, and are able to regulate the immune response in several anatomic sites. They can be found in lymphoid and non-lymphoid organs of adult mice but are mainly tissue-resident cells that can expand locally under physiologic or pathologic conditions (Gasteiger, Fan, Dikiy, Lee, & Rudensky, 2015). Because ILCs need to be identified by a complex combination of several cell-surface and intracellular markers and by their production of specific sets of cytokines, multiparametric flow cytometry remains one of the most efficient methods to analyze and isolate the different ILC sub-populations. This chapter describes how ILCs can be identified in different murine organs and how ILC subsets can be isolated and functionally analyzed.
Collapse
|
15
|
Ali-Hassanzadeh M, Hosseini MS, Ahmadi M, Zare M, Akbarzadeh-Jahromi M, Derakhshanfar A, Gharesi-Fard B. Analysis of the frequency of type 2 innate lymphoid cells and regulatory T cells in abortion-prone mice. Immunol Lett 2020; 220:1-10. [PMID: 31945403 DOI: 10.1016/j.imlet.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Recurrent spontaneous abortion (RSA) is the most common pregnancy related complication, affecting 1-5 % of pregnancies. Despite hormonal, genetic and anatomical factors that result in abortion, impairment of immune response at the feto-maternal interface during the first trimester of pregnancy is also one of the main causes of RSA. In the present study, we evaluated the frequency of blood and uterine group 2 innate lymphoid cells (ILC2s), their subsets and regulatory T cells (Tregs) in CBA/J × DBA/2 J as an abortion-prone model compared to normal pregnant (NP) mice using immunophenotyping. Results indicated that the percentages of ILC2s were significantly decreased in the AP group compared to the NP group at mid-gestation (P ≤ 0.01). Moreover, the percentages of both blood and uterine nILC2s were increased in NP mice at mid-gestation (P ≤ 0.01, and P ≤ 0.05, respectively), while iILC2s significantly increased in AP mice at mid-gestation (P ≤ 0.01, and P ≤ 0.05, respectively). Tregs were reduced in AP mice at both early and mid-gestation stages (P ≤ 0.01). Overall, our findings suggest that the changes in blood and uterine ILC2s might be associated with abortion in mice.
Collapse
Affiliation(s)
- Mohammad Ali-Hassanzadeh
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Moslem Ahmadi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojgan Akbarzadeh-Jahromi
- Maternal-Fetal Medicine Research Center, Pathology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- DiagnosticLaboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Gharesi-Fard
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Wang Y, Zhang C. The Roles of Liver-Resident Lymphocytes in Liver Diseases. Front Immunol 2019; 10:1582. [PMID: 31379818 PMCID: PMC6648801 DOI: 10.3389/fimmu.2019.01582] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue-resident lymphocytes usually reside in barrier sites and are involved in innate and adaptive immunity. In recent years, many studies have shown that multiple types of lymphocytes are resident in the liver, including memory CD8+ T (TRM) cells; "unconventional" T cells, such as invariant natural killer T (iNKT) cells, mucosal associated invariant T (MAIT) cells, and γδT cells; innate lymphoid cells (ILCs) such as natural killer (NK) cells and other ILCs. Although diverse types of tissue-resident lymphocytes share similar phenotypes, functional properties, and transcriptional regulation, the unique microenvironment of the liver can reshape their phenotypic and functional characteristics. Liver-resident lymphocytes serve as sentinels and perform immunosurveillance in response to infection and non-infectious insults, and are involved in the maintenance of liver homeostasis. Under the pathological conditions, distinct liver-resident lymphocytes exert protective or pathological effects in the process of various liver diseases. In this review, we highlight the unique properties of liver-resident lymphocytes, and discuss their functional characteristics in different liver diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
17
|
Dzopalić T, Božić-Nedeljković B, Jurišić V. Function of innate lymphoid cells in the immune-related disorders. Hum Cell 2019; 32:231-239. [DOI: 10.1007/s13577-019-00257-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
