1
|
Wang H, Liu S, Zhan J, Liang Y, Zeng X. Shaping the immune-suppressive microenvironment on tumor-associated myeloid cells through tumor-derived exosomes. Int J Cancer 2024; 154:2031-2042. [PMID: 38500385 DOI: 10.1002/ijc.34921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Tumor-associated myeloid cells (TAMCs) play a crucial role in orchestrating the dynamics of the tumor immune microenvironment. This heterogeneous population encompasses myeloid-derived suppressor cells, tumor-associated macrophages and dendritic cells, all of which contribute to the establishment of an immunosuppressive milieu that fosters tumor progression. Tumor-derived exosomes (TEXs), small extracellular vesicles secreted by tumor cells, have emerged as central mediators in intercellular communication within the tumor microenvironment. In this comprehensive review, we explore the intricate mechanisms through which TEXs modulate immune-suppressive effects on TAMCs and their profound implications in cancer progression. We delve into the multifaceted ways in which TEXs influence TAMC functions, subsequently affecting tumor immune evasion. Furthermore, we elucidate various therapeutic strategies aimed at targeting TEX-mediated immune suppression, with the ultimate goal of bolstering antitumor immunity.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shanshan Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianhao Zhan
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
- Department of Clinical Medcine, HuanKui Academy, Nanchang University, Nanchang, China
| | - Yuqing Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaoping Zeng
- Department of Pathology, Medical College, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
2
|
Xu Y, Miller CP, Tykodi SS, Akilesh S, Warren EH. Signaling crosstalk between tumor endothelial cells and immune cells in the microenvironment of solid tumors. Front Cell Dev Biol 2024; 12:1387198. [PMID: 38726320 PMCID: PMC11079179 DOI: 10.3389/fcell.2024.1387198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor-associated endothelial cells (TECs) are crucial mediators of immune surveillance and immune escape in the tumor microenvironment (TME). TECs driven by angiogenic growth factors form an abnormal vasculature which deploys molecular machinery to selectively promote the function and recruitment of immunosuppressive cells while simultaneously blocking the entry and function of anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to promote the metastasis of tumor cells. Meanwhile, the tumor-infiltrating immune cells further induce the TEC anergy by secreting pro-angiogenic factors and prevents further immune cell penetration into the TME. Understanding the complex interactions between TECs and immune cells will be needed to successfully treat cancer patients with combined therapy to achieve vasculature normalization while augmenting antitumor immunity. In this review, we will discuss what is known about the signaling crosstalk between TECs and tumor-infiltrating immune cells to reveal insights and strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Chris P. Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Scott S. Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Li J, Lu S, Chen F, Zhu H. Unveiling the hidden role of extracellular vesicles in brain metastases: a comprehensive review. Front Immunol 2024; 15:1388574. [PMID: 38726015 PMCID: PMC11079170 DOI: 10.3389/fimmu.2024.1388574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Background Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
4
|
Miron RJ, Zhang Y. Understanding exosomes: Part 1-Characterization, quantification and isolation techniques. Periodontol 2000 2024; 94:231-256. [PMID: 37740431 DOI: 10.1111/prd.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/24/2023]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with a diameter in the range of 30-150 nm. Their use has gained great momentum recently due to their ability to be utilized as diagnostic tools with a vast array of therapeutic applications. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be investigated. This review article first focuses on understanding exosomes, including their cellular origin, biogenesis, function, and characterization. Thereafter, overviews of the quantification methods and isolation techniques are given with discussion over their potential use as novel therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
5
|
Xiong X, Zhang Y, Wen Y. Diverse functions of myeloid-derived suppressor cells in autoimmune diseases. Immunol Res 2024; 72:34-49. [PMID: 37733169 PMCID: PMC10811123 DOI: 10.1007/s12026-023-09421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Since myeloid-derived suppressor cells (MDSCs) were found suppressing immune responses in cancer and other pathological conditions, subsequent researchers have pinned their hopes on the suppressive function against immune damage in autoimmune diseases. However, recent studies have found key distinctions of MDSC immune effects in cancer and autoimmunity. These include not only suppression and immune tolerance, but MDSCs also possess pro-inflammatory effects and exacerbate immune disorders during autoimmunity, while promoting T cell proliferation, inducing Th17 cell differentiation, releasing pro-inflammatory cytokines, and causing direct tissue damage. Additionally, MDSCs could interact with surrounding cells to directly cause tissue damage or repair, sometimes even as an inflammatory indicator in line with disease severity. These diverse manifestations could be partially attributed to the heterogeneity of MDSCs, but not all. The different disease types, disease states, and cytokine profiles alter the diverse phenotypes and functions of MDSCs, thus leading to the impairment or obversion of MDSC suppression. In this review, we summarize the functions of MDSCs in several autoimmune diseases and attempt to elucidate the mechanisms behind their actions.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41:62. [PMID: 38253748 DOI: 10.1007/s12032-023-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia (AML) is a fast-growing blood cancer that interferes with the normal growth of blood cells in the bone marrow and blood. It is characterized by its unpredictable outlook and high death rate. The main treatment for AML is chemotherapy, but this often results in drug resistance and the possibility of the disease returning. For this reason, new biomarkers are necessary to diagnose, predict, and treat this disease. Research has demonstrated that cells responsible for AML release exosomes that interact with the disease's microenvironment. These exosomes have significant roles in promoting leukemia growth, suppressing normal hematopoiesis, facilitating angiogenesis, and contributing to drug resistance in AML. Further investigations have shown that these exosomes contain miRNAs, which are transferred to target cells and have functional roles. Biomarkers are utilized to assess various aspects of tumor cell behavior, including proliferation, apoptosis, angiogenesis, changes in the microenvironment, transfer of drug resistance, and stability in serum and blood plasma. In this research, we showed that exosomal miRNAs and exosomes have the potential to be used as indicators for detecting various phases of AML and can aid in its medical treatment. Furthermore, they can be specifically targeted for therapeutic purposes in addressing this condition.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Cellular and Molecular Biology, Faculty of New Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Parvin M, Rashid MH, Arbab AS. Isolation and immunosuppressive functions of myeloid-derived suppressor cell-derived exosomes. Methods Cell Biol 2023; 184:105-118. [PMID: 38555151 PMCID: PMC11059823 DOI: 10.1016/bs.mcb.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are an integral part of the tumor microenvironment (TME). MDSC's involvement in the TME starts as soon as the primary tumor starts to get its blood supply causing an immunosuppressive environment and tumor cell invasion, and then at the formation of premetastatic niche through full-blown metastasis in distal organs. All of these functions don't require physical interaction of MDSC as some of the MDSC's functions can be replicated by secreted exosomes (MDSC-derived exosomes), which can alter the microenvironment through cellular interaction by fusion with the plasma membrane and subsequent release of their cargo, consisting of proteins, soluble factors, lipids, DNAs, microRNAs (miRNAs), and RNAs. In this method paper, we explained how to isolate MDSC exosomes and how to use the exosome to observe immunosuppressive function. We also discussed how to measure the number of exosomes by nanoparticle tracking analysis. Additionally, we outlined how to measure the protein of exosomes as well as the types of protein by Bradford assay and membrane cytokine array respectively. We also provided instructions on how to utilize MDSC-derived exosomes to get knowledge about in vitro immune cell migration, scratch assay with the tumor cells, and in vivo effect of MDSC exosome along with T cell function and proliferation.
Collapse
Affiliation(s)
- Mahrima Parvin
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Mohammad H Rashid
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Ali S Arbab
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, GA, United States.
| |
Collapse
|
8
|
Krumm J, Petrova E, Lechner S, Mergner J, Boehm HH, Prestipino A, Steinbrunn D, Deline ML, Koetzner L, Schindler C, Helming L, Fromme T, Klingenspor M, Hahne H, Pieck JC, Kuster B. High-Throughput Screening and Proteomic Characterization of Compounds Targeting Myeloid-Derived Suppressor Cells. Mol Cell Proteomics 2023; 22:100632. [PMID: 37586548 PMCID: PMC10518717 DOI: 10.1016/j.mcpro.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.
