1
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
2
|
Yue X, Zhou H, Wang S, Chen X, Xiao H. Gut microbiota, microbiota-derived metabolites, and graft-versus-host disease. Cancer Med 2024; 13:e6799. [PMID: 38239049 PMCID: PMC10905340 DOI: 10.1002/cam4.6799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 03/02/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is one of the most effective treatment strategies for leukemia, lymphoma, and other hematologic malignancies. However, graft-versus-host disease (GVHD) can significantly reduce the survival rate and quality of life of patients after transplantation, and is therefore the greatest obstacle to transplantation. The recent development of new technologies, including high-throughput sequencing, metabolomics, and others, has facilitated great progress in understanding the complex interactions between gut microbiota, microbiota-derived metabolites, and the host. Of these interactions, the relationship between gut microbiota, microbial-associated metabolites, and GVHD has been most intensively researched. Studies have shown that GVHD patients often suffer from gut microbiota dysbiosis, which mainly manifests as decreased microbial diversity and changes in microbial composition and microbiota-derived metabolites, both of which are significant predictors of poor prognosis in GVHD patients. Therefore, the purpose of this review is to summarize what is known regarding changes in gut microbiota and microbiota-derived metabolites in GVHD, their relationship to GVHD prognosis, and corresponding clinical strategies designed to prevent microbial dysregulation and facilitate treatment of GVHD.
Collapse
Affiliation(s)
- XiaoYan Yue
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongyu Zhou
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - ShuFen Wang
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xu Chen
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - HaoWen Xiao
- Department of Hematology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
3
|
Reikvam H, Bruserud Ø, Hatfield KJ. Pretransplant systemic metabolic profiles in allogeneic hematopoietic stem cell transplant recipients - identification of patient subsets with increased transplant-related mortality. Transplant Cell Ther 2023:S2666-6367(23)01196-X. [PMID: 36966869 DOI: 10.1016/j.jtct.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used in the treatment of high-risk acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS); however, the treatment has high risk of severe transplantation-related mortality (TRM). In this study, we examined pretransplantation serum samples derived from 92 consecutive allotransplant recipients with AML or MDS. Using nontargeted metabolomics, we identified 1274 metabolites including 968 of known identity (named biochemicals). We further investigated metabolites that differed significantly when comparing patients with and without early extensive fluid retention, pretransplantation inflammation (both being associated with increased risk of acute graft-versus-host disease [GVHD]/nonrelapse mortality) and development of systemic steroid-requiring acute GVHD (aGVHD). All three factors are associated with TRM and were also associated with significantly altered amino acid metabolism, although there was only a minor overlap between these three factors with regard to significantly altered individual metabolites. Furthermore, steroid-requiring aGVHD was especially associated with altered taurine/hypotaurine, tryptophan, biotin, and phenylacetate metabolism together with altered malate-aspartate shuttle and urea cycle regulation. In contrast, pretransplantation inflammation was associated with a weaker modulation of many different metabolic pathways, whereas extensive fluid retention was associated with a weaker modulation of taurine/hypotaurine metabolism. An unsupervised hierarchical cluster analysis based on the 13 most significantly identified metabolites associated with aGVHD identified a patient subset with high metabolite levels and increased frequencies of MDS/MDS-AML, steroid-requiring aGVHD and early TRM. On the other hand, a clustering analysis based on metabolites that were significantly altered for aGVHD, inflammation, and fluid retention comparison groups identified a patient subset with a highly significant association with TRM. Our study suggests that the systemic pretransplantation metabolic profiles can be used to identify patient subsets with an increased frequency of TRM.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway.
| | - Kimberley J Hatfield
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway; Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5009, Bergen, Norway.
| |
Collapse
|
4
|
Editorial: Autologous and Allogeneic Stem Cell Transplant in Cancer Therapy. Cancers (Basel) 2023; 15:cancers15051354. [PMID: 36900149 PMCID: PMC10000231 DOI: 10.3390/cancers15051354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Over the last 10 to 20 years, there have been significant improvements in the fields of both autologous and allogenic transplantation [...].
