1
|
Galletti JG, Scholand KK, Trujillo-Vargas CM, Yu Z, Mauduit O, Delcroix V, Makarenkova HP, de Paiva CS. Ectopic lymphoid structures in the aged lacrimal glands. Clin Immunol 2023; 248:109251. [PMID: 36740002 PMCID: PMC10323865 DOI: 10.1016/j.clim.2023.109251] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Aging is a complex biological process in which many organs are pathologically affected. We previously reported that aged C57BL/6J had increased lacrimal gland (LG) lymphoid infiltrates that suggest ectopic lymphoid structures. However, these ectopic lymphoid structures have not been fully investigated. Using C57BL/6J mice of different ages, we analyzed the transcriptome of aged murine LGs and characterized the B and T cell populations. Age-related changes in the LG include increased differentially expressed genes associated with B and T cell activation, germinal center formation, and infiltration by marginal zone-like B cells. We also identified an age-related increase in B1+ cells and CD19+B220+ cells. B220+CD19+ cells were GL7+ (germinal center-like) and marginal zone-like and progressively increased with age. There was an upregulation of transcripts related to T follicular helper cells, and the number of these cells also increased as mice aged. Compared to a mouse model of Sjögren syndrome, aged LGs have similar transcriptome responses but also unique ones. And lastly, the ectopic lymphoid structures in aged LGs are not exclusive to a specific mouse background as aged diverse outbred mice also have immune infiltration. Altogether, this study identifies a profound change in the immune landscape of aged LGs where B cells become predominant. Further studies are necessary to investigate the specific function of these B cells during the aged LGs.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Institute of Experimental Medicine (CONICET), National Academy of Medicine of Buenos Aires, Buenos Aires, Argentina
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Biochemistry and Cell Biology Graduate Program, Department of BioSciences, Rice University, Houston, TX, USA.
| | - Claudia M Trujillo-Vargas
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA; Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, UdeA, Medellín, Colombia.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Targets of autoantibodies in acquired hemophilia A are not restricted to factor VIII: data from the GTH-AH 01/2010 study. Blood Adv 2022; 7:122-130. [PMID: 35947142 PMCID: PMC9830154 DOI: 10.1182/bloodadvances.2022008071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The root cause of autoantibody formation against factor VIII (FVIII) in acquired hemophilia A (AHA) remains unclear. We aimed to assess whether AHA is exclusively associated with autoantibodies toward FVIII or whether patients also produce increased levels of autoantibodies against other targets. A case-control study was performed enrolling patients with AHA and age-matched controls. Human epithelial cell (HEp-2) immunofluorescence was applied to screen for antinuclear (ANA) and anticytoplasmic autoantibodies. Screening for autoantibodies against extractable nuclear antigens was performed by enzyme immunoassay detecting SS-A/Ro, SS-B/La, U1RNP, Scl-70, Jo-1, centromere B, Sm, double-stranded DNA, and α-fodrin (AF). Patients with AHA were more often positive for ANA than control patients (64% vs 30%; odds ratio [OR] 4.02, 1.98-8.18) and had higher ANA titers detected than controls. Cytoplasmic autoantibodies and anti-AF immunoglobulin A autoantibodies were also more frequent in patients with AHA compared with controls. Autoantibodies against any target other than FVIII were found in 78% of patients with AHA compared with 46% of controls (OR 4.16, 1.98-8.39). Results were similar preforming sensitivity analyses (excluding either subjects with autoimmune disorders, cancer, pregnancy, or immunosuppressive medication at baseline) and in multivariable binary logistic regression. To exclude that autoantibody staining was merely a result of cross-reactivity of anti-FVIII autoantibodies, we tested a mix of 7 well-characterized monoclonal anti-FVIII antibodies. These antibodies did not stain HEp-2 cells used for ANA detection. In conclusion, a diverse pattern of autoantibodies is associated with AHA, suggesting that a more general breakdown of immune tolerance might be involved in its pathology.