Collapse
Affiliation(s)
- Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Elissaveta Petrova
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Hans-Henning Boehm
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Alessandro Prestipino
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Marshall L Deline
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Lisa Koetzner
- Global Research & Development, Discovery and Development Technologies, Global Medicinal Chemistry, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christina Schindler
- Global Research & Development, Discovery Technologies, Computational Chemistry & Biologics, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Laura Helming
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Jan-Carsten Pieck
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
9
|
Shokati E, Safari E. The immunomodulatory role of exosomal microRNA networks in the crosstalk between tumor-associated myeloid-derived suppressor cells and tumor cells. Int Immunopharmacol 2023; 120:110267. [PMID: 37276829 DOI: 10.1016/j.intimp.2023.110267] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are considered a heterogeneous group of immature myeloid cells engaging in aggressive tumor progression and metastasis in the tumor microenvironment (TME) of patients diagnosed with cancer, through downregulation of anti-tumor immune responses. Exosomes are small vesicles carrying specific cargos, including proteins, lipids, and MicroRNA (miRNAs). Such exosomal miRNAs delivered by MDSCs and tumor cells are short noncoding RNAs mediating some of the immunosuppressive characteristics of MDSCs in the TME. However, when it comes to cancer diseases, how these miRNAs interact with MDSCs and encourage MDSCs differentiation and function need further investigations. In this review, we discuss MDSC-derived exosomal miRNAs and those derived from tumor cells (TDE) could modulate anti-tumor immunity and regulate the interaction between tumor cells and MDSCs in the TME. Afterward, we focus on dividing miRNAs, as an important substance interacting with MDSCs and tumor cells in the TME, into those have an immunosuppressive or stimulating effect not only on MDSCs expansion, differentiation, and suppressive function but also on tumor evasion.
Collapse
Affiliation(s)
- Elham Shokati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Elahe Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Liu S, Huang B, Cao J, Wang Y, Xiao H, Zhu Y, Zhang H. ROS fine-tunes the function and fate of immune cells. Int Immunopharmacol 2023; 119:110069. [PMID: 37150014 DOI: 10.1016/j.intimp.2023.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
The redox state is essential to the process of cell life, which determines cell fate. As an important signaling molecule of the redox state, reactive oxygen species (ROS) are crucial for the homeostasis of immune cells and participate in the pathological processes of different diseases. We discuss the underlying mechanisms and possible signaling pathways of ROS to fine-tune the proliferation, differentiation, polarization and function of immune cells, including T cells, B cells, neutrophils, macrophages, myeloid-derived inhibitory cells (MDSCs) and dendritic cells (DCs). We further emphasize how excessive ROS lead to programmed immune cell death such as apoptosis, ferroptosis, pyroptosis, NETosis and necroptosis, providing valuable insights for future therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Benqi Huang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Jingdong Cao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yifei Wang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Hao Xiao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, 410008 Changsha, China
| | - Yaxi Zhu
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| | - Huali Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Department of Pathophysiology, School of Basic Medical Sciences, Central South University, 410008 Changsha, China.
| |
Collapse
|
11
|
Zhang H, Wang S, Sun M, Cui Y, Xing J, Teng L, Xi Z, Yang Z. Exosomes as smart drug delivery vehicles for cancer immunotherapy. Front Immunol 2023; 13:1093607. [PMID: 36733388 PMCID: PMC9888251 DOI: 10.3389/fimmu.2022.1093607] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Exosomes (Exos) as drug delivery vehicles have been widely used for cancer immunotherapy owing to their good biocompatibility, low toxicity, and low immunogenicity. Some Exos-based cancer immunotherapy strategies such as tuning of immunosuppressive tumor microenvironment, immune checkpoint blockades, and cancer vaccines have also been investigated in recent years, which all showed excellent therapeutic effects for malignant tumor. Furthermore, some Exos-based drug delivery systems (DDSs) for cancer immunotherapy have also undergone clinic trails, indicating that Exos are a promising drug delivery carrier. In this review, in order to promote the development of Exos-based DDSs in cancer immunotherapy, the biogenesis and composition of Exos, and Exos as drug delivery vehicles for cancer immunotherapy are summarized. Meanwhile, their clinical translation and challenges are also discussed. We hope this review will provide a good guidance for Exos as drug delivery vehicles for cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, China
| | - Jianming Xing
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhifang Xi
- School of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China,*Correspondence: Zhifang Xi, ; Zhaogang Yang,
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, China,*Correspondence: Zhifang Xi, ; Zhaogang Yang,
| |
Collapse
|
12
|
Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells 2022; 11:cells11121946. [PMID: 35741075 PMCID: PMC9221707 DOI: 10.3390/cells11121946] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are membranous structures secreted by nearly all cell types. As critical messengers for intercellular communication, exosomes deliver bioactive cargoes to recipient cells and are involved in multiple physiopathological processes, including immunoregulation. Our pioneering study revealed that cancer cells release programmed death-ligand 1-positive exosomes into the circulation to counter antitumor immunity systemically via T cells. Tumor cell-derived exosomes (TDEs) also play an immunosuppressive role in other immunocytes, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and myeloid-derived suppressor cells (MDSCs). Moreover, exosomes secreted by nontumor cells in the tumor microenvironments (TMEs) also exert immunosuppressive effects. This review systematically provides a summary of the immunosuppression induced by exosomes in tumor microenvironments, which modulates tumor growth, invasion, metastasis, and immunotherapeutic resistance. Additionally, therapeutic strategies targeting the molecular mechanism of exosome-mediated tumor development, which may help overcome several obstacles, such as immune tolerance in oncotherapy, are also discussed. Detailed knowledge of the specific functions of exosomes in antitumor immunity may contribute to the development of innovative treatments.
Collapse
|
13
|
Cioccarelli C, Molon B. MDSCs and T cells in solid tumors and non-Hodgkin lymphomas: an immunosuppressive speech. Clin Exp Immunol 2022; 208:147-157. [PMID: 35348617 PMCID: PMC9188344 DOI: 10.1093/cei/uxac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous subset of cells expanded during multiple pathological settings, including cancers. In tumors, MDSCs are dominant drivers of T-cell immunosuppression. To accomplish their job, they exploit multiple mechanisms ultimately leading to the paralysis of anti-tumor immunity. Among the variety of MDSC-ways of working within the tumor microenvironment, the generation of reactive species and the metabolic reprogramming have emerged as pivotal determinants of their immunosuppressive power. In this review we will overview integral mechanisms of MDSC-mediated immunosuppression in solid tumors, with a particular focus on Non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Chiara Cioccarelli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, Padova, Italy
| |
Collapse
|
14
|
Hazrati A, Soudi S, Malekpour K, Mahmoudi M, Rahimi A, Hashemi SM, Varma RS. Immune cells-derived exosomes function as a double-edged sword: role in disease progression and their therapeutic applications. Biomark Res 2022; 10:30. [PMID: 35550636 PMCID: PMC9102350 DOI: 10.1186/s40364-022-00374-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
Exosomes, ranging in size from 30 to 150 nm as identified initially via electron microscopy in 1946, are one of the extracellular vesicles (EVs) produced by many cells and have been the subject of many studies; initially, they were considered as cell wastes with the belief that cells produced exosomes to maintain homeostasis. Nowadays, it has been found that EVs secreted by different cells play a vital role in cellular communication and are usually secreted in both physiological and pathological conditions. Due to the presence of different markers and ligands on the surface of exosomes, they have paracrine, endocrine and autocrine effects in some cases. Immune cells, like other cells, can secrete exosomes that interact with surrounding cells via these vesicles. Immune system cells-derived exosomes (IEXs) induce different responses, such as increasing and decreasing the transcription of various genes and regulating cytokine production. This review deliberate the function of innate and acquired immune cells derived exosomes, their role in the pathogenesis of immune diseases, and their therapeutic appliances.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Kosar Malekpour
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Rahimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
15
|
Karami Fath M, Azargoonjahromi A, Jafari N, Mehdi M, Alavi F, Daraei M, Mohammadkhani N, Mueller AL, Brockmueller A, Shakibaei M, Payandeh Z. Exosome application in tumorigenesis: diagnosis and treatment of melanoma. Med Oncol 2022; 39:19. [PMID: 34982284 DOI: 10.1007/s12032-021-01621-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is the most aggressive of skin cancer derived from genetic mutations in the melanocytes. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. However, the efficiency of these strategies may be decreased due to the development of diverse resistance mechanisms. Here, it has been proven that therapeutic monoclonal antibodies (mAbs) can improve the efficiency of melanoma therapies and also, cancer vaccines are another approach for the treatment of melanoma that has already improved clinical outcomes in these patients. The use of antibodies and gene vaccines provides a new perspective in melanoma treatment. Since the tumor microenvironment is another important factor for cancer progression and metastasis, in recent times, a mechanism has been identified to provide an opportunity for melanoma cells to communicate with remote cells. This mechanism is involved by a novel molecular structure, named extracellular vesicles (EVs). Depending on the functional status of origin cells, exosomes contain various cargos and different compositions. In this review, we presented recent progress of exosome applications in the treatment of melanoma. Different aspects of exosome therapy and ongoing efforts in this field will be discussed too.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Mehdi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mona Daraei
- Pharmacy School, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, Tehran, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany.
