1
|
Kulkarni R, Kumari S, Dhapola R, Sharma P, Singh SK, Medhi B, HariKrishnaReddy D. Association Between the Gut Microbiota and Alzheimer's Disease: An Update on Signaling Pathways and Translational Therapeutics. Mol Neurobiol 2024:10.1007/s12035-024-04545-2. [PMID: 39460901 DOI: 10.1007/s12035-024-04545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Alzheimer's disease (AD) is a cognitive disease with high morbidity and mortality. In AD patients, the diversity of the gut microbiota is altered, which influences pathology through the gut-brain axis. Probiotic therapy alleviates pathological and psychological consequences by restoring the diversity of the gut microbial flora. This study addresses the role of altered gut microbiota in the progression of neuroinflammation, which is a major hallmark of AD. This process begins with the activation of glial cells, leading to the release of proinflammatory cytokines and the modulation of cholinergic anti-inflammatory pathways. Short-chain fatty acids, which are bacterial metabolites, provide neuroprotective effects and maintain blood‒brain barrier integrity. Furthermore, the gut microbiota stimulates oxidative stress and mitochondrial dysfunction, which promote AD progression. The signaling pathways involved in gut dysbiosis-mediated neuroinflammation-mediated promotion of AD include cGAS-STING, C/EBPβ/AEP, RAGE, TLR4 Myd88, and the NLRP3 inflammasome. Preclinical studies have shown that natural extracts such as Ganmaidazao extract, isoorentin, camelia oil, Sparassis crispa-1, and xanthocerasides improve gut health and can delay the worsening of AD. Clinical studies using probiotics such as Bifidobacterium spp., yeast beta-glucan, and drugs such as sodium oligomannate and rifaximine have shown improvements in gut health, resulting in the amelioration of AD symptoms. This study incorporates the most current research on the pathophysiology of AD involving the gut microbiota and highlights the knowledge gaps that need to be filled to develop potent therapeutics against AD.
Collapse
Affiliation(s)
- Rutweek Kulkarni
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sunil K Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Sharma J, Mudalagiriyappa S, Abdelaal HFM, Kelly TC, Choi W, Ponnuraj N, Vieson MD, Talaat AM, Nanjappa SG. E3 ubiquitin ligase CBLB regulates innate immune responses and bacterial dissemination during nontuberculous mycobacteria infection. J Leukoc Biol 2024; 115:1118-1130. [PMID: 38271280 PMCID: PMC11135617 DOI: 10.1093/jleuko/qiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens causing pulmonary infection to fatal disseminated disease. NTM infections are steadily increasing in children and adults, and immune-compromised individuals are at a greater risk of fatal infections. The NTM disease's adverse pathology and resistance to antibiotics have further worsened the therapeutic measures. Innate immune regulators are potential targets for therapeutics to NTM, especially in a T cell-suppressed population, and many ubiquitin ligases modulate pathogenesis and innate immunity during infections, including mycobacterial infections. Here, we investigated the role of an E3 ubiquitin ligase, Casitas B-lineage lymphoma proto-oncogene B (CBLB), in immunocompromised mouse models of NTM infection. We found that CBLB is essential to prevent bacterial growth and dissemination. Cblb deficiency debilitated natural killer cells, inflammatory monocytes, and macrophages in vivo. However, Cblb deficiency in macrophages did not wane its ability to inhibit bacterial growth or production of reactive oxygen species or interferon γ production by natural killer cells in vitro. CBLB restricted NTM growth and dissemination by promoting early granuloma formation in vivo. Our study shows that CBLB bolsters innate immune responses and helps prevent the dissemination of NTM during compromised T cell immunity.
