1
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
2
|
Kim EH, Manganaro L, Schotsaert M, Brown BD, Mulder LC, Simon V. Development of an HIV reporter virus that identifies latently infected CD4 + T cells. CELL REPORTS METHODS 2022; 2:100238. [PMID: 35784650 PMCID: PMC9243624 DOI: 10.1016/j.crmeth.2022.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/26/2022] [Accepted: 05/24/2022] [Indexed: 04/23/2023]
Abstract
There is no cure for HIV infection, as the virus establishes a latent reservoir, which escapes highly active antiretroviral treatments. One major obstacle is the difficulty identifying cells that harbor latent proviruses. We devised a single-round viral vector that carries a series of versatile reporter molecules that are expressed in an LTR-dependent or LTR-independent manner and make it possible to accurately distinguish productive from latent infection. Using primary human CD4+ T cells, we show that transcriptionally silent proviruses are found in more than 50% of infected cells. The latently infected cells harbor proviruses but lack evidence for multiple spliced transcripts. LTR-silent integrations occurred to variable degrees in all CD4+ T subsets examined, with CD4+ TEM and CD4+ TREG displaying the highest frequency of latent infections. This viral vector permits the interrogation of HIV latency at single-cell resolution, revealing mechanisms of latency establishment and allowing the characterization of effective latency-reversing agents.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lara Manganaro
- INGM, Istituto Nazionale di Genetica Molecolare, ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D. Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lubbertus C.F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine at Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, Bandyopadhyay AS, Wright PF. Mucosal immunity to poliovirus. Mucosal Immunol 2022; 15:1-9. [PMID: 34239028 PMCID: PMC8732262 DOI: 10.1038/s41385-021-00428-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
A cornerstone of the global initiative to eradicate polio is the widespread use of live and inactivated poliovirus vaccines in extensive public health campaigns designed to prevent the development of paralytic disease and interrupt transmission of the virus. Central to these efforts is the goal of inducing mucosal immunity able to limit virus replication in the intestine. Recent clinical trials have evaluated new combined regimens of poliovirus vaccines, and demonstrated clear differences in their ability to restrict virus shedding in stool after oral challenge with live virus. Analyses of mucosal immunity accompanying these trials support a critical role for enteric neutralizing IgA in limiting the magnitude and duration of virus shedding. This review summarizes key findings in vaccine-induced intestinal immunity to poliovirus in infants, older children, and adults. The impact of immunization on development and maintenance of protective immunity to poliovirus and the implications for global eradication are discussed.
Collapse
Affiliation(s)
- Ruth I Connor
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Peter F Wright
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
4
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
5
|
Sex-Differential Impact of Human Cytomegalovirus Infection on In Vitro Reactivity to Toll-Like Receptor 2, 4 and 7/8 Stimulation in Gambian Infants. Vaccines (Basel) 2020; 8:vaccines8030407. [PMID: 32707906 PMCID: PMC7564534 DOI: 10.3390/vaccines8030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection rates approach 100% by the first year of life in low-income countries. It is not known if this drives changes to innate immunity in early life and thereby altered immune reactivity to infections and vaccines. Given the panoply of sex differences in immunity, it is feasible that any immunological effects of HCMV would differ in males and females. We analysed ex vivo innate cytokine responses to a panel of toll-like receptor (TLR) ligands in 108 nine-month-old Gambian males and females participating in a vaccine trial. We found evidence that HCMV suppressed reactivity to TLR2 and TLR7/8 stimulation in females but not males. This is likely to contribute to sex differences in responses to infections and vaccines in early life and has implications for the development of TLR ligands as vaccine adjuvants. Development of an effective HCMV vaccine would be able to circumvent some of these potentially negative effects of HCMV infection in childhood.