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Asgarzade A, Ziyabakhsh A, Asghariazar V, Safarzadeh E. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance. Hum Immunol 2021; 82:782-790. [PMID: 34272089 DOI: 10.1016/j.humimm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a recognized chronic condition associated with immune system disorders that affect women nine times more commonly than men. SLE is characterized by over-secretion and release of autoantibodies in response to different cellular compartments and self-tolerance breaks to its own antigens. The detailed immunological dysregulation as an associated event that elicits the onset of clinical manifestations of SLE has not been clarified yet. Though, research using several animal models in the last two decades has indicated the role of the immune system in the pathogenesis of this disease. Myeloid-derived suppressor cells (MDSCs) as heterogeneous myeloid cells, are responsible for severe pathological conditions, including infection, autoimmunity, and cancer, by exerting considerable immunosuppressive effects on T-cells responses. It has been reported that these cells are involved in the regulation process of the immune response in several autoimmune diseases, particularly SLE. The function of MDSC is deleterious in infection and cancer diseases, though their role is more complicated in autoimmune diseases. In this review, we summarized the role and function of MDSCs in the pathogenesis and progression of SLE and its possible therapeutic approach.
Collapse
Affiliation(s)
- Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
17
|
Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy. Cells 2021; 10:cells10051170. [PMID: 34065010 PMCID: PMC8150533 DOI: 10.3390/cells10051170] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The primary function of myeloid cells is to protect the host from infections. However, during cancer progression or states of chronic inflammation, these cells develop into myeloid-derived suppressor cells (MDSCs) that play a prominent role in suppressing anti-tumor immunity. Overcoming the suppressive effects of MDSCs is a major hurdle in cancer immunotherapy. Therefore, understanding the mechanisms by which MDSCs promote tumor growth is essential for improving current immunotherapies and developing new ones. This review explores mechanisms by which MDSCs suppress T-cell immunity and how this impacts the efficacy of commonly used immunotherapies.
Collapse
|
18
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Kumar S, Crenshaw BJ, Williams SD, Bell CR, Matthews QL, Sims B. Cocaine-Specific Effects on Exosome Biogenesis in Microglial Cells. Neurochem Res 2021; 46:1006-1018. [PMID: 33559104 PMCID: PMC7946671 DOI: 10.1007/s11064-021-03231-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Cocaine is a highly addictive stimulant and a well-known drug, with multiple effects on physiology. Cocaine can have direct effects on all cell types in the brain, including microglia. Microglia can be activated by other conditions, such as infection, inflammation, or injury. However, how cocaine regulates microglia and the influence of cocaine on microglial-derived exosomes remains unknown. Exosomes are nanovesicles that are responsible for intercellular communications, signaling, and trafficking necessary cargo for cell homeostasis. In this study, we hypothesized that cocaine affects exosome biogenesis and composition in BV2 microglial cells. BV2 microglial cells were cultured in exosome-depleted RPMI-1640 media and were treated according to the experimental designs. We observed that cell viability decreased by 11% at 100 µM cocaine treatment but was unaffected at other concentrations. After treatments, the exosomes were isolated from the condition media. Purified exosomes were characterized and quantified using transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA). By NTA, there was a significant decrease in particles/mL after cocaine treatment. There was a 39.5%, 58.1%, 32.3% and 28.1% decrease in particles/mL at 100 nM, 1 μM, 10 μM and 100 μM cocaine, respectively. The characterization of exosomes and exosomal protein was performed by western/dot blot analyses. Tetraspanins CD11b, CD18 and CD63 were relatively unchanged after cocaine treatment. The heat shock proteins (Hsps), Hsp70 and Hsp90, were both significantly increased at 10 μM and 100 μM, but only hsp70 was significantly increased at 10 nM. The Rab proteins were assessed to investigate their role in cocaine-mediated exosomal decrease. Rab11 was significantly decreased at 10 nM, 100 nM, 1 μM, 10 μM and 100 μM by 15%, 28%, 25%, 38% and 22%, respectively. Rab27 was decreased at all concentrations but only significantly decreased at 100 nM, 1 μM and 100 μM cocaine by 21%, 24% and 23%, respectively. Rab35 had no significant changes noted when compared to control. Rab7 increased at all cocaine concentrations but only a significant increase in expression at 100 nM and 10 μM by 1.32-fold and 1.4-fold increase. Cocaine was found to alter exosome biogenesis and composition in BV2 microglial cells. Western and dot blot analyses verified the identities of purified exosomes, and the specific protein compositions of exosomes were found to change in the presence of cocaine. Furthermore, cocaine exposure modulated the expression of exosomal proteins, such as Hsps and Rab GTPases, suggesting the protein composition and formation of microglial-derived exosomes were regulated by cocaine.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Sparkle D Williams
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama, 1700 6th Ave South, Birmingham, AL, 35294, USA
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Brian Sims
- Department of Pediatrics/Division of Neonatology and Center of Glial Biology in Medicine at the University of Alabama School of Medicine, UAB Women and Infant Center, University of Alabama, 1700 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
20
|
Fenselau C, Ostrand-Rosenberg S. Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell Immunol 2021; 359:104258. [PMID: 33338939 PMCID: PMC7802618 DOI: 10.1016/j.cellimm.2020.104258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Collaborative research is reviewed in which mass spectrometry-based proteomics and next generation sequencing were used qualitatively and quantitatively to interrogate proteins and RNAs carried in intact myeloid-derived suppressor cells (MDSC) and exosomes shed in vitro by MDSC. In aggregate exosomes more than 4000 proteins were identified, including annexins and immunosuppressive mediators. Bioassays showed that exosomes induce MDSC chemotaxis dependent on S100A8 and S100A9 in their cargo. Surface selective chemistry identified glycoproteins on MDSC and exosome surfaces, including CD47 and thrombospondin 1, which both facilitate exosome-catalyzed chemotaxis. Large numbers of mRNAs and microRNAs were identified in aggregate exosomes, whose potential functions in receptor cells include angiogenesis, and proinflammatory and immunosuppressive activities. Inflammation was found to have asymmetric effects on MDSC and exosomal cargos. Collectively, our findings indicate that the exosomes shed by MDSC provide divergent and complementary functions that support the immunosuppression and tumor promotion activities of MDSC.
Collapse
Affiliation(s)
- Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland, Baltimore County, MD 20742, United States; Department of Pathology, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT 84112, United States
| |
Collapse
|
21
|
Yin K, Xia X, Rui K, Wang T, Wang S. Myeloid-Derived Suppressor Cells: A New and Pivotal Player in Colorectal Cancer Progression. Front Oncol 2020; 10:610104. [PMID: 33384962 PMCID: PMC7770157 DOI: 10.3389/fonc.2020.610104] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) remains a devastating human malignancy with poor prognosis. Of the various factors, immune evasion mechanisms play pivotal roles in CRC progression and impede the effects of cancer therapy. Myeloid-derived suppressor cells (MDSCs) constitute an immature population of myeloid cells that are typical during tumor progression. These cells have the ability to induce strong immunosuppressive effects within the tumor microenvironment (TME) and promote CRC development. Indeed, MDSCs have been shown to accumulate in both tumor-bearing mice and CRC patients, and may therefore become an obstacle for cancer immunotherapy. Consequently, numerous studies have focused on the characterization of MDSCs and their immunosuppressive capacity, as well as developing novel approaches to suppress MDSCs function with different approaches. Current therapeutic strategies that target MDSCs in CRC include inhibition of their recruitment and alteration of their function, alone or in combination with other therapies including chemotherapy, radiotherapy and immunotherapy. Herein, we summarize the recent roles and mechanisms of MDSCs in CRC progression. In addition, a brief review of MDSC-targeting approaches for potential CRC therapy is presented.