Collapse
Affiliation(s)
- Jaishree Sharma
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Srinivasu Mudalagiriyappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Hazem F M Abdelaal
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Thomas C Kelly
- Integrative Biology Honors Program, University Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Miranda D Vieson
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Adel M Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Som Gowda Nanjappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
3
|
Painter H, Harriss E, Fletcher HA, McShane H, Tanner R. Development and application of the direct mycobacterial growth inhibition assay: a systematic review. Front Immunol 2024; 15:1355983. [PMID: 38380319 PMCID: PMC10877019 DOI: 10.3389/fimmu.2024.1355983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction First described by Wallis et al. in 2001 for the assessment of TB drugs, the direct mycobacterial growth inhibition assay (MGIA) offers a tractable ex vivo tool measuring the combined influences of host immunity, strain virulence and intervention effects. Over the past 13 years, we have led efforts to adapt the direct MGIA for the assessment of TB vaccines including optimisation, harmonisation and validation of BCG vaccine-induced responses as a benchmark, as well as assay transfer to institutes worldwide. Methods We have performed a systematic review on the primary published literature describing the development and applications of the direct MGIA from 2001 to June 2023 in accordance with the PRISMA reporting guidelines. Results We describe 63 studies in which the direct MGIA has been applied across species for the evaluation of TB drugs and novel TB vaccine candidates, the study of clinical cohorts including those with comorbidities, and to further understanding of potential immune correlates of protection from TB. We provide a comprehensive update on progress of the assay since its conception and critically evaluate current findings and evidence supporting its utility, highlighting priorities for future directions. Discussion While further standardisation and validation work is required, significant advancements have been made in the past two decades. The direct MGIA provides a potentially valuable tool for the early evaluation of TB drug and vaccine candidates, clinical cohorts, and immune mechanisms of mycobacterial control. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023423491.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Razei A, Javanbakht M, Hajizade A, Heiat M, Zhao S, Aghamollaei H, Saadati M, Khafaei M, Asadi M, Cegolon L, Keihan AH. Nano and microparticle drug delivery systems for the treatment of Brucella infections. Biomed Pharmacother 2023; 169:115875. [PMID: 37979375 DOI: 10.1016/j.biopha.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Nano-based drug delivery systems are increasingly used for diagnosis, prevention and treatment of several diseases, thanks to several beneficial properties, including the ability to target specific cells or organs, allowing to reduce treatment costs and side effects frequently associated with chemotherapeutic medications, thereby improving treatment compliance of patients. In the field of communicable diseases, especially those caused by intracellular bacteria, the delivery of antibiotics targeting specific cells is of critical importance to maximize their treatment efficacy. Brucella melitensis, an intracellular obligate bacterium surviving and replicating inside macrophages is hard to be eradicated, mainly because of the low ability of antibiotics to enter these phagocityc cells . Although different antibiotics regimens including gentamicin, doxycycline and rifampicin are in fact used against the Brucellosis, no efficient treatment has been attained yet, due to the intracellular life of the respective pathogen. Nano-medicines responding to environmental stimuli allow to maximize drug delivery targeting macropages, thereby boosting treatment efficacy. Several drug delivery nano-technologies, including solid lipid nanoparticles, liposomes, chitosan, niosomes, and their combinations with chitosan sodium alginate can be employed in combination of antibiotics to successfully eradicate Brucellosis infection from patients.
Collapse
Affiliation(s)
- Ali Razei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hossien Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saadati
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mosa Asadi
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Public Health Department, Trieste, Italy
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Cieślik M, Bryniarski K, Nazimek K. Biodelivery of therapeutic extracellular vesicles: should mononuclear phagocytes always be feared? Front Cell Dev Biol 2023; 11:1211833. [PMID: 37476156 PMCID: PMC10354279 DOI: 10.3389/fcell.2023.1211833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
At present, extracellular vesicles (EVs) are considered key candidates for cell-free therapies, including treatment of allergic and autoimmune diseases. However, their therapeutic effectiveness, dependent on proper targeting to the desired cells, is significantly limited due to the reduced bioavailability resulting from their rapid clearance by the cells of the mononuclear phagocyte system (MPS). Thus, developing strategies to avoid EV elimination is essential when applying them in clinical practice. On the other hand, malfunctioning MPS contributes to various immune-related pathologies. Therapeutic reversal of these effects with EVs would be beneficial and could be achieved, for example, by modulating the macrophage phenotype or regulating antigen presentation by dendritic cells. Additionally, intended targeting of EVs to MPS macrophages for replication and repackaging of their molecules into new vesicle subtype can allow for their specific targeting to appropriate populations of acceptor cells. Herein, we briefly discuss the under-explored aspects of the MPS-EV interactions that undoubtedly require further research in order to accelerate the therapeutic use of EVs.