|
18
|
Ahmed F, Ibrahim A, Cooper CL, Kumar A, Crawley AM. Chronic Hepatitis C Virus Infection Impairs M1 Macrophage Differentiation and Contributes to CD8 + T-Cell Dysfunction. Cells 2019; 8:E374. [PMID: 31027182 PMCID: PMC6523920 DOI: 10.3390/cells8040374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection causes generalized CD8+ T cell impairment, not limited to HCV-specific CD8+ T-cells. Liver-infiltrating monocyte-derived macrophages (MDMs) contribute to the local micro-environment and can interact with and influence cells routinely trafficking through the liver, including CD8+ T-cells. MDMs can be polarized into M1 (classically activated) and M2a, M2b, and M2c (alternatively activated) phenotypes that perform pro- and anti-inflammatory functions, respectively. The impact of chronic HCV infection on MDM subset functions is not known. Our results show that M1 cells generated from chronic HCV patients acquire M2 characteristics, such as increased CD86 expression and IL-10 secretion, compared to uninfected controls. In contrast, M2 subsets from HCV-infected individuals acquired M1-like features by secreting more IL-12 and IFN-γ. The severity of liver disease was also associated with altered macrophage subset differentiation. In co-cultures with autologous CD8+ T-cells from controls, M1 macrophages alone significantly increased CD8+ T cell IFN-γ expression in a cytokine-independent and cell-contact-dependent manner. However, M1 macrophages from HCV-infected individuals significantly decreased IFN-γ expression in CD8+ T-cells. Therefore, altered M1 macrophage differentiation in chronic HCV infection may contribute to observed CD8+ T-cell dysfunction. Understanding the immunological perturbations in chronic HCV infection will lead to the identification of therapeutic targets to restore immune function in HCV+ individuals, and aid in the mitigation of associated negative clinical outcomes.
Collapse
Affiliation(s)
- Faria Ahmed
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Andrea Ibrahim
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Curtis L Cooper
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada.
- Public Health and Preventative Medicine, School of Epidemiology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 5Z3, Canada.
| | - Ashok Kumar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
- Department of Pathology, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada.
| | - Angela M Crawley
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada.
- Department of Biology, Faculty of Science, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
19
|
Type 2 Innate Lymphoid Cells in Liver and Gut: From Current Knowledge to Future Perspectives. Int J Mol Sci 2019; 20:ijms20081896. [PMID: 30999584 PMCID: PMC6514972 DOI: 10.3390/ijms20081896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Innate lymphoid cells (ILCs) represent a heterogeneous population of recently discovered immune cells that mirror the functions of adaptive T lymphocytes. However, ILCs are devoid of specific antigen receptors and cellular activation depends on environmental cytokines, rendering them as early regulators of immune responses. Type 2 innate lymphoid cells (ILC2s) respond to alarmins, such as interleukin-25 and -33 and shape Th2-associated immunity by expressing IL-5 and IL-13 in a GATA3-dependent manner. In addition, ILC2s express the epidermal growth factor-like molecule Amphiregulin thereby promoting regeneration of injured tissue during inflammation. The gut and liver confer nutrient metabolism and bidirectional exchange of products, known as the gut-liver axis. Accordingly, both organs are continuously exposed to a large variety of harmless antigens. This requires avoidance of immunity, which is established by a tolerogenic environment in the gut and liver. However, dysregulations within the one organ are assumed to influence vitality of the other and frequently promote chronic inflammatory settings with poor prognosis. Intensive research within the last years has revealed that ILC2s are involved in acute and chronic inflammatory settings of gut and liver. Here, we highlight the roles of ILC2s in intestinal and hepatic inflammation and discuss a regulatory potential.