Collapse
|
5
|
Pretransplant Systemic Lipidomic Profiles in Allogeneic Stem Cell Transplant Recipients. Cancers (Basel) 2022; 14:cancers14122910. [PMID: 35740576 PMCID: PMC9220974 DOI: 10.3390/cancers14122910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Stem cell transplantation is used in the treatment of aggressive hematological malignancies and consists of initial high-dose and potentially lethal chemotherapy, followed by rescue with the transplantation of hematopoietic stem cells. Transplantation with stem cells from a healthy donor (i.e., allogeneic stem cells) has the strongest anti-cancer effect, but also the highest risk of severe toxicity. Furthermore, the clinical status at the time of transplantation (inflammation, fluid overload) is associated with posttransplant mortality, and immune-mediated acute graft-versus-host disease (GVHD) is a potential lethal complication. Finally, lipid metabolism regulates the proliferation and survival of both malignant hematological cells and immunocompetent cells that cause GVHD. Our study shows that the pretransplant lipid profiles differ between allotransplant recipients and can be used for the subclassification of patients and possibly to identify patients with an increased risk of death due to disease relapse or treatment toxicity. The therapeutic targeting of lipid metabolism should therefore be further explored in these transplant recipients. Abstract Allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies. However, this treatment is associated with severe treatment-related morbidity and mortality. The metabolic status of the recipient may be associated with the risk of development of transplant-associated complications such as graft-versus-host disease (GVHD). To better understand the impact of the lipidomic profile of transplant recipients on posttransplant complications, we evaluated the lipid signatures of patients with hematological disease using non-targeted lipidomics. In the present study, we studied pretransplant serum samples derived from 92 consecutive patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). A total of 960 lipid biochemicals were identified, and the pretransplant lipidomic profiles differed significantly when comparing patients with and without the risk factors: (i) pretransplant inflammation, (ii) early fluid overload, and (iii) patients with and without later steroid-requiring acute GVHD. All three factors, but especially patients with pretransplant inflammation, were associated with decreased levels of several lipid metabolites. Based on the overall concentrations of various lipid subclasses, we identified a patient subset characterized by low lipid levels, increased frequency of MDS patients, signs of inflammation, decreased body mass index, and an increased risk of early non-relapse mortality. Metabolic targeting has been proposed as a possible therapeutic strategy in allotransplant recipients, and our present results suggest that the clinical consequences of therapeutic intervention (e.g., nutritional support) will also differ between patients and depend on the metabolic context.
Collapse
|
6
|
Datta A, Hernandez-Franco JF, Park S, Olson MR, HogenEsch H, Thangamani S. Bile Acid Regulates Mononuclear Phagocytes and T Helper 17 Cells to Control Candida albicans in the Intestine. J Fungi (Basel) 2022; 8:jof8060610. [PMID: 35736093 PMCID: PMC9224641 DOI: 10.3390/jof8060610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023] Open
Abstract
Invasive Candida albicans (CA) infections often arise from the intestine and cause life-threatening infections in immunocompromised individuals. The role of gut commensal microbiota, metabolites, and host factors in the regulation of CA colonization in the intestine is poorly understood. Previous findings from our lab indicate that taurocholic acid (TCA), a major bile acid present in the intestine, promotes CA colonization and dissemination. Here, we report that oral administration of TCA to CA-infected mice significantly decreased the number of mononuclear phagocytes and CD4+ IL17A+ T helper 17 cells that play a critical role in controlling CA in the intestine. Collectively, our results indicate that TCA modulates mucosal innate and adaptive immune responses to promote CA colonization in the intestine.
Collapse
Affiliation(s)
- Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; (A.D.); (J.F.H.-F.); (H.H.)
| | - Juan F. Hernandez-Franco
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; (A.D.); (J.F.H.-F.); (H.H.)
| | - Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA; (S.P.); (M.R.O.)
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA; (S.P.); (M.R.O.)
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; (A.D.); (J.F.H.-F.); (H.H.)
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA; (A.D.); (J.F.H.-F.); (H.H.)