Collapse
Affiliation(s)
- Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Neupane YR, Mahtab A, Siddiqui L, Singh A, Gautam N, Rabbani SA, Goel H, Talegaonkar S. Biocompatible Nanovesicular Drug Delivery Systems with Targeting Potential for Autoimmune Diseases. Curr Pharm Des 2020; 26:5488-5502. [DOI: 10.2174/1381612826666200523174108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases are collectively addressed as chronic conditions initiated by the loss of one’s
immunological tolerance, where the body treats its own cells as foreigners or self-antigens. These hay-wired
antibodies or immunologically capable cells lead to a variety of disorders like rheumatoid arthritis, psoriatic arthritis,
systemic lupus erythematosus, multiple sclerosis and recently included neurodegenerative diseases like
Alzheimer’s, Parkinsonism and testicular cancer triggered T-cells induced autoimmune response in testes and
brain. Conventional treatments for autoimmune diseases possess several downsides due to unfavourable
pharmacokinetic behaviour of drug, reflected by low bioavailability, rapid clearance, offsite toxicity, restricted
targeting ability and poor therapeutic outcomes. Novel nanovesicular drug delivery systems including liposomes,
niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes and biologically originated
exosomes have proved to possess alluring prospects in supporting the combat against autoimmune diseases.
These nanovesicles have revitalized available treatment modalities as they are biocompatible, biodegradable, less
immunogenic and capable of carrying high drug payloads to deliver both hydrophilic as well as lipophilic drugs
to specific sites via passive or active targeting. Due to their unique surface chemistry, they can be decorated with
physiological or synthetic ligands to target specific receptors overexpressed in different autoimmune diseases and
can even cross the blood-brain barrier. This review presents exhaustive yet concise information on the potential of
various nanovesicular systems as drug carriers in improving the overall therapeutic efficiency of the dosage
regimen for various autoimmune diseases. The role of endogenous exosomes as biomarkers in the diagnosis and
prognosis of autoimmune diseases along with monitoring progress of treatment will also be highlighted.
Collapse
Affiliation(s)
- Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, Singapore
| | - Asiya Mahtab
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Lubna Siddiqui
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy and Pharmacology, RAK college of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras All Khaimah, United Arab Emirates
| | - Honey Goel
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
23
|
Park Y, Zhang Q, Wiegertjes GF, Fernandes JMO, Kiron V. Adherent Intestinal Cells From Atlantic Salmon Show Phagocytic Ability and Express Macrophage-Specific Genes. Front Cell Dev Biol 2020; 8:580848. [PMID: 33178695 PMCID: PMC7593592 DOI: 10.3389/fcell.2020.580848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Our knowledge of the intestinal immune system of fish is rather limited compared to mammals. Very little is known about the immune cells including the phagocytic cells in fish intestine. Hence, employing imaging flow cytometry and RNA sequencing, we studied adherent cells isolated from healthy Atlantic salmon. Phagocytic activity and selected gene expression of adherent cells from the distal intestine (adherent intestinal cells, or AIC) were compared with those from head kidney (adherent kidney cells, or AKC). Phagocytic activity of the two cell types was assessed based on the uptake of Escherichia coli BioParticlesTM. AIC showed phagocytic ability but the phagocytes were of different morphology compared to AKC. Transcriptomic analysis revealed that AIC expressed genes associated with macrophages, T cells, and endothelial cells. Heatmap analysis of selected genes indicated that the adherent cells from the two organs had apparently higher expression of macrophage-related genes. We believe that the adherent intestinal cells have phagocytic characteristics and high expression of genes commonly associated with macrophages. We envisage the possibilities for future studies on enriched populations of adherent intestinal cells.
Collapse
Affiliation(s)
- Youngjin Park
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Qirui Zhang
- Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
24
|
Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer 2020; 19:160. [PMID: 33183286 PMCID: PMC7661275 DOI: 10.1186/s12943-020-01278-3] [Citation(s) in RCA: 283] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
In the era of the rapid development of cancer immunotherapy, there is a high level of interest in the application of cell-released small vesicles that stimulate the immune system. As cell-derived nanovesicles, exosomes show great promise in cancer immunotherapy because of their immunogenicity and molecular transfer function. The cargoes carried on exosomes have been recently identified with improved technological advances and play functional roles in the regulation of immune responses. In particular, exosomes derived from tumor cells and immune cells exhibit unique composition profiles that are directly involved in anticancer immunotherapy. More importantly, exosomes can deliver their cargoes to targeted cells and thus influence the phenotype and immune-regulation functions of targeted cells. Accumulating evidence over the last decade has further revealed that exosomes can participate in multiple cellular processes contributing to cancer development and therapeutic effects, showing the dual characteristics of promoting and suppressing cancer. The potential of exosomes in the field of cancer immunotherapy is huge, and exosomes may become the most effective cancer vaccines, as well as targeted antigen/drug carriers. Understanding how exosomes can be utilized in immune therapy is important for controlling cancer progression; additionally, exosomes have implications for diagnostics and the development of novel therapeutic strategies. This review discusses the role of exosomes in immunotherapy as carriers to stimulate an anti-cancer immune response and as predictive markers for immune activation; furthermore, it summarizes the mechanism and clinical application prospects of exosome-based immunotherapy in human cancer.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
25
|
Bechter K. The Challenge of Assessing Mild Neuroinflammation in Severe Mental Disorders. Front Psychiatry 2020; 11:773. [PMID: 32973573 PMCID: PMC7469926 DOI: 10.3389/fpsyt.2020.00773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Recent psychoneuroimmunology research has provided new insight into the etiology and pathogenesis of severe mental disorders (SMDs). The mild encephalitis (ME) hypothesis was developed with the example of human Borna disease virus infection years ago and proposed, that a subgroup SMD patients, mainly from the broad schizophrenic and affective spectrum, could suffer from mild neuroinflammation, which remained undetected because hard to diagnose with available diagnostic methods. Recently, in neurology an emerging new subgroup of autoimmune encephalitis (AE) cases suffering from various neurological syndromes was described in context with the discovery of an emerging list of Central Nervous System (CNS) autoantibodies. Similarly in psychiatry, consensus criteria of autoimmune psychosis (AP) were developed for patients presenting with CNS autoantibodies together with isolated psychiatric symptoms and paraclinical findings of (mild) neuroinflammation, which in fact match also the previously proposed ME criteria. Nevertheless, identifying mild neuroinflammation in vivo in the individual SMD case remains still a major clinical challenge and the possibility that further cases of ME remain still under diagnosed appears an plausible possibility. In this paper a critical review of recent developments and remaining challenges in the research and clinical diagnosis of mild neuroinflammation in SMDs and in general and in transdisciplinary perspective to psycho-neuro-immunology and neuropsychiatry is given. Present nosological classifications of neuroinflammatory disorders are reconsidered with regard to findings from experimental and clinical research. A refined grading list of clinical states including "classical" encephalitis, AE, AP/ME,and newly proposed terms like parainflammation, stress-induced parainflammation and neuroprogression, and their respective relation to neurodegeneration is presented, which may be useful for further research on the possible causative role of mild neuroinflammation in SMDs. Beyond, an etiology-focused subclassification of ME subtypes, like autoimmune ME or infectious ME, appears to be required for differential diagnosis and individualized treatment. The present status of the clinical diagnosis of mild neuroinflammatory mechanisms involved in SMDs is outlined with the example of actual diagnosis and therapy in AP. Ideas for future research to unravel the contribution of mild neuroinflammation in the causality of SMDs and the difficulties expected to come to novel immune modulatory, anti-infectious or anti-inflammatory therapeutic principles in the sense of precision medicine are discussed.