Collapse
|
20
|
Liu M, Hu Y, Yuan Y, Tian Z, Zhang C. γδT Cells Suppress Liver Fibrosis via Strong Cytolysis and Enhanced NK Cell-Mediated Cytotoxicity Against Hepatic Stellate Cells. Front Immunol 2019; 10:477. [PMID: 30930903 PMCID: PMC6428727 DOI: 10.3389/fimmu.2019.00477] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins, resulting from maladaptive wound healing responses to chronic liver injury. γδT cells are important in chronic liver injury pathogenesis and subsequent liver fibrosis; however, their role and underlying mechanisms are not fully understood. The present study aims to assess whether γδT cells contribute to liver fibrosis regression. Using a carbon tetrachloride (CCl4)-induced murine model of liver fibrosis in wild-type (WT) and γδT cell deficient (TCRδ−/−) mice, we demonstrated that γδT cells protected against liver fibrosis and exhibited strong cytotoxicity against activated hepatic stellate cells (HSCs). Further study show that chronic liver inflammation promoted hepatic γδT cells to express NKp46, which contribute to the direct killing of activated HSCs by γδT cells. Moreover, we identified that an IFNγ-producing γδT cell subset (γδT1) cells exhibited stronger cytotoxicity against activated HSCs than the IL-17-producing subset (γδT17) cells upon chronic liver injury. In addition, γδT cells promoted the anti-fibrotic ability of conventional natural killer (cNK) cells and liver-resident NK (lrNK) cells by enhancing their cytotoxicity against activated HSCs. The cell crosstalk between γδT and NK cells was shown to depend partly on co-stimulatory receptor 4-1BB (CD137) engagement. In conclusion, our data confirmed the protective effects of γδT cells, especially the γδT1 subset, by directly killing activated HSCs and increasing NK cell-mediated cytotoxicity against activated HSCs in CCl4-induced liver fibrosis, which suggest valuable therapeutic targets to treat liver fibrosis.
Collapse
Affiliation(s)
- Meifang Liu
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| | - Yuan Hu
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| | - Zhigang Tian
- School of Life Sciences, Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Cai Zhang
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| |
Collapse
|
21
|
Irshad M, Gupta P, Irshad K. Immunopathogenesis of Liver Injury During Hepatitis C Virus Infection. Viral Immunol 2019; 32:112-120. [PMID: 30817236 DOI: 10.1089/vim.2018.0124] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present report describes current concepts about the mechanism of liver cell injury caused by host immune response against hepatitis C virus (HCV) infection in human beings. This report is based on the observations from experimental studies and follow-up actions on human liver diseases. The results from different investigations suggest that liver injury depends on the presentation of viral antigen and the level of host immune response raised against HCV-related peptides. Both innate and adaptive immunity are triggered to counter the viral onset. During development of host immunity, the cell-mediated immune response involving CD4+ Th1 cells and CD8+ cytotoxic T-lymphocyte (CTL) cells were found to play a major role in causing liver damage. The hepatic Innate lymphoid cells (ILCs) subsets are involved in the immune regulation of different liver diseases: viral hepatitis, mechanical liver injury, and fibrosis. Humoral immunity and natural killer (NK) cell action also contributed in liver cell injury by antibody-dependent cellular cytotoxicity (ADCC). In fact, immunopathogenesis of HCV infection is a complex phenomenon where regulation of immune response at several steps decides the possibility of viral elimination or persistence. Regulation of immune response was noted starting from viral-host interaction to immune reaction cascade engaged in cell damage. The activation or suppression of interferon-stimulated genes, NK cell action, CTL inducement by regulatory T cells (Treg), B cell proliferation, and so on was demonstrated during HCV infection. Involvement of HLA in antigen presentation, as well as types of viral genotypes, also influenced host immune response against HCV peptides. The combined effect of all these effector mechanisms ultimately decides the progression of viral onset to acute or chronic infection. In conclusion, immunopathogenesis of liver injury after HCV infection may be ascribed mainly to host immune response. Second, it is cell-mediated immunity that plays a predominant role in liver cell damage.