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
- Correspondence: ; Tel.: +1-765-494-0763
| |
Collapse
|
7
|
MicroRNA serum profiles and chronic graft versus host disease. Blood Adv 2022; 6:5295-5306. [PMID: 35443023 DOI: 10.1182/bloodadvances.2021005930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic graft versus host disease (cGVHD) is the most common long-term complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). During the last decade, the interest of micro RNAs (miRNAs) in the pathophysiological process of cGVHD has increased. The objectives of this study were to investigate a wide range of serum miRNAs in allografted patients and identify associations between miRNAs and cGVHD. The study included 79 allotransplanted adults, where serum samples were obtained one year after the allo-HSCT, and miRNA profiling analysis in serum was performed. 50 of the 79 patients (63%) had signs of cGVHD at the one-year post-allo-HSCT control. miRNA-sequencing analysis revealed 1380 different miRNAs detected for at least one patient, while 233 miRNAs (17%) were detected in more than 70 patients. We identified ten miRNAs that differed significantly between patients with and without cGVHD (p <0.005, false discovery rate (FDR) <0.1), and all or these miRNAs were detected for >75 of the patients. Furthermore, five distinct miRNAs; miR-365-3p, miR-148-3p, miR-122-5p, miR-378-3p, and miR-192-5p, were found to be particularly associated with cGVHD in our analysis and validated by receiver operating characteristics (ROC) analysis. Based on only three miRNAs, miR-365-3p, miR-148-3p, and miR-378-3p, we developed a miRNA signature which by bioinformatic approaches and linear regression model utterly improved our potential diagnostic biomarker model for cGVHD. We conclude that miRNAs are differently expressed among patients with and without cGVHD, although further and larger studies are needed to validate our present findings.
Collapse
|
8
|
Rangel-Huerta OD, de la Torre-Aguilar MJ, Mesa MD, Flores-Rojas K, Pérez-Navero JL, Baena-Gómez MA, Gil A, Gil-Campos M. The Metabolic Impact of Two Different Parenteral Nutrition Lipid Emulsions in Children after Hematopoietic Stem Cell Transplantation: A Lipidomics Investigation. Int J Mol Sci 2022; 23:3667. [PMID: 35409026 PMCID: PMC8998446 DOI: 10.3390/ijms23073667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) involves the infusion of either bone marrow or blood cells preceded by toxic chemotherapy. However, there is little knowledge about the clinical benefits of parenteral nutrition (PN) in patients receiving high-dose chemotherapy during HSCT. We investigated the lipidomic profile of plasma and the targeted fatty acid profiles of plasma and erythrocytes in children after HSCT using PN with either a fish oil-based lipid emulsion or a classic soybean oil emulsion. An untargeted liquid chromatography high-resolution mass spectrometry platform connected with a novel in silico annotation algorithm was utilized to determine the most relevant chemical subclasses affected. In addition, we explored the interrelation between the lipidomics profile in plasma, the targeted fatty acid profile in plasma and erythrocytes, several biomarkers of inflammation, and antioxidant defense using an innovative data integration analysis based on Latent Components. We observed that the fish oil-based lipid emulsion had an impact in several lipid subclasses, mainly glycerophosphocholines (PC), glycerophosphoserines (PS), glycerophosphoethanolamines (PE), oxidized PE (O-PE), 1-alkyl,2-acyl PS, lysophosphatidylethanolamines (LPE), oxidized PS (O-PS) and dicarboxylic acids. In contrast, the classic soybean oil emulsion did not. Several connections across the different blocks of data were found and aid in interpreting the impact of the lipid emulsions on metabolic health.
Collapse
Affiliation(s)
| | - María José de la Torre-Aguilar
- Department of Pediatrics, Unit of Pediatric Research, Reina Sofia University Hospital, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004 Cordoba, Spain; (M.J.d.l.T.-A.); (K.F.-R.); (J.L.P.-N.); (M.A.B.-G.); (M.G.-C.)
| | - María Dolores Mesa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
| | - Katherine Flores-Rojas
- Department of Pediatrics, Unit of Pediatric Research, Reina Sofia University Hospital, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004 Cordoba, Spain; (M.J.d.l.T.-A.); (K.F.-R.); (J.L.P.-N.); (M.A.B.-G.); (M.G.-C.)
| | - Juan Luis Pérez-Navero
- Department of Pediatrics, Unit of Pediatric Research, Reina Sofia University Hospital, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004 Cordoba, Spain; (M.J.d.l.T.-A.); (K.F.-R.); (J.L.P.-N.); (M.A.B.-G.); (M.G.-C.)
| | - María Auxiliadora Baena-Gómez
- Department of Pediatrics, Unit of Pediatric Research, Reina Sofia University Hospital, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004 Cordoba, Spain; (M.J.d.l.T.-A.); (K.F.-R.); (J.L.P.-N.); (M.A.B.-G.); (M.G.-C.)