Collapse
Affiliation(s)
- Karl Bechter
- Department for Psychiatry and Psychotherapy II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| |
Collapse
|
26
|
Daveri E, Vergani E, Shahaj E, Bergamaschi L, La Magra S, Dosi M, Castelli C, Rodolfo M, Rivoltini L, Vallacchi V, Huber V. microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy. Front Immunol 2020; 11:1214. [PMID: 32793185 PMCID: PMC7387687 DOI: 10.3389/fimmu.2020.01214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors can achieve long-term tumor control in subsets of patients. However, its effect can be blunted by myeloid-induced resistance mechanisms. Myeloid cells are highly plastic and physiologically devoted to wound healing and to immune homeostasis maintenance. In cancer, their physiological activities can be modulated, leading to an expansion of pro-inflammatory and immunosuppressive cells, the myeloid-derived suppressor cells (MDSCs), with detrimental consequences. The involvement of MDSCs in tumor development and progression has been widely investigated and MDSC-induced immunosuppression is acknowledged as a mechanism hindering effective immune checkpoint blockade. Small non-coding RNA molecules, the microRNAs (miRs), contribute to myeloid cell regulation at different levels, comprising metabolism and function, as well as their skewing to a MDSC phenotype. miR expression can be indirectly induced by cancer-derived factors or through direct miR import via extracellular vesicles. Due to their structural stability and their presence in body fluids miRs represent promising predictive biomarkers of resistance, as we recently found by investigating plasma samples of melanoma patients undergoing immune checkpoint blockade. Dissection of the miR-driven involved mechanisms would pave the way for the identification of new druggable targets. Here, we discuss the role of these miRs in shaping myeloid resistance to immunotherapy with a special focus on immunosuppression and immune escape.
Collapse
Affiliation(s)
- Elena Daveri
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eriomina Shahaj
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano La Magra
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Dosi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
27
|
Li C, Donninger H, Eaton J, Yaddanapudi K. Regulatory Role of Immune Cell-Derived Extracellular Vesicles in Cancer: The Message Is in the Envelope. Front Immunol 2020; 11:1525. [PMID: 32765528 PMCID: PMC7378739 DOI: 10.3389/fimmu.2020.01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of membrane-surrounded structures. Besides serving as a harbor for the unwanted material exocytosed by cells, EVs play a critical role in conveying intact protein, genetic, and lipid contents that are important for intercellular communication. EVs, broadly comprised of microvesicles and exosomes, are released to the extracellular environment from nearly all cells either via shedding from the plasma membrane or by originating from the endosomal system. Exosomes are 40–150 nm, endosome-derived small EVs (sEVs) that are released by cells into the extracellular environment. This review focuses on the biological properties of immune cell-derived sEVs, including composition and cellular targeting and mechanisms by which these immune cell-derived sEVs influence tumor immunity either by suppressing or promoting tumor growth, are discussed. The final section of this review discusses how the biological properties of immune cell-derived sEVs can be manipulated to improve their immunogenicity.
Collapse
Affiliation(s)
- Chi Li
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Howard Donninger
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - John Eaton
- Department of Medicine, University of Louisville, Louisville, KY, United States.,Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, United States.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
28
|
Vetsika EK, Koukos A, Kotsakis A. Myeloid-Derived Suppressor Cells: Major Figures that Shape the Immunosuppressive and Angiogenic Network in Cancer. Cells 2019; 8:E1647. [PMID: 31847487 PMCID: PMC6953061 DOI: 10.3390/cells8121647] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute a vast population of immature myeloid cells implicated in various conditions. Most notably, their role in cancer is of great complexity. They exert immunosuppressive functions like hampering cancer immunity mediated by T lymphocytes and natural killer cells, while simultaneously they can recruit T regulatory cells to further promote immunosuppression, thus shielding tumor cells against the immune defenses. In addition, they were shown to support tumor invasion and metastasis by inducing vascularization. Yet again, in order to exert their angiogenic activities, they do have at their disposal a variety of occasionally overlapping mechanisms, mainly driven by VEGF/JAK/STAT signaling. In this concept, they have risen to be a rather attractive target for therapies, including depletion or maturation, so as to overcome cancer immunity and suppress angiogenic activity. Even though, many studies have been conducted to better understand these cells, there is much to be done yet. This article hopes to shed some light on the paradoxal complexity of these cells, while elucidating some of the key features of MDSCs in relation to immunosuppression and, most importantly, to the vascularization processes, along with current therapeutic options in cancer, in relation to MDSC depletion.
Collapse
Affiliation(s)
- Eleni-Kyriaki Vetsika
- Department of Medicine, pMEDgr, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Aristeidis Koukos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece;
| | - Athanasios Kotsakis
- Department of Medicine, School of Health Sciences, University of Thessaly, 41334 Larissa, Greece
- Department of Medical Oncology, University General Hospital of Larissa, 41334 Larissa, Greece
| |
Collapse
|
29
|
Yakymiv Y, Augeri S, Fissolo G, Peola S, Bracci C, Binaschi M, Bellarosa D, Pellacani A, Ferrero E, Ortolan E, Funaro A. CD157: From Myeloid Cell Differentiation Marker to Therapeutic Target in Acute Myeloid Leukemia. Cells 2019; 8:cells8121580. [PMID: 31817547 PMCID: PMC6952987 DOI: 10.3390/cells8121580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Human CD157/BST-1 and CD38 are dual receptor-enzymes derived by gene duplication that belong to the ADP ribosyl cyclase gene family. First identified over 30 years ago as Mo5 myeloid differentiation antigen and 10 years later as Bone Marrow Stromal Cell Antigen 1 (BST-1), CD157 proved not to be restricted to the myeloid compartment and to have a diversified functional repertoire ranging from immunity to cancer and metabolism. Despite being a NAD+-metabolizing ectoenzyme anchored to the cell surface through a glycosylphosphatidylinositol moiety, the functional significance of human CD157 as an enzyme remains unclear, while its receptor role emerged from its discovery and has been clearly delineated with the identification of its high affinity binding to fibronectin. The aim of this review is to provide an overview of the immunoregulatory functions of human CD157/BST-1 in physiological and pathological conditions. We then focus on CD157 expression in hematological tumors highlighting its emerging role in the interaction between acute myeloid leukemia and extracellular matrix proteins and its potential utility for monoclonal antibody targeted therapy in this disease.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/antagonists & inhibitors
- ADP-ribosyl Cyclase/chemistry
- ADP-ribosyl Cyclase/metabolism
- Adaptive Immunity
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor
- Disease Susceptibility
- Enzyme Activation
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/metabolism
- Humans
- Immunity, Innate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Models, Molecular
- Molecular Targeted Therapy
- Myeloid Cells/cytology
- Myeloid Cells/drug effects
- Myeloid Cells/metabolism
- Protein Conformation
- Structure-Activity Relationship
- Substrate Specificity
- Tissue Distribution
Collapse
Affiliation(s)
- Yuliya Yakymiv
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Stefania Augeri
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Giulia Fissolo
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Silvia Peola
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Cristiano Bracci
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Monica Binaschi
- Department of Experimental and Translational Oncology, Menarini Ricerche S.p.A, 00071 Pomezia, Rome, Italy; (M.B.); (D.B.)
| | - Daniela Bellarosa
- Department of Experimental and Translational Oncology, Menarini Ricerche S.p.A, 00071 Pomezia, Rome, Italy; (M.B.); (D.B.)
| | | | - Enza Ferrero
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Erika Ortolan
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
| | - Ada Funaro
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (Y.Y.); (S.A.); (G.F.); (S.P.); (C.B.); (E.F.); (E.O.)