Collapse
Affiliation(s)
| | | | - Katarzyna Nazimek
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Yang S, Li N, Xiao H, Wu GL, Liu F, Qi P, Tang L, Tan X, Yang Q. Clearance pathways of near-infrared-II contrast agents. Am J Cancer Res 2022; 12:7853-7883. [PMID: 36451852 PMCID: PMC9706589 DOI: 10.7150/thno.79209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/23/2022] [Indexed: 12/02/2022] Open
Abstract
Near-infrared-II (NIR-II) bioimaging gradually becomes a vital visualization modality in the real-time investigation for fundamental biological research and clinical applications. The favorable NIR-II contrast agents are vital in NIR-II imaging technology for clinical translation, which demands good optical properties and biocompatibility. Nevertheless, most NIR-II contrast agents cannot be applied to clinical translation due to the acute or chronic toxicity caused by organ retention in vivo imaging. Therefore, it is critical to understand the pharmacokinetic properties and optimize the clearance pathways of NIR-II contrast agents in vivo to minimize toxicity by decreasing organ retention. In this review, the clearance mechanisms of biomaterials, including renal clearance, hepatobiliary clearance, and mononuclear phagocytic system (MPS) clearance, are synthetically discussed. The clearance pathways of NIR-II contrast agents (classified as inorganic, organic, and other complex materials) are highlighted. Successively analyzing each contrast agent barrier, this review guides further development of the clearable and biocompatible NIR-II contrast agents.
Collapse
Affiliation(s)
- Sha Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,Tumor Pathology Research group & Department of Pathology, Institute of Basic Disease Sciences & Department of Pathology, Xiangnan University, Chenzhou, Hunan 423099, China
| | - Na Li
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hao Xiao
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gui-long Wu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fen Liu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Pan Qi
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li Tang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China.,✉ Corresponding authors: E-mail: ; ;
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,✉ Corresponding authors: E-mail: ; ;
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.,✉ Corresponding authors: E-mail: ; ;
| |
Collapse
|
7
|
Urbán-Solano A, Flores-Gonzalez J, Cruz-Lagunas A, Pérez-Rubio G, Buendia-Roldan I, Ramón-Luing LA, Chavez-Galan L. High levels of PF4, VEGF-A, and classical monocytes correlate with the platelets count and inflammation during active tuberculosis. Front Immunol 2022; 13:1016472. [PMID: 36325331 PMCID: PMC9618821 DOI: 10.3389/fimmu.2022.1016472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Platelets play a major role in coagulation and hemostasis; evidence supports the hypothesis that they also contribute to immunological processes. Increased platelet counts have been associated with poor prognosis in tuberculosis (TB). Platelet–monocyte aggregates have been reported in patients with TB, but it is still unclear if only one monocyte subpopulation is correlated to the platelet count; moreover, the platelet–monocyte axis has not been studied during latent tuberculosis (LTB). In this study, mononuclear cells and plasma were obtained from patients diagnosed with active drug-sensitive TB (DS-TB, n = 10) and LTB (n = 10); cytokines and growth factors levels associated to platelets were evaluated, and correlations with monocyte subpopulations were performed to identify a relationship between them, as well as an association with the degree of lung damage. Our data showed that, compared to LTB, DS-TB patients had an increased frequency of platelets, monocytes, and neutrophils. Although DS-TB patients showed no significant difference in the frequency of classical and non-classical monocytes, the classical monocytes had increased CD14 intensity of expression and frequency of TLR-2+. Furthermore, the plasma levels of angiogenic factors such as vascular endothelial growth factor (VEGF-A), platelet-derived growth factor (PDGF-BB), and platelet factor-4 (PF4), and pro-inflammatory cytokines like interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and interferon-γ-inducible protein 10 (IP-10) were increased in DS-TB patients. In addition, PF-4 and VEGF-A correlated positively with the frequency of classical monocytes and the platelet count. Using a principal component analysis, we identified four groups of DS-TB patients according to their levels of pro-inflammatory cytokines, angiogenic factors, and degree of lung damage. This study establishes that there is a correlation between VEGF-A and PF4 with platelets and classical monocytes during active TB, suggesting that those cell subpopulations are the major contributors of these molecules, and together, they control the severity of lung damage by amplification of the inflammatory environment.