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Spain;
- Instituto de Investigación Biosanitaria ibs.Granada, 18012 Granada, Spain
| | - Mercedes Gil-Campos
- Department of Pediatrics, Unit of Pediatric Research, Reina Sofia University Hospital, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), University of Córdoba, Avda Menéndez Pidal s/n, 14004 Cordoba, Spain; (M.J.d.l.T.-A.); (K.F.-R.); (J.L.P.-N.); (M.A.B.-G.); (M.G.-C.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
9
|
Chen K, Bai L, Lu J, Chen W, Liu C, Guo E, Qin X, Jiao X, Huang M, Tian H. Human Decidual Mesenchymal Stem Cells Obtained From Early Pregnancy Improve Cardiac Revascularization Postinfarction by Activating Ornithine Metabolism. Front Cardiovasc Med 2022; 9:837780. [PMID: 35242829 PMCID: PMC8887417 DOI: 10.3389/fcvm.2022.837780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Background Compared with bone marrow mesenchymal stem cells (BMSCs), decidual mesenchymal stem cells (DMSCs) are easy to obtain and exhibit excellent angiogenic effects, but their role in cell transplantation after myocardial infarction (MI) remains unclear. Methods BMSCs and DMSCs were harvested from healthy donors. The effects of both cell types on angiogenesis were observed in vitro. Metabonomics analysis was performed to compare different metabolites and screen critical metabolic pathways. A murine model of acute myocardial infarction (AMI) was established, which was randomized into five groups (control, BMSC, DMSC, DMSC + ODCshRNA and BMSC + ODC consisting of 50 animals, equally divided into each group). The therapeutic effect of DMSCs on MI in rats was assessed based on neovascularization and cardiac remodeling. Results DMSCs exhibited a better angiogenic effect on human umbilical vein endothelial cells (HUVECs) than BMSCs in vitro. In addition, ornithine metabolism, which is associated with vascularization, was significantly increased in DMSCs. The transplantation of DMSCs in the rat MI model significantly enhanced angiogenesis of the infarct border area and improved cardiac remodeling and dysfunction postinfarction compared with BMSCs. Furthermore, inhibition of ornithine metabolism by silencing ornithine decarboxylase (ODC) in DMSCs partly abolished the benefits of DMSC transplantation. Conclusion Compared with BMSCs, DMSCs exhibited better efficacy in improving revascularization and heart remodeling post-MI via the activation of ODC-associated ornithine metabolism.
Collapse
Affiliation(s)
- Kegong Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Long Bai
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Chest Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jingtong Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Chest Surgery, The Third Hospital of Xiamen, Xiamen, China
| | - Wei Chen
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Liu
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Erliang Guo
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xionghai Qin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Jiao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingli Huang
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Mingli Huang
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Hai Tian
| |
Collapse
|
10
|
Thangamani S, Monasky R, Lee JK, Antharam V, HogenEsch H, Hazbun TR, Jin Y, Gu H, Guo GL. Bile Acid Regulates the Colonization and Dissemination of Candida albicans from the Gastrointestinal Tract by Controlling Host Defense System and Microbiota. J Fungi (Basel) 2021; 7:jof7121030. [PMID: 34947012 PMCID: PMC8708873 DOI: 10.3390/jof7121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans (CA), a commensal and opportunistic eukaryotic organism, frequently inhabits the gastrointestinal (GI) tract and causes life-threatening infections. Antibiotic-induced gut dysbiosis is a major risk factor for increased CA colonization and dissemination from the GI tract. We identified a significant increase of taurocholic acid (TCA), a major bile acid in antibiotic-treated mice susceptible to CA infection. In vivo findings indicate that administration of TCA through drinking water is sufficient to induce colonization and dissemination of CA in wild-type and immunosuppressed mice. Treatment with TCA significantly reduced mRNA expression of immune genes ang4 and Cxcr3 in the colon. In addition, TCA significantly decreased the relative abundance of three culturable species of commensal bacteria, Turicibacter sanguinis, Lactobacillus johnsonii, and Clostridium celatum, in both cecal contents and mucosal scrapings from the colon. Taken together, our results indicate that TCA promotes fungal colonization and dissemination of CA from the GI tract by controlling the host defense system and intestinal microbiota that play a critical role in regulating CA in the intestine.