- Correspondence: ; Tel.: +39-011-6705988
| |
Collapse
|
30
|
Xie F, Xu M, Lu J, Mao L, Wang S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer 2019; 18:146. [PMID: 31647023 PMCID: PMC6813045 DOI: 10.1186/s12943-019-1074-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1), a type I transmembrane protein, binds to its receptor PD-1 to suppress the activation of T cells, thereby maintaining immunological homeostasis. In contrast, tumor cells highly express PD-L1, which binds to receptor PD-1 expressed on activated T cells, leading to immune escape. Anti-PD-1/PD-L1 immune checkpoint therapy blocks the binding of PD-1/PD-L1 to reinvigorate the exhausted T cells, thereby inhibiting tumor growth. Exosomes are biologically active lipid-bilayer nanovesicles secreted by various cell types that mediate intercellular signal communication. Numerous studies have shown that tumor cells are able to promote tumor epithelial-mesenchymal transition, angiogenesis, and immune escape by releasing exosomes. Recent studies imply that tumor-derived exosomes could carry PD-L1 in the same membrane topology as the cell surface, thereby resisting immune checkpoint therapy. In this review, we mainly discuss the role of exosomes in the regulation of tumor progression and the potential resistance mechanism to immunotherapy via exosomal PD-L1. In addition, we propose that exosomal PD-L1 may have the potential to be a target to overcome resistance to anti-PD-1/PD-L1 antibody therapy.
Collapse
Affiliation(s)
- Feiting Xie
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mengxue Xu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jian Lu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China. .,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
31
|
Rashid MH, Borin TF, Ara R, Angara K, Cai J, Achyut BR, Liu Y, Arbab AS. Differential in vivo biodistribution of 131I-labeled exosomes from diverse cellular origins and its implication for theranostic application. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 21:102072. [PMID: 31376572 PMCID: PMC6814553 DOI: 10.1016/j.nano.2019.102072] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/21/2019] [Accepted: 07/21/2019] [Indexed: 12/21/2022]
Abstract
Exosomes are critical mediators of intercellular crosstalk and are regulator of the cellular/tumor microenvironment. Exosomes have great prospects for clinical application as a theranostic and prognostic probe. Nevertheless, the advancement of exosomes research has been thwarted by our limited knowledge of the most efficient isolation method and their in vivo trafficking. Here we have shown that a combination of two size-based methods using a 0.20 μm syringe filter and 100 k centrifuge membrane filter followed by ultracentrifugation yields a greater number of uniform exosomes. We also demonstrated the visual representation and quantification of the differential in vivo distribution of radioisotope 131I-labeled exosomes from diverse cellular origins, e.g., tumor cells with or without treatments, myeloid-derived suppressor cells and endothelial progenitor cells. We also determined that the distribution was dependent on the exosomal protein/cytokine contents. The applied in vivo imaging modalities can be utilized to monitor disease progression, metastasis, and exosome-based targeted therapy.
Collapse
Affiliation(s)
- Mohammad H Rashid
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Thaiz F Borin
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Roxan Ara
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Kartik Angara
- Department of Pediatrics & Human Development, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI, USA
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Bhagelu R Achyut
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA; Cancer Animal Models Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ali S Arbab
- Laboratory of Tumor Angiogenesis, Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
32
|
Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, Xu H, Wang S. Granulocytic Myeloid-Derived Suppressor Cells Promote the Stemness of Colorectal Cancer Cells through Exosomal S100A9. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901278. [PMID: 31559140 PMCID: PMC6755519 DOI: 10.1002/advs.201901278] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/22/2019] [Indexed: 05/27/2023]
Abstract
Cancer stem cells play a critical role in colorectal cancer (CRC) progression. Myeloid-derived suppressor cells (MDSCs) promote tumor progression through multiple mechanisms in CRC. The roles of MDSCs in CRC cell stemness are unclear. MDSC-derived exosomes are proposed to act as intercellular messengers. Herein, it is reported that granulocytic MDSCs (G-MDSCs) promote CRC cell stemness and progression in mice through exosomes. It is found that S100A9, is highly expressed in G-MDSC-derived exosomes, and its blockade suppresses CRC cell stemness and the susceptibility of mice to AOM/DSS-induced colitis-associated colon cancer. Hypoxia induces G-MDSCs to secrete more exosomes in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner, and respiratory hyperoxia can reduce CRC cells stemness through the inhibition of GM-Exo production. Study-based CRC patients also show that human MDSCs enhance CRC cell stemness and growth via exosomal S100A9, and plasma exosomal S100A9 level in CRC patients is markedly higher than that in healthy subjects. Thus, this study suggests that G-MDSCs promote CRC cell stemness and growth through exosomal S100A9. Moreover, respiratory hyperoxia may be a beneficial strategy to reduce CRC cells stemness through the inhibition of GM-Exo production. MDSCs exosomal S100A9 may be a marker for predicting the development of CRC.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
- Department of Laboratory MedicineThe First People's Hospital of Yancheng CityYancheng224000China
| | - Kai Yin
- Department of General SurgeryAffiliated Hospital of Jiangsu UniversityZhenjiang212001JiangsuChina
| | - Jie Tian
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Xueli Xia
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Jie Ma
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Xinyi Tang
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
| | - Huaxi Xu
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| | - Shengjun Wang
- Department of Laboratory MedicineThe Affiliated People's HospitalJiangsu UniversityZhenjiang212002China
- Department of ImmunologyJiangsu Key Laboratory of Laboratory MedicineSchool of MedicineJiangsu UniversityZhenjiang212013China
| |
Collapse
|
33
|
Lee-Chang C, Rashidi A, Miska J, Zhang P, Pituch KC, Hou D, Xiao T, Fischietti M, Kang SJ, Appin CL, Horbinski C, Platanias LC, Lopez-Rosas A, Han Y, Balyasnikova IV, Lesniak MS. Myeloid-Derived Suppressive Cells Promote B cell-Mediated Immunosuppression via Transfer of PD-L1 in Glioblastoma. Cancer Immunol Res 2019; 7:1928-1943. [PMID: 31530559 DOI: 10.1158/2326-6066.cir-19-0240] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/23/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
The potent immunosuppression induced by glioblastoma (GBM) is one of the primary obstacles to finding effective immunotherapies. One hallmark of the GBM-associated immunosuppressive landscape is the massive infiltration of myeloid-derived suppressor cells (MDSC) and, to a lesser extent, regulatory T cells (Treg) within the tumor microenvironment. Here, we showed that regulatory B cells (Breg) are a prominent feature of the GBM microenvironment in both preclinical models and clinical samples. Forty percent of GBM patients (n = 60) scored positive for B-cell tumor infiltration. Human and mouse GBM-associated Bregs were characterized by immunosuppressive activity toward activated CD8+ T cells, the overexpression of inhibitory molecules PD-L1 and CD155, and production of immunosuppressive cytokines TGFβ and IL10. Local delivery of B cell-depleting anti-CD20 immunotherapy improved overall survival of animals (IgG vs. anti-CD20 mean survival: 18.5 vs. 33 days, P = 0.0001), suggesting a potential role of Bregs in GBM progression. We unveiled that GBM-associated MDSCs promoted regulatory B-cell function by delivering microvesicles transporting membrane-bound PD-L1, able to be up-taken by tumoral B cells. The transfer of functional PD-L1 via microvesicles conferred Bregs the potential to suppress CD8+ T-cell activation and acquisition of an effector phenotype. This work uncovered the role of B cells in GBM physiopathology and provides a mechanism by which the GBM microenvironment controls B cell-mediated immunosuppression.See related Spotlight on p. 1902.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Katarzyna C Pituch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mariafausta Fischietti
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Seong Jae Kang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christina L Appin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leonidas C Platanias
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.,Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
34
|
Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 2019; 12:84. [PMID: 31438991 PMCID: PMC6704713 DOI: 10.1186/s13045-019-0772-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Plenty of immune cells infiltrate into the tumor microenvironment (TME) during tumor progression, in which myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with immunosuppressive activity. Tumor cells and stromal cells facilitate the activation and expansion of MDSCs in TME via intercellular communication, and expanded MDSCs suppress anti-tumor immune responses through direct and indirect mechanisms. Currently, exosomes, which are a kind of extracellular vesicles (EVs) that can convey functional components, are demonstrated to participate in the local and distal intercellular communication between cells. Numerous studies have supposed that tumor-derived exosomes (TEXs), whose assembly and release can be modulated by TME, are capable of modulating the cell biology of MDSCs, including facilitating their activation, promoting the expansion, and enhancing the immunosuppressive function. Therefore, in this review, we mainly focus on the role of TEXs in the cell-cell communication between tumor cells and MDSCs, and discuss their clinical applications.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhiyang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
35
|
Leija Montoya G, González Ramírez J, Sandoval Basilio J, Serafín Higuera I, Isiordia Espinoza M, González González R, Serafín Higuera N. Long Non-coding RNAs: Regulators of the Activity of Myeloid-Derived Suppressor Cells. Front Immunol 2019; 10:1734. [PMID: 31404149 PMCID: PMC6671873 DOI: 10.3389/fimmu.2019.01734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent immunosuppressive functions. They play major roles in cancer and many of the pathologic conditions associated with inflammation. Long non-coding RNAs (lncRNAs) are untranslated functional RNA molecules. The lncRNAs are involved in the control of a wide variety of cellular processes and are dysregulated in different diseases. They can participate in the modulation of immune function and activity of inflammatory cells, including MDSCs. This mini review focuses on the emerging role of lncRNAs in MDSC activity. We summarize how lncRNAs modulate the generation, recruitment, and immunosuppressive functions of MDSCs and the underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Mario Isiordia Espinoza
- División de Ciencias Biomédicas, Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Guadalajara, Mexico
| | | | - Nicolás Serafín Higuera
- Unidad de Ciencias de la Salud, Facultad de Odontología, Universidad Autónoma de Baja California, Mexicali, Mexico
| |
Collapse
|
36
|
Asada H, Tomiyasu H, Uchikai T, Ishihara G, Goto-Koshino Y, Ohno K, Tsujimoto H. Comprehensive analysis of miRNA and protein profiles within exosomes derived from canine lymphoid tumour cell lines. PLoS One 2019; 14:e0208567. [PMID: 31034520 PMCID: PMC6488050 DOI: 10.1371/journal.pone.0208567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/07/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small extracellular vesicles released from almost all cell types, which play roles in cell-cell communication. Recent studies have suggested that microenvironmental crosstalk mediated by exosomes is an important factor in the escape of tumour cells from the anti-tumour immune system in human haematopoietic malignancies. Here, we conducted comprehensive analysis of the miRNA and protein profiles within the exosomes released from four canine lymphoid tumour cell lines as a model of human lymphoid tumours. The results showed that the major miRNAs and proteins extracted from the exosomes were similar among the four cell lines. However, the miRNA profiles differed among the exosomes of each cell line, which corresponded to the expression patterns of the parent cells. In the comparison of the amounts of miRNAs and proteins among the cell lines, those of three miRNAs (miR-151, miR-8908a-3p, and miR-486) and CD82 protein differed between exosomes derived from vincristine-sensitive and resistant cell lines. Further investigations are needed to elucidate the biological functions of the exosomal contents in the microenvironmental crosstalk of lymphoid tumours.
Collapse
Affiliation(s)
- Hajime Asada
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Uchikai
- Anicom Specialty Medical Institute Inc., Shinjuku-ku, Tokyo, Japan
| | - Genki Ishihara
- Anicom Specialty Medical Institute Inc., Shinjuku-ku, Tokyo, Japan
| | - Yuko Goto-Koshino
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
37
|
Tomić S, Joksimović B, Bekić M, Vasiljević M, Milanović M, Čolić M, Vučević D. Prostaglanin-E2 Potentiates the Suppressive Functions of Human Mononuclear Myeloid-Derived Suppressor Cells and Increases Their Capacity to Expand IL-10-Producing Regulatory T Cell Subsets. Front Immunol 2019; 10:475. [PMID: 30936876 PMCID: PMC6431635 DOI: 10.3389/fimmu.2019.00475] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 01/22/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) emerged as major factors driving the tumor progression due to numerous immunosuppressive mechanisms they possess. Prostaglandin (PG)E2 is shown critical for the induction of MDSC and their suppressive functions in vivo, but it is poorly understood how it affects the capacity of MDSC to induce different subsets of regulatory T cells (Treg). By using a novel protocol for the generation of mononuclear (M)-MDSC, we showed that PGE2 potentiates the GM-CSF/IL-6-dependent induction of CD33+CD11b+HLA-DR-CD14+ M-MDSC in vitro. PGE2 diminished the capacity of GM-CSF/IL-6 M-MDSC to produce proinflammatory cytokines upon activation and augmented their capacity to produce IL-27, IL-33, and TGF-β. These results correlated with an increased potential of GM-CSF/IL-6/PGE2 M-MDSC to suppress T cell proliferation, expand alloreactive Th2 cells, and reduce the development of alloreactive Th17 and cytotoxic T cells. Interestingly, GM-CSF/IL-6/PGE2 M-MDSC displayed a lower capacity to induce TGF-β-producing FoxP3+ regulatory Treg compared to GM-CSF/IL-6 M-MDSC, as a consequence of reduced IDO-1 expression. In contrast, GM-CSF/IL-6/PGE2 M-MDSC potentiated IL-10 production by CD8+T, Th2, and particularly CD4+FoxP3- type 1 Treg, the latter of which depended on ILT3 and ILT4 expression. Cumulatively, PGE2 potentiated the suppressive phenotype and functions of GM-CSF/IL-6-induced M-MDSC and changed the mechanisms involved in Treg induction, which could be important for investigating new therapeutic strategies focused on MDSC-related effects in tumors and autoimmune diseases.
Collapse
Affiliation(s)
- Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Bojan Joksimović
- Medical Faculty Foča, University of East Sarajevo, Lukavica, Bosnia and Herzegovina
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Miloš Vasiljević
- Medical Faculty Foča, University of East Sarajevo, Lukavica, Bosnia and Herzegovina
| | - Marijana Milanović
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
- Medical Faculty Foča, University of East Sarajevo, Lukavica, Bosnia and Herzegovina
| | - Dragana Vučević
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| |
Collapse
|
38
|
Wang Y, Ding Y, Guo N, Wang S. MDSCs: Key Criminals of Tumor Pre-metastatic Niche Formation. Front Immunol 2019; 10:172. [PMID: 30792719 PMCID: PMC6374299 DOI: 10.3389/fimmu.2019.00172] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
The emergence of disseminated metastases remains the primary cause of mortality in cancer patients. Formation of the pre-metastatic niche (PMN), which precedes the establishment of tumor lesions, is critical for metastases. Bone marrow-derived myeloid cells (BMDCs) are indispensable for PMN formation. Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells that accumulate in patients with cancer and appear in the early PMN. The mechanisms by which MDSCs establish the pre-metastatic microenvironment in distant organs are largely unknown, although MDSCs play an essential role in metastasis. Here, we summarize the key factors associated with the recruitment and activation of MDSCs in the PMN and review the mechanisms by which MDSCs regulate PMN formation and evolution. Finally, we predict the potential value of MDSCs in PMN detection and therapy.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanxia Ding
- Department of Dermatology, The First People's Hospital of Yancheng City, Yancheng, China
| | - Naizhou Guo
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
40
|
Phenotypic and Functional Diversities of Myeloid-Derived Suppressor Cells in Autoimmune Diseases. Mediators Inflamm 2018; 2018:4316584. [PMID: 30670926 PMCID: PMC6323474 DOI: 10.1155/2018/4316584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are identified as a heterogeneous population of cells with the function to suppress innate as well as adaptive immune responses. The initial studies of MDSCs were primarily focused on the field of animal tumor models or cancer patients. In cancer, MDSCs play the deleterious role to inhibit tumor immunity and to promote tumor development. Over the past few years, an increasing number of studies have investigated the role of MDSCs in autoimmune diseases. The beneficial effects of MDSCs in autoimmunity have been reported by some studies, and thus, immunosuppressive MDSCs may be a novel therapeutic target in autoimmune diseases. There are some controversial findings as well. Many questions such as the activation, differentiation, and suppressive functions of MDSCs and their roles in autoimmune diseases remain unclear. In this review, we have discussed the current understanding of MDSCs in autoimmune diseases.