Collapse
Affiliation(s)
- Alexia Urbán-Solano
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Lucero A. Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- *Correspondence: Leslie Chavez-Galan, ;
| |
Collapse
|
8
|
Fiction and Facts about BCG Imparting Trained Immunity against COVID-19. Vaccines (Basel) 2022; 10:vaccines10071006. [PMID: 35891168 PMCID: PMC9316941 DOI: 10.3390/vaccines10071006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
The Bacille Calmette-Guérin or BCG vaccine, the only vaccine available against Mycobacterium tuberculosis can induce a marked Th1 polarization of T-cells, characterized by the antigen-specific secretion of IFN-γ and enhanced antiviral response. A number of studies have supported the concept of protection by non-specific boosting of immunity by BCG and other microbes. BCG is a well-known example of a trained immunity inducer since it imparts ‘non-specific heterologous’ immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the recent pandemic. SARS-CoV-2 continues to inflict an unabated surge in morbidity and mortality around the world. There is an urgent need to devise and develop alternate strategies to bolster host immunity against the coronavirus disease of 2019 (COVID-19) and its continuously emerging variants. Several vaccines have been developed recently against COVID-19, but the data on their protective efficacy remains doubtful. Therefore, urgent strategies are required to enhance system immunity to adequately defend against newly emerging infections. The concept of trained immunity may play a cardinal role in protection against COVID-19. The ability of trained immunity-based vaccines is to promote heterologous immune responses beyond their specific antigens, which may notably help in defending against an emergency situation such as COVID-19 when the protective ability of vaccines is suspicious. A growing body of evidence points towards the beneficial non-specific boosting of immune responses by BCG or other microbes, which may protect against COVID-19. Clinical trials are underway to consider the efficacy of BCG vaccination against SARS-CoV-2 on healthcare workers and the elderly population. In this review, we will discuss the role of BCG in eliciting trained immunity and the possible limitations and challenges in controlling COVID-19 and future pandemics.
Collapse
|
9
|
Torres-Atencio I, Campble A, Goodridge A, Martin M. Uncovering the Mast Cell Response to Mycobacterium tuberculosis. Front Immunol 2022; 13:886044. [PMID: 35720353 PMCID: PMC9201906 DOI: 10.3389/fimmu.2022.886044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The immunologic mechanisms that contribute to the response to Mycobacterium tuberculosis infection still represent a challenge in the clinical management and scientific understanding of tuberculosis disease. In this scenario, the role of the different cells involved in the host response, either in terms of innate or adaptive immunity, remains key for defeating this disease. Among this coordinated cell response, mast cells remain key for defeating tuberculosis infection and disease. Together with its effector’s molecules, membrane receptors as well as its anatomical locations, mast cells play a crucial role in the establishment and perpetuation of the inflammatory response that leads to the generation of the granuloma during tuberculosis. This review highlights the current evidences that support the notion of mast cells as key link to reinforce the advancements in tuberculosis diagnosis, disease progression, and novel therapeutic strategies. Special focus on mast cells capacity for the modulation of the inflammatory response among patients suffering multidrug resistant tuberculosis or in co-infections such as current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ivonne Torres-Atencio
- Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Panama, Panama.,Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Ariadne Campble
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Amador Goodridge
- Tuberculosis Biomarker Research Unit, Centro de Biología Molecular y Celular de Enfermedades (CBCME) - Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Ciudad Del Saber, Panama
| | - Margarita Martin
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Laboratory of Clinical and Experimental Respiratory Immunoallergy, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
10
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
11
|