Collapse
Affiliation(s)
- Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
- Correspondence: ; Tel.: +1-765-494-0763
| | - Ross Monasky
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Jung Keun Lee
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA; (R.M.); (J.K.L.)
| | - Vijay Antharam
- Department of Chemistry, College of Arts, Humanities and Sciences, Methodist University, Fayetteville, NC 28311, USA;
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA;
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN 47906, USA
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47906, USA;
| | - Yan Jin
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (Y.J.); (H.G.)
- Center for Translational Science, Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Port St. Lucie, FL 33199, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
11
|
Van Lier YF, Van den Brink MRM, Hazenberg MD, Markey KA. The post-hematopoietic cell transplantation microbiome: relationships with transplant outcome and potential therapeutic targets. Haematologica 2021; 106:2042-2053. [PMID: 33882637 PMCID: PMC8327718 DOI: 10.3324/haematol.2020.270835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 01/16/2023] Open
Abstract
Microbiota injury occurs in many patients undergoing allogeneic hematopoietic cell transplantation, likely as a consequence of conditioning regimens involving chemo- and radiotherapy, the widespread use of both prophylactic and therapeutic antibiotics, and profound dietary changes during the peri-transplant period. Peri-transplant dysbiosis is characterized by a decrease in bacterial diversity, loss of commensal bacteria and single-taxon domination (e.g., with Enterococcal strains). Clinically, deviation of the post-transplant microbiota from a normal, high-diversity, healthy state has been associated with increased risk of bacteremia, development of graft-versus-host disease and decreases in overall survival. A number of recent clinical trials have attempted to target the microbiota in allogeneic hematopoietic cell transplantation patients via dietary interventions, selection of therapeutic antibiotics, administration of pre- or pro-biotics, or by performing fecal microbiota transplantation. These strategies have yielded promising results but the mechanisms by which these interventions influence transplant-related complications remain largely unknown. In this review we summarize the current approaches to targeting the microbiota, discuss potential underlying mechanisms and highlight the key outstanding areas that require further investigation in order to advance microbiota- targeting therapies.
Collapse
Affiliation(s)
- Yannouck F Van Lier
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, Amsterdam
| | - Marcel R M Van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity (AII), Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Hematopoiesis, Sanquin Research, Amsterdam
| | - Kate A Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
12
|
Ma J, Shen Z, Peng R, Li C, Hu B, Hong J. Tear Lipid Metabolites As Potential Diagnostic Biomarkers for Ocular Chronic Graft-Versus-Host Disease. Transplant Cell Ther 2020; 27:232.e1-232.e6. [PMID: 33781517 DOI: 10.1016/j.jtct.2020.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) remains a common threat after allogeneic hematopoietic cell transplantation (allo-HSCT), and ocular manifestations occur in up to 60% to 90% of cGVHD patients. We sought to reveal major metabolic dysregulation and to determine tear metabolites as potential biomarkers for ocular cGVHD. Twenty-three ocular cGVHD and 16 control tear samples were collected for this study. Differential metabolites were identified using a liquid chromatography-mass spectrometry system. Spearman's test was used to analyze the correlation between metabolites and ophthalmic indexes (National Institutes of Health [NIH] eye score, fluorescein tear film break-up time [T-BUT], corneal fluorescein staining [CFS], and Schirmer's test). Receiver operating characteristic (ROC) curve was analyzed to evaluate the prediction potential of identified