Collapse
|
6
|
Cox M, Adetifa JU, Noho-Konteh F, Njie-Jobe J, Sanyang LC, Drammeh A, Plebanski M, Whittle HC, Rowland-Jones SL, Robertson I, Flanagan KL. Limited Impact of Human Cytomegalovirus Infection in African Infants on Vaccine-Specific Responses Following Diphtheria-Tetanus-Pertussis and Measles Vaccination. Front Immunol 2020; 11:1083. [PMID: 32582177 PMCID: PMC7291605 DOI: 10.3389/fimmu.2020.01083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection has a profound effect on the human immune system, causing massive clonal expansion of CD8, and to a lesser extend CD4 T cells. The few human trials that have explored the effect of HCMV infection on responses to vaccination are conflicting, with some studies suggesting no effect whilst others suggest decreased or increased immune responses. Recent studies indicate substantial differences in overall immune system reactivity to vaccines based on age and sex, particularly cellular immunity. 225 nine-month old Gambian infants were immunized with diphtheria-tetanus-whole cell pertussis and/or measles vaccines. HCMV infection status was determined by the presence of CMV DNA by PCR of urine samples prior to vaccination. The effect of HCMV infection on either protective antibody immunity or vaccine-specific and overall cellular immune responses 4 weeks post-vaccination was determined, further stratified by sex. Tetanus toxoid-specific antibody responses were significantly lower in HCMV+ infants compared to their HCMV- counterparts, while pertussis, diphtheria and measles antibody responses were generally comparable between the groups. Responses to general T cell stimulation with anti-CD3/anti-CD28 as well as antigen-specific cytokine responses to purified protein derivative (PPD) were broadly suppressed in infants infected with HCMV but, perhaps surprisingly, there was only a minimal impact on antigen-specific cellular responses to vaccine antigens. There was evidence for subtle sex differences in the effects of HCMV infection, in keeping with the emerging evidence suggesting sex differences in homeostatic immunity and in responses to vaccines. This study reassuringly suggests that the high rates of HCMV infection in low income settings have little clinically significant impact on antibody and cellular responses to early life vaccines, while confirming the importance of sex stratification in such studies.
Collapse
Affiliation(s)
- Momodou Cox
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jane U Adetifa
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Fatou Noho-Konteh
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Jainaba Njie-Jobe
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Lady C Sanyang
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Abdoulie Drammeh
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia
| | - Magdalena Plebanski
- School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Hilton C Whittle
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah L Rowland-Jones
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Iain Robertson
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Katie L Flanagan
- Infant Immunology Group, Vaccines and Immunity Theme, MRC Unit, Fajara, Gambia.,School of Health & Biomedical Science, RMIT University, Melbourne, VIC, Australia.,School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| |
Collapse
|
7
|
Balz K, Trassl L, Härtel V, Nelson PP, Skevaki C. Virus-Induced T Cell-Mediated Heterologous Immunity and Vaccine Development. Front Immunol 2020; 11:513. [PMID: 32296430 PMCID: PMC7137989 DOI: 10.3389/fimmu.2020.00513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Heterologous immunity (H.I.) is a consequence of an encounter with a specific antigen, which can alter the subsequent immune response to a different antigen. This can happen at the innate immune system level—often called trained immunity or innate immune memory—and/or at the adaptive immune system level involving T memory cells and antibodies. Viruses may also induce T cell-mediated H.I., which can confer protection or drive immunopathology against other virus subtypes, related or unrelated viruses, other pathogens, auto- or allo-antigens. It is important to understand the underlying mechanisms for the development of antiviral “universal” vaccines and broader T cell responses rather than just subtype-specific antibody responses as in the case of influenza. Furthermore, knowledge about determinants of vaccine-mediated H.I. may inform public health policies and provide suggestions for repurposing existing vaccines. Here, we introduce H.I. and provide an overview of evidence on virus- and antiviral vaccine-induced T cell-mediated cross-reactive responses. We also discuss the factors influencing final clinical outcome of virus-mediated H.I. as well as non-specific beneficial effects of live attenuated antiviral vaccines such as measles and vaccinia. Available epidemiological and mechanistic data have implications both for the development of new vaccines and for personalized vaccinology, which are presented. Finally, we formulate future research priorities and opportunities.
Collapse
Affiliation(s)
- Kathrin Balz
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Lilith Trassl
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Valerie Härtel
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Philipp P Nelson
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
8
|
Culbreth MJ, Biryukov SS, Shoe JL, Dankmeyer JL, Hunter M, Klimko CP, Rosario-Acevedo R, Fetterer DP, Moreau AM, Welkos SL, Cote CK. The Use of Analgesics during Vaccination with a Live Attenuated Yersinia pestis Vaccine Alters the Resulting Immune Response in Mice. Vaccines (Basel) 2019; 7:vaccines7040205. [PMID: 31816945 PMCID: PMC6963655 DOI: 10.3390/vaccines7040205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
The administration of antipyretic analgesics prior to, in conjunction with, or due to sequelae associated with vaccination is a common yet somewhat controversial practice. In the context of human vaccination, it is unclear if even short-term analgesic regimens can significantly alter the resulting immune response, as literature exists to support several scenarios including substantial immune interference. In this report, we used a live attenuated Yersinia pestis vaccine to examine the impact of analgesic administration on the immune response elicited by a single dose of a live bacterial vaccine in mice. Mice were assessed by evaluating natural and provoked behavior, as well as food and water consumption. The resulting immune responses were assessed by determining antibody titers against multiple antigens and assaying cellular responses in stimulated splenocytes collected from vaccinated animals. We observed no substantial benefit to the mice associated with the analgesic administration. Splenocytes from both C57BL/6 and BALB/c vaccinated mice receiving acetaminophen have a significantly reduced interferon-gamma (IFN-γ) recall response. Additionally, there is a significantly lower immunoglobulin (Ig)G2a/IgG1 ratio in vaccinated BALB/c mice treated with either acetaminophen or meloxicam and a significantly lower IgG2c/IgG1 ratio in vaccinated C57BL/6 mice treated with acetaminophen. Taken together, our data indicate that the use of analgesics, while possibly ethically warranted, may hinder the accurate characterization and evaluation of novel vaccine strategies with little to no appreciable benefits to the vaccinated mice.