Collapse
|
3
|
Deciphering the nexus between the tumor immune microenvironment and DNA methylation in subgrouping estrogen receptor-positive breast cancer. Breast Cancer 2021; 28:1252-1260. [PMID: 33966175 DOI: 10.1007/s12282-021-01262-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/06/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Based on variable DNA methylation (DNAm), estrogen receptor (ER)-positive breast cancer (BRCA) is composed of two major subtypes, with the hypomethylated subgroup displaying good survival. Evidence indicates that the tumor microenvironment (TME) plays an important role in tumor progression and metastasis; however, its role and biological characteristics in DNAm-based subtypes of ER-positive BRCA remain largely unknown. METHODS Transcriptome data and matched clinical information of BRCA were downloaded from the Cancer Genome Atlas. Immune (ISs) and stromal scores (SSs) of BRCA patients were calculated using the ESTIMATE algorithm. Inferred fractions of 22 types of infiltrating immune cells of BRCA were collected from the Cancer Immunome Atlas. RESULTS The hypomethylated ER-positive BRCA subtype displayed high ISs, echoing the finding that higher ISs are associated with good BRCA survival. In addition, we analyzed the differentially expressed genes between the hypo-high-IS and hyper-low-IS BRCA subtypes in ER-positive patients and identified a co-expressed gene module (i.e., red module) enriched in immune-related biological processes (e.g., leukocyte activation involved in immune response). Moreover, four hub genes (i.e., PLEK, CD53, EVI2B, and CD4) in this module showed significant association between their expression and ER-positive BRCA survival. CONCLUSIONS We found differences in the tumor immune microenvironment (TIME) between DNAm-based BRCA subgroups in ER-positive patients and identified a specific module and hub genes involved to these differences. These findings elucidate the immunological basis for ER-positive BRCA progression and classification and provide potential gene biomarkers and targets for ER-positive BRCA diagnosis and treatment.
Collapse
|
4
|
Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. NANOSCALE ADVANCES 2021; 3:10-23. [PMID: 36131870 PMCID: PMC9419860 DOI: 10.1039/d0na00454e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/26/2020] [Indexed: 05/04/2023]
Abstract
The successful cytosolic delivery of nanoparticles is hampered by their endosomal entrapment and degradation. To push forward the smart development of nanoparticles we must reliably detect and quantify their endosomal escape process. However, the current methods employed are not quantitative enough at the nanoscale to achieve this. Nanoscopy is a rapidly evolving field that has developed a diverse set of powerful techniques in the last two decades, opening the door to explore nanomedicine with an unprecedented resolution and specificity. The understanding of key steps in the drug delivery process - such as endosomal escape - would benefit greatly from the implementation of the most recent advances in microscopy. In this review, we provide the latest insights into endosomal escape of nanoparticles obtained by nanoscopy, and we discuss the features that would allow these techniques to make a great impact in the field.
Collapse
Affiliation(s)
- Teodora Andrian
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
| | - Roger Riera
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven Netherlands
| | - Silvia Pujals
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona Av. Diagonal 647 08028 Barcelona Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven Netherlands
| |
Collapse
|
5
|
Endo R, Uchiyama K, Lim SY, Itakura M, Adachi T, Uchida K. Recognition of acrolein-specific epitopes by B cell receptors triggers an innate immune response. J Biol Chem 2021; 296:100648. [PMID: 33839149 PMCID: PMC8121969 DOI: 10.1016/j.jbc.2021.100648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 10/25/2022] Open
Abstract
Natural antibodies, predominantly immunoglobulin M (IgM), play an important role in the defense against pathogens and in maintaining homeostasis against oxidized molecules known as oxidation-specific epitopes, such as those contained in oxidized low-density lipoproteins. However, owing to the complexity of the oxidized products, very few individual epitopes have been characterized in detail. In the present study, to identify endogenous sources of oxidation-specific epitopes, we stimulated mouse spleen and peritoneal cavity (PerC) cells in vitro with bovine serum albumin modified with a variety of lipid peroxidation-related carbonyl compounds and identified the acrolein-modified bovine serum albumin as the most efficient trigger studied for the production of IgM in PerC cells. The acrolein-specific epitopes accelerated the differentiation of B-1a cells, a fetal-derived B cell lineage, to plasma cells. In addition, acrolein-modified bovine serum albumin was specifically bound to B-1a cells, suggesting the presence of an acrolein-specific IgM-B cell receptor (BCR). A hybridoma, RE-G25, producing an acrolein-specific IgM, was established from the PerC cells and was indeed identified as a population of B cells expressing a specific IgM-BCR. In addition, we analyzed the BCR repertoire of acrolein-specific B cells and identified the most frequent IgM heavy chain gene segments of the B cells. These data established the presence of innate B cells expressing the acrolein-specific BCR and suggested that in addition to our understanding of acrolein as a toxic aldehyde, it may play a role as a trigger of the innate immune response.