Collapse
Affiliation(s)
- Mohammad Irshad
- 1 Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Gupta
- 2 Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- 3 Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
CD8+ T cell/IL-33/ILC2 axis exacerbates the liver injury in Con A-induced hepatitis in T cell-transferred Rag2-deficient mice. Inflamm Res 2018; 68:75-91. [DOI: 10.1007/s00011-018-1197-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/14/2018] [Accepted: 11/02/2018] [Indexed: 01/16/2023] Open
|
23
|
Zeng B, Shi S, Liu J, Xing F. Commentary: Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation. Front Immunol 2018; 9:1522. [PMID: 30013571 PMCID: PMC6036170 DOI: 10.3389/fimmu.2018.01522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/19/2018] [Indexed: 01/19/2023] Open
Affiliation(s)
- Boning Zeng
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China.,Key Laboratory of Functional Protein Research of Guangdong, Higher Education Institutes, Jinan University, Guangzhou, China
| | - Shengnan Shi
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Jing Liu
- School of Stomatology, Jinan University, Guangzhou, China
| | - Feiyue Xing
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China.,Key Laboratory of Functional Protein Research of Guangdong, Higher Education Institutes, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Karagiannis F, Wilhelm C. Innate lymphoid cells—key immune integrators of overall body homeostasis. Semin Immunopathol 2018; 40:319-330. [DOI: 10.1007/s00281-018-0684-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
|
25
|
Alabbas SY, Begun J, Florin TH, Oancea I. The role of IL-22 in the resolution of sterile and nonsterile inflammation. Clin Transl Immunology 2018; 7:e1017. [PMID: 29713472 PMCID: PMC5905349 DOI: 10.1002/cti2.1017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
In a broad sense, inflammation can be conveniently characterised by two phases: the first phase, which is a pro-inflammatory, has evolved to clear infection and/or injured tissue; and the second phase concerns regeneration of normal tissue and restitution of normal physiology. Innate immune cell-derived pro-inflammatory cytokines and chemokines activate and recruit nonresident immune cells to the site of infection, thereby amplifying the inflammatory responses to clear infection or injury. This phase is followed by a cytokine milieu that promotes tissue regeneration. There is no absolute temporal distinction between these two phases, and cytokines may have dual pleiotropic effects depending on the timing of release, inflammatory microenvironment or concentrations. IL-22 is a cytokine with reported pro- and anti-inflammatory roles; in this review, we contend that this protein has primarily a function in restitution of normal tissue and physiology.
Collapse
Affiliation(s)
- Saleh Y Alabbas
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Jakob Begun
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Timothy H Florin
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Iulia Oancea
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
26
|
Song Y, Yang JM. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. Biochem Biophys Res Commun 2017; 493:1-8. [PMID: 28859982 DOI: 10.1016/j.bbrc.2017.08.109] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022]
Abstract
Interleukin-17 (IL-17), a pleiotropic proinflammatory cytokine, is reported to be significantly generated by a distinct subset of CD4+ T-cells, upgrading cancer-elicited inflammation and preventing cancer cells from immune surveillance. T-helper (Th)17 cells produced from naive CD4+ T cells have recently been renowned and generally accepted, gaining eminence in cancer studies and playing the effective role in context of cancer. Th17 cells are the main source of IL-17-secreting cells, It was found that other cell types produced this cytokine as well, including Group 3 innate lymphoid cells (ILC3), δγT cells, invariant natural killer T (iNKT) cells, lymphoid-tissue inducer (LTi)-like cells and Natural killer (NK) cells. Th17-associated cytokines give impetus to tumor progression, or inducing angiogenesis and metastasis. This review demonstrates an understanding on how the pro- or antitumor function of Th17 cells and IL-17 may change cancer progression, leading to the appearance of complex and pivotal biologic activities in tumor.
Collapse
Affiliation(s)
- Yang Song
- Department of Otorhinolaryngology, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China.
| | - Jian Ming Yang
- Department of Otorhinolaryngology, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| |
Collapse
|