metabolites for ocular cGVHD. Differential metabolites were mainly observed in lipid metabolites, and we highlighted the lipid dysregulation in glycerophospholipid metabolism, sphingolipid metabolism, and biosynthesis of unsaturated fatty acids. In glycerophospholipid metabolism, phosphatidylcholine (34:1) (PC [34:1]) exhibited the strongest correlation with NIH eye score (r = 0.80), T-BUT (r = 0.79), CFS (r = 0.77), and Schirmer's test (r = 0.69). In sphingolipid metabolism, sphingomyelin (SM) was the most consistent with T-BUT (r = 0.74) and CFS (r = 0.71), whereas lactosylceramide (LacCer) was the most consistent with NIH eye score (r = 0.76) and Schirmer's test (r = 0.64). In biosynthesis of unsaturated fatty acids, docosahexaenoic acid (DHA) had the highest correlation with NIH eye score (r = 0.73), T-BUT (r = 0.60), CFS (r = 0.67) and Schirmer's test (r = 0.67) (P < .0001 for all). ROC analysis revealed that area under the curve (AUC) values for PC (34:1) (AUC = 0.967), LacCer (AUC = 0.946), SM (AUC = 0.932), and DHA (AUC = 0.929) were significantly correlated with cGVHD (P < .0001 for all). Our study identified PC (34:1), SM, LacCer, and DHA as promising tear biomarkers to indicate metabolic dysregulation and ophthalmic manifestations in ocular cGVHD.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zhan Shen
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Rongmei Peng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Chendi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Bohao Hu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
13
|
Kumari R, Palaniyandi S, Hildebrandt GC. Metabolic Reprogramming-A New Era How to Prevent and Treat Graft Versus Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation Has Begun. Front Pharmacol 2020; 11:588449. [PMID: 33343357 PMCID: PMC7748087 DOI: 10.3389/fphar.2020.588449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the solitary therapeutic therapy for many types of hematological cancers. The benefits of this procedure are challenged by graft vs. host disease (GVHD), causing significant morbidity and mortality. Recent advances in the metabolomics field have revolutionized our understanding of complex human diseases, clinical diagnostics and allow to trace the de novo biosynthesis of metabolites. There is growing evidence for metabolomics playing a role in different aspects of GVHD, and therefore metabolomic reprogramming presents a novel tool for this disease. Pre-transplant cytokine profiles and metabolic status of allogeneic transplant recipients is shown to be linked with a threat of acute GVHD. Immune reactions underlying the pathophysiology of GVHD involve higher proliferation and migration of immune cells to the target site, requiring shifts in energy supply and demand. Metabolic changes and reduced availability of oxygen result in tissue and cellular hypoxia which is extensive enough to trigger transcriptional and translational changes. T cells, major players in acute GVHD pathophysiology, show increased glucose uptake and glycolytic activity. Effector T (Teff) cells activated during nutrient limiting conditions in vitro or multiplying during GVHD in vivo, depend more on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Dyslipidemia, such as the increase of medium and long chain fatty and polyunsaturated acids in plasma of GVHD patients, has been observed. Sphingolipids associate with inflammatory conditions and cancer. Chronic GVHD (cGVHD) patients show reduced branched-chain amino acids (BCAAs) and increased sulfur-containing metabolites post HSCT. Microbiota-derived metabolites such as aryl hydrocarbon receptor (AhR) ligands, bile acids, plasmalogens and short chain fatty acids vary significantly and affect allogeneic immune responses during acute GVHD. Considering the multitude of possibilities, how altered metabolomics are involved in GVHD biology, multi-timepoints related and multivariable biomarker panels for prognosticating and understanding GVHD are needed. In this review, we will discuss the recent work addressing metabolomics reprogramming to control GVHD in detail.