Collapse
|
41
|
Zhao K, Wang Z, Hackert T, Pitzer C, Zöller M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res 2018; 37:312. [PMID: 30541597 PMCID: PMC6292129 DOI: 10.1186/s13046-018-0961-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The tetraspanins Tspan8 and CD151 promote metastasis, exosomes (Exo) being suggested to be important in the crosstalk between tumor and host. The contribution of Tspan8 and CD151 to host versus tumor-derived exosome (TEX) activities being not defined, we approached the questions using 3-methylcholanthrene-induced (MCA) tumors from wt, Tspan8ko, CD151ko and Tspan8/CD151 (db)ko mice, implanted into tetraspanin-competent and deficient hosts. METHODS Tumor growth and dissemination, hematopoiesis and angiogenesis were surveyed in wild type (wt), Tspan8ko, CD151ko and dbko mice bearing tetraspanin-competent and -deficient MCA tumors. In vitro studies using tumor cells, bone marrow cells (BMC) and endothelial cells (EC) elaborated the mechanism of serum (s)Exo- and TEX-induced target modulation. RESULTS Tumors grew in autochthonous and syngeneic hosts differing in Tspan8- and/or CD151-competence. However, Tspan8ko- and/or CD151ko-tumor cell dissemination and settlement in metastatic organs was significantly reduced in the autochthonous host, and less severely in the wt-host. Impaired wt-MCA tumor dissemination in the ko-host confirmed a contribution of host- and tumor-Tspan8/-CD151 to tumor cell dissemination, delivery of sExo and TEX being severely impaired by a Tspan8ko/CD151ko. Coculturing tumor cells, BMC and EC with sExo and TEX revealed minor defects in epithelial mesenchymal transition and apoptosis resistance of ko tumors. Strongly reduced migratory and invasive capacity of Tspan8ko/CD151ko-MCA relies on distorted associations with integrins and CAM and missing Tspan8/CD151-promoted recruitment of proteases. The defects, differing between Tspan8ko- and CD151ko-MCA, were rescued by wt-TEX and, less efficiently Tspan8ko- and CD151ko-TEX. Minor defects in hematopoietic progenitor maturation were based on the missing association of hematopoietic growth factors /- receptors with CD151 and, less pronounced, Tspan8. Rescue of impaired angiogenesis in ko mice by wt-sExo and promotion of angiogenesis by TEX depended on the association of Tspan8 and CD151 with GPCR and RTK in EC and tumor cells. CONCLUSIONS Tspan8-/CD151-TEX play central roles in tumor progression. Tspan8-/CD151-sExo and TEX contribute by stimulating angiogenesis. Tspan8 and CD151 fulfill these tasks by associating with function-relevant proteins, the additive impact of Tspan8 and CD151 relying on differences in preferred associations. The distinct Tspan8 and CD151 contributions suggest a blockade of TEX-Tspan8 and -CD151 promising for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhao
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhe Wang
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
- Present Address: Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Institute of Pharmacology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
42
|
Li M, Zhu D, Wang T, Xia X, Tian J, Wang S. Roles of Myeloid-Derived Suppressor Cell Subpopulations in Autoimmune Arthritis. Front Immunol 2018; 9:2849. [PMID: 30564242 PMCID: PMC6288996 DOI: 10.3389/fimmu.2018.02849] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests the promise of the use of myeloid-derived suppressor cells (MDSCs) in inflammatory disorders based on their unique immune-intervention properties. However, the roles of MDSCs in autoimmune arthritis are not completely understood. Indeed, their immunosuppressive functions in arthritic conditions remain controversial, with heterogeneity among MDSCs and differential effects among subpopulations receiving much attention. As a result, it is necessary to determine the roles of MDSC subpopulations in autoimmune arthritis to clarify their diagnostic and therapeutic potential. Interestingly, in the inflammation niche of autoimmune arthritis, each MDSC subpopulation can exhibit both alternatives of a given characteristic. Moreover, polymorphonuclear MDSCs (PMN-MDSCs) are likely to be more suppressive and stable compared with monocytic MDSCs (MO-MDSCs). Although various important cytokines associated with the differentiation of MDSCs or MDSC subpopulations from immature myeloid precursors, such as granulocyte colony-stimulating factor (G-CSF), have been largely applied in external inductive systems, their roles are not entirely clear. Moreover, MDSC-based clinical treatments in rheumatoid arthritis (RA) continue to represent a significant challenge, as also reported for other autoimmune diseases. In this review, we describe the effects and actions of MDSC subpopulations on the development of autoimmune arthritis and analyze several types of MDSC-based therapeutic strategies to provide comprehensive information regarding immune networks and a foundation for more effective protocols for autoimmune arthritis.
Collapse
Affiliation(s)
- Min Li
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Kyuno D, Zhao K, Bauer N, Ryschich E, Zöller M. Therapeutic Targeting Cancer-Initiating Cell Markers by Exosome miRNA: Efficacy and Functional Consequences Exemplified for claudin7 and EpCAM. Transl Oncol 2018; 12:191-199. [PMID: 30393102 PMCID: PMC6204435 DOI: 10.1016/j.tranon.2018.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023] Open
Abstract
AIM: Transfer of exosomes (Exo) miRNA was described interfering with tumor progression. We here explored for claudin7 (cld7) and EpCAM (EpC), cancer-initiating-cell markers in colorectal and pancreatic cancer, the efficacy of Exo loading with miRNA and miRNA transfer. METHODS: Exo were collected from nontransformed mouse (NIH3T3) and rat lung fibroblasts (rFb), which were transfected with Tspan8 cDNA (NIH3T3-Tspan8, rFb-Tspan8). Exo were loaded by electroporation with miRNA. The transfer of Exo-miRNA was evaluated in vitro and in vivo in a rat pancreatic (ASML) and a human colon (SW948) cancer line. RESULTS: NIH3T3-Tspan8- or rFb-Tspan8-Exo were efficiently loaded with cld7- or EpC-miRNA. Exo targeting in vivo was strongly improved by tailoring with Tspan8. Exo-miRNA transfer into tumor targets promoted cld7, respectively, EpC downregulation by 33%-60%. Cld7 silencing was accompanied by reduced expression of additional cancer-initiating cell markers and NOTCH. EpC silencing reduced vimentin, N-cadherin, and Nanog expression. The Exo-miRNA transfer affected anchorage-independent growth, motility, and invasion. CONCLUSIONS: Exo are efficiently loaded with miRNA, miRNA-delivery being supported by Exo tailoring. Partial cld7 and EpC silencing by Exo miRNA affects metastasis-promoting tumor cell activities. The findings suggest miRNA loading of tailored Exo as an easy approachable and efficient adjuvant therapy.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Kun Zhao
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Nathalie Bauer
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Eduard Ryschich
- Microcirculation and Cell Migration, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
44
|
Zhang D, Xu J, Ren J, Ding L, Shi G, Li D, Dou H, Hou Y. Myeloid-Derived Suppressor Cells Induce Podocyte Injury Through Increasing Reactive Oxygen Species in Lupus Nephritis. Front Immunol 2018; 9:1443. [PMID: 29988544 PMCID: PMC6026681 DOI: 10.3389/fimmu.2018.01443] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
The expansion of myeloid-derived suppressor cells (MDSCs) has been documented in murine models and patients with lupus nephritis (LN), but the exact role of MDSCs in this process remains largely unknown. In this study, we investigated whether MDSCs are involved in the process of podocyte injury in the development of LN. In toll-like receptor-7 (TLR-7) agonist imiquimod-induced lupus mice, we found the severe podocyte injury in glomeruli of lupus mice and significant expansion of MDSCs in spleens and kidneys of lupus mice. The function of TLR-7 activated MDSCs was enhanced including the increased generation of reactive oxygen species (ROS) in vivo and in vitro. Moreover, the ROS production of MDSCs induced podocyte injury through activating the p-38MAPK and NF-kB signaling. Furthermore, we verified that podocyte injury was indeed correlated with expansion of MDSCs and their ROS secretion in LN of pristane-induced lupus mice. These findings first indicate that the podocyte injury in LN was associated with the increased MDSCs in kidney and MDSCs may be a promising therapeutic target of LN in the future.
Collapse
Affiliation(s)
- Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jingjing Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Guoping Shi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|