Collapse
Affiliation(s)
- Marilynn J. Culbreth
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Comparative Medicine Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Sergei S. Biryukov
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Jennifer L. Shoe
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Jennifer L. Dankmeyer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Melissa Hunter
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Christopher P. Klimko
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Raysa Rosario-Acevedo
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - David P. Fetterer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Biostatistics Medicine Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Alicia M. Moreau
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Pathology Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Susan L. Welkos
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Christopher K. Cote
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
- Correspondence:
| |
Collapse
|
9
|
Messina NL, Zimmermann P, Curtis N. The impact of vaccines on heterologous adaptive immunity. Clin Microbiol Infect 2019; 25:1484-1493. [PMID: 30797062 DOI: 10.1016/j.cmi.2019.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vaccines induce antigen-specific memory in adaptive immune cells that enables long-lived protection against the target pathogen. In addition to this, several vaccines have beneficial effects greater than protection against their target pathogen. These non-specific effects are proposed to be the result of vaccine-induced immunomodulation. In the case of bacille Calmette-Guérin (BCG) vaccine, this involves induction of innate immune memory, termed 'trained immunity', in monocytes and natural killer cells. OBJECTIVES This review discusses current evidence for vaccine-induced immunomodulation of adaptive immune cells and heterologous adaptive immune responses. CONTENT The three vaccines that have been associated with changes in all-cause infant mortality: BCG, diphtheria-tetanus-pertussis (DTP) and measles-containing vaccines (MCV) alter T-cell and B-cell immunity. The majority of studies that investigated non-specific effects of these vaccines on the adaptive immune system report changes in numbers or proportions of adaptive immune cell populations. However, there is also evidence for effects of these vaccines on adaptive immune cell function and responses to heterologous stimuli. There is some evidence that, in addition to BCG, DTP and MCV, other vaccines (that have not been associated with changes in all-cause mortality) may alter adaptive immune responses to unrelated stimuli. IMPLICATIONS This review concludes that vaccines alter adaptive immune cell populations and heterologous immune responses. The non-specific effects differ between various vaccines and their effects on heterologous adaptive immune responses may also involve bystander activation, cross-reactivity and other as yet undefined mechanisms. This has major implications for future vaccine design and vaccination scheduling.
Collapse
Affiliation(s)
- N L Messina
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - P Zimmermann
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia; Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
| | - N Curtis
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Wilson KL, Flanagan KL, Prakash MD, Plebanski M. Malaria vaccines in the eradication era: current status and future perspectives. Expert Rev Vaccines 2019; 18:133-151. [PMID: 30601095 DOI: 10.1080/14760584.2019.1561289] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The challenge to eradicate malaria is an enormous task that will not be achieved by current control measures, thus an efficacious and long-lasting malaria vaccine is required. The licensing of RTS, S/AS01 is a step forward in providing some protection, but a malaria vaccine that protects across multiple transmission seasons is still needed. To achieve this, inducing beneficial immune responses while minimising deleterious non-targeted effects will be essential. AREAS COVERED This article discusses the current challenges and advances in malaria vaccine development and reviews recent human clinical trials for each stage of infection. Pubmed and ScienceDirect were searched, focusing on cell mediated immunity and how T cell subsets might be targeted in future vaccines using novel adjuvants and emerging vaccine technologies. EXPERT COMMENTARY Despite decades of research there is no highly effective licensed malaria vaccine. However, there is cause for optimism as new adjuvants and vaccine systems emerge, and our understanding of correlates of protection increases, especially regarding cellular immunity. The new field of heterologous (non-specific) effects of vaccines also highlights the broader consequences of immunization. Importantly, the WHO led Malaria Vaccine Technology Roadmap illustrates that there is a political will among the global health community to make it happen.
Collapse
Affiliation(s)
- K L Wilson
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - K L Flanagan
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia.,c School of Medicine, Faculty of Health Sciences , University of Tasmania , Launceston , Australia
| | - M D Prakash
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - M Plebanski
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| |
Collapse
|