Collapse
Affiliation(s)
| | | | - Gerhard C. Hildebrandt
- Division of Hematology and Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Lynch Kelly D, Farhadfar N, Starkweather A, Garrett TJ, Yao Y, Wingard JR, Mahmud I, Menzies V, Patel P, Alabasi KM, Lyon D. Global Metabolomics in Allogeneic Hematopoietic Cell Transplantation Recipients Discordant for Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2020; 26:1803-1810. [PMID: 32592859 DOI: 10.1016/j.bbmt.2020.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic graft-versus-host disease (cGVHD) remains a significant late effect issue for allogeneic hematopoietic cell transplantation (allo-HCT) survivors, contributing to morbidity and mortality. The etiology of cGVHD is not well elucidated. Owing to a lack of early diagnostic tests and pathophysiology ambiguity, targeted treatments remain limited. Biomarkers for prediction, control response, or prognostication have not yet been identified. Metabolomics, the quantification of metabolites, is a potential biomarker of cGVHD but has not been evaluated in this population. In this study, we examined global metabolites of stored plasma to identify differentially expressed metabolites of individuals discordant for cGVHD following allo-HCT. A descriptive, comparative, cross-sectional study design was used to examine differentially expressed metabolites of plasma samples obtained from 40 adult allo-HCT recipients (20 with cGVHD and 20 without cGVHD) from 2 parent studies. Metabolomics profiling was conducted at the University of Florida's Southeast Center for Integrative Metabolomics. Full experimental methods followed a previously published method. All statistical analyses were performed by a PhD-prepared, trained bioinformatics statistician. There were 10 differentially expressed metabolites between participants with cGVHD and those without cGVHD. Differential metabolites included those related to energy metabolism (n = 3), amino acid metabolism (n = 3), lipid metabolism (n = 2), caffeine metabolism (n = 1), and neurotransmission (n = 1). Serotonin had the greatest fold change (21.01). This study suggests that cGVHD may be associated with expanded cellular energy and potentially mitochondrial dysfunction. The differential metabolic profile between patients with and without cGVHD indicates metabolic perturbations that merit further exploration as potential biomarkers of cGVHD. These findings support the need for further examination using a larger, prospective study design to identify metabolomic risk factors that may signal the need for earlier preventive measures and earlier treatment to reduce cGVHD.
Collapse
Affiliation(s)
| | - Nosha Farhadfar
- College of Medicine, University of Florida, Gainesville, Florida
| | | | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida
| | - Yingwei Yao
- College of Nursing, University of Florida, Gainesville, Florida
| | - John R Wingard
- College of Medicine, University of Florida, Gainesville, Florida
| | - Iqbal Mahmud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida; College of Medicine, University of Florida, Gainesville, Florida
| | | | - Param Patel
- School of Nursing, University of Connecticut, Storrs, Connecticut
| | - Karima M Alabasi
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Debra Lyon
- College of Nursing, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Hippen KL, Aguilar EG, Rhee SY, Bolivar-Wagers S, Blazar BR. Distinct Regulatory and Effector T Cell Metabolic Demands during Graft-Versus-Host Disease. Trends Immunol 2020; 41:77-91. [PMID: 31791718 PMCID: PMC6934920 DOI: 10.1016/j.it.2019.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Despite graft-versus-host disease (GVHD) prophylactic agents, the success and wider utilization of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by GVHD. Increasing donor graft regulatory T cell (Treg):effector T cell (Teff) ratios can substantially reduce GVHD in cancer patients, but pre-HSCT conditioning regimens and GVHD create a challenging inflammatory environment for Treg stability, persistence, and function. Metabolism plays a crucial role in T cell and Treg differentiation, and development of effector function. Although glycolysis is a main driver of allogeneic T cell-driven GVHD, oxidative phosphorylation is a main driver of Treg suppressor function. This review focuses on recent advances in our understanding of Treg metabolism in the context of GVHD, and discusses potential therapeutic applications of Tregs in the prevention or treatment of GVHD in cancer patients.