Collapse
Affiliation(s)
- Ryunosuke Endo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuki Uchiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sei-Young Lim
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masanori Itakura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Japan Agency for Medical Research and Development, CREST, Tokyo, Japan.
| |
Collapse
|
6
|
Jani PK, Kubagawa H, Melchers F. A rheostat sets B-cell receptor repertoire selection to distinguish self from non-self. Curr Opin Immunol 2020; 67:42-49. [PMID: 32916645 DOI: 10.1016/j.coi.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
In bone marrow VDJ-recombination continuously generates original repertoires of immature B cells expressing IgM-B cell receptor (BcR), in which each cell recognizes the wide variety of self and non-self antigens with an individually different spectrum of avidities. High avidity self-reactive B cells try to edit their BcRs by secondary or multiple VL-rearrangements to JL-rearrangements. If they do not manage to change their self reactivity, they are deleted by apoptosis. Low avidity self-reactive B cells are anergized, while B cells with no avidity to self are ignored. A rheostat crosslinking antigen-binding BcRs, self antigen complexed with pentameric IgM and Fcμ-receptor monitors high, low or no binding. PI3K and PTEN are the effectors of this self antigen-sensing device. In mature B cells this rheostat continues to function in the activation of resting B cells by foreign antigens which crosslink BcR, antigen and pentameric IgM with Fcμ-receptors.
Collapse
Affiliation(s)
- Peter K Jani
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Hiromi Kubagawa
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
7
|
Eibel H, Winkler T, Ceredig R. Editorial: Making Science Fun - A Tribute to Our Colleague and Friend, Prof. Antonius G. Rolink (1953-2017). Front Immunol 2019; 9:2915. [PMID: 30619279 PMCID: PMC6306044 DOI: 10.3389/fimmu.2018.02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Thomas Winkler
- Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rhodri Ceredig
- Discipline of Physiology, College of Medicine and Nursing Health Science, National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Winkler TH, Mårtensson IL. The Role of the Pre-B Cell Receptor in B Cell Development, Repertoire Selection, and Tolerance. Front Immunol 2018; 9:2423. [PMID: 30498490 PMCID: PMC6249383 DOI: 10.3389/fimmu.2018.02423] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022] Open
Abstract
Around four decades ago, it had been observed that there were cell lines as well as cells in the fetal liver that expressed antibody μ heavy (μH) chains in the apparent absence of bona fide light chains. It was thus possible that these cells expressed another molecule(s), that assembled with μH chains. The ensuing studies led to the discovery of the pre-B cell receptor (pre-BCR), which is assembled from Ig μH and surrogate light (SL) chains, together with the signaling molecules Igα and β. It is expressed on a fraction of pro-B (pre-BI) cells and most large pre-B(II) cells, and has been implicated in IgH chain allelic exclusion and down-regulation of the recombination machinery, assessment of the expressed μH chains and shaping the IgH repertoire, transition from the pro-B to pre-B stage, pre-B cell expansion, and cessation.