Collapse
Affiliation(s)
- Keli L Hippen
- University of Minnesota Cancer Center, Minneapolis, MN 55455, USA; Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ethan G Aguilar
- University of Minnesota Cancer Center, Minneapolis, MN 55455, USA; Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie Y Rhee
- University of Minnesota Cancer Center, Minneapolis, MN 55455, USA; Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sara Bolivar-Wagers
- University of Minnesota Cancer Center, Minneapolis, MN 55455, USA; Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruce R Blazar
- University of Minnesota Cancer Center, Minneapolis, MN 55455, USA; Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
D’Amico F, Biagi E, Rampelli S, Fiori J, Zama D, Soverini M, Barone M, Leardini D, Muratore E, Prete A, Gotti R, Pession A, Masetti R, Brigidi P, Turroni S, Candela M. Enteral Nutrition in Pediatric Patients Undergoing Hematopoietic SCT Promotes the Recovery of Gut Microbiome Homeostasis. Nutrients 2019; 11:nu11122958. [PMID: 31817158 PMCID: PMC6950621 DOI: 10.3390/nu11122958] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is the first-line immunotherapy to treat several hematologic disorders, although it can be associated with many complications reducing the survival rate, such as acute graft-versus-host disease (aGvHD) and infections. Given the fundamental role of the gut microbiome (GM) for host health, it is not surprising that a suboptimal path of GM recovery following HSCT may compromise immune homeostasis and/or increase the risk of opportunistic infections, with an ultimate impact in terms of aGvHD onset. Traditionally, the first nutritional approach in post-HSCT patients is parenteral nutrition (PN), which is associated with several clinical adverse effects, supporting enteral nutrition (EN) as a preferential alternative. The aim of the study was to evaluate the impact of EN vs. PN on the trajectory of compositional and functional GM recovery in pediatric patients undergoing HSCT. The GM structure and short-chain fatty acid (SCFA) production profiles were analyzed longitudinally in twenty pediatric patients receiving HSCT—of which, ten were fed post-transplant with EN and ten with total PN. According to our findings, we observed the prompt recovery of a structural and functional eubiotic GM layout post-HSCT only in EN subjects, thus possibly reducing the risk of systemic infections and GvHD onset.
Collapse
Affiliation(s)
- Federica D’Amico
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (F.D.); (E.B.); (S.R.); (M.S.); (M.B.); (P.B.); (S.T.)
| | - Elena Biagi
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (F.D.); (E.B.); (S.R.); (M.S.); (M.B.); (P.B.); (S.T.)
| | - Simone Rampelli
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (F.D.); (E.B.); (S.R.); (M.S.); (M.B.); (P.B.); (S.T.)
| | - Jessica Fiori
- Department of Chemistry, University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| | - Daniele Zama
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, Department of Pediatrics, University of Bologna, Sant’Orsola Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; (D.Z.); (D.L.); (E.M.); (A.P.); (A.P.); (R.M.)
| | - Matteo Soverini
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (F.D.); (E.B.); (S.R.); (M.S.); (M.B.); (P.B.); (S.T.)
| | - Monica Barone
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (F.D.); (E.B.); (S.R.); (M.S.); (M.B.); (P.B.); (S.T.)
| | - Davide Leardini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, Department of Pediatrics, University of Bologna, Sant’Orsola Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; (D.Z.); (D.L.); (E.M.); (A.P.); (A.P.); (R.M.)
| | - Edoardo Muratore
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, Department of Pediatrics, University of Bologna, Sant’Orsola Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; (D.Z.); (D.L.); (E.M.); (A.P.); (A.P.); (R.M.)
| | - Arcangelo Prete
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, Department of Pediatrics, University of Bologna, Sant’Orsola Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; (D.Z.); (D.L.); (E.M.); (A.P.); (A.P.); (R.M.)
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, Department of Pediatrics, University of Bologna, Sant’Orsola Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; (D.Z.); (D.L.); (E.M.); (A.P.); (A.P.); (R.M.)
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, Department of Pediatrics, University of Bologna, Sant’Orsola Malpighi Hospital, Via Massarenti 9, 40138 Bologna, Italy; (D.Z.); (D.L.); (E.M.); (A.P.); (A.P.); (R.M.)
| | - Patrizia Brigidi
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (F.D.); (E.B.); (S.R.); (M.S.); (M.B.); (P.B.); (S.T.)
| | - Silvia Turroni
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (F.D.); (E.B.); (S.R.); (M.S.); (M.B.); (P.B.); (S.T.)
| | - Marco Candela
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (F.D.); (E.B.); (S.R.); (M.S.); (M.B.); (P.B.); (S.T.)
- Correspondence: ; Tel.: +39-051-2099727
| |
Collapse
|