Collapse
Affiliation(s)
- Thomas H Winkler
- Chair of Genetics, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Greaves SA, Peterson JN, Torres RM, Pelanda R. Activation of the MEK-ERK Pathway Is Necessary but Not Sufficient for Breaking Central B Cell Tolerance. Front Immunol 2018; 9:707. [PMID: 29686680 PMCID: PMC5900439 DOI: 10.3389/fimmu.2018.00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 01/12/2023] Open
Abstract
Newly generated bone marrow B cells are positively selected into the peripheral lymphoid tissue only when they express a B cell receptor (BCR) that is nonautoreactive or one that binds self-antigen with only minimal avidity. This positive selection process, moreover, is critically contingent on the ligand-independent tonic signals transduced by the BCR. We have previously shown that when autoreactive B cells express an active form of the rat sarcoma (RAS) oncogene, they upregulate the receptor for the B cell activating factor (BAFFR) and undergo differentiation in vitro and positive selection into the spleen in vivo, overcoming central tolerance. Based on the in vitro use of pharmacologic inhibitors, we further showed that this cell differentiation process is critically dependent on the activation of the mitogen-activated protein kinase kinase pathway MEK (MAPKK)-extracellular signal-regulated kinase (ERK), which is downstream of RAS. Here, we next investigated if activation of ERK is not only necessary but also sufficient to break central B cell tolerance and induce differentiation of autoreactive B cells in vitro and in vivo. Our results demonstrate that activation of ERK is critical for upregulating BAFFR and overcoming suboptimal levels of tonic BCR signals or low amounts of antigen-induced BCR signals during in vitro B cell differentiation. However, direct activation of ERK does not lead high avidity autoreactive B cells to increase BAFFR levels and undergo positive selection and differentiation in vivo. B cell-specific MEK-ERK activation in mice is also unable to lead to autoantibody secretion, and this in spite of a general increase of serum immunoglobulin levels. These findings indicate that additional pathways downstream of RAS are required for high avidity autoreactive B cells to break central and/or peripheral tolerance.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jacob N Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
10
|
Heiler S, Lötscher J, Kreuzaler M, Rolink J, Rolink A. Prophylactic and Therapeutic Effects of Interleukin-2 (IL-2)/Anti-IL-2 Complexes in Systemic Lupus Erythematosus-Like Chronic Graft-Versus-Host Disease. Front Immunol 2018; 9:656. [PMID: 29670626 PMCID: PMC5893767 DOI: 10.3389/fimmu.2018.00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/16/2018] [Indexed: 11/13/2022] Open
Abstract
Murine chronic graft-versus-host-disease (cGvHD) induced by injection of parental lymphocytes into F1 hybrids results in a disease similar to systemic lupus erythematosus. Here, we have used DBA/2 T cell injection into (C57BL/6 × DBA/2)F1 (BDF1) mice as a model system to test the prophylactic and therapeutic effects of interleukin-2 (IL-2)/anti-IL-2 immune complexes on the course of cGvHD. Our findings demonstrate that pretreatment with Treg inducing JES6/IL-2 complexes render BDF1 mice largely resistant to induction of cGvHD, whereas pretreatment with CD8+ T cell/NK cell inducing S4B6/IL-2 complexes results in a more severe cGvHD. In contrast, treatment with JES6/IL-2 complexes 4 weeks after induction had no beneficial effect on disease symptoms. However, similar treatment with S4B6/IL-2 complexes led to a significant amelioration of the disease. This therapeutic effect seems to be mediated by donor CD8+ T cells. The fact that a much stronger cGvHD is induced in BDF1 mice depleted of donor CD8+ T cells strongly supports this conclusion. The contrasting effects of the two different IL-2 complexes are likely due to different mechanisms.
Collapse
Affiliation(s)
- Stefan Heiler
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jonas Lötscher
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Matthias Kreuzaler
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Johanna Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Antonius Rolink
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|