Kwon KW, Kim LH, Kang SM, Lee JM, Choi E, Park J, Hong JJ, Shin SJ. Host-directed antimycobacterial activity of colchicine, an anti-gout drug, via strengthened host innate resistance reinforced by the IL-1β/PGE 2 axis. Br J Pharmacol 2022; 179:3951-3969. [PMID: 35301712 DOI: 10.1111/bph.15838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE To diversify and expand possible tuberculosis (TB) drug candidates and maximize limited global resources, we investigated the effect of colchicine, an FDA-approved anti-gout drug, against Mycobacterium tuberculosis (Mtb) infection because of its immune-modulating effect. EXPERIMENTAL APPROACH We evaluated the intracellular anti-Mtb activity of different concentrations of colchicine in murine bone marrow-derived macrophages (BMDMs). To elucidate the underlying mechanism, RNA sequencing, biological and chemical inhibition assays, and Western blot, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA) and immunohistochemical analyses were employed. Finally, type I interferon-dependent highly TB-susceptible A/J mice were challenged with virulent Mtb H37Rv, and the host-directed therapeutic effect of oral colchicine administration on bacterial burdens and lung inflammation was assessed 30 days post-infection (2.5 mg·kg-1 every two days). KEY RESULTS Colchicine reinforced the anti-Mtb activity of BMDMs without affecting cell viability, indicating that colchicine facilitated macrophage immune activation upon Mtb infection. The results from RNA sequencing, NLRP3 knockout BMDM, IL-1 receptor blockade, and immunohistochemistry analyses revealed that this unexpected intracellular anti-Mtb activity of colchicine was mediated through NLRP3-dependent IL-1β signalling and Cox-2-regulated PGE2 production in macrophages. Consequently, the TB-susceptible A/J mouse model showed remarkable protection, with decreased bacterial loads in both the lungs and spleens of oral colchicine-treated mice, with significantly elevated Cox-2 expression at infection sites. CONCLUSIONS AND IMPLICATIONS The repurposing of colchicine against Mtb infection in this study highlights its unique function in macrophages upon Mtb infection and its novel potential use in treating TB as host-directed or adjunctive therapy.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Lee-Han Kim
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Mi Lee
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyun Park
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Disease, Brain Korea 21 Project for the Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Ahmad F, Umar MS, Khan N, Jamal F, Gupta P, Zubair S, Gupta UD, Owais M. Immunotherapy With 5, 15-DPP Mediates Macrophage M1 Polarization and Modulates Subsequent Mycobacterium tuberculosis Infectivity in rBCG30 Immunized Mice. Front Immunol 2021; 12:706727. [PMID: 34777338 PMCID: PMC8586420 DOI: 10.3389/fimmu.2021.706727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a significant and continuing problem worldwide, with a death toll of around 1.5 million human lives annually. BCG, the only vaccine against TB, offers a varied degree of protection among human subjects in different regions and races of the world. The majority of the population living near the tropics carries a varying degree of tolerance against BCG due to the widespread prevalence of non-tuberculous mycobacteria (NTM). Interestingly, ≈90% of the Mycobacterium tuberculosis (Mtb) infected population restrain the bacilli on its own, which strengthens the notion of empowering the host immune system to advance the protective efficacy of existing mycobacterial vaccines. In general, Mtb modulates IL-10/STAT3 signaling to skew host mononuclear phagocytes toward an alternatively activated, anti-inflammatory state that helps it thrive against hostile immune advances. We hypothesized that modulating the IL-10/STAT3 driven anti-inflammatory effects in mononuclear cells may improve the prophylactic ability of TB vaccines. This study investigated the immunotherapeutic ability of a porphyrin based small molecule inhibitor of IL-10/STAT3 axis, 5, 15-diphenyl porphyrin (DPP), in improving anti-TB immunity offered by second generation recombinant BCG30 (rBCG30-ARMF-II®) vaccine in mice. The DPP therapy potentiated vaccine induced anti-TB immunity by down-modulating anti-inflammatory responses, while simultaneously up-regulating pro-inflammatory immune effector responses in the immunized host. The employed DPP based immunotherapy led to the predominant activation/proliferation of pro-inflammatory monocytes/macrophages/DCs, the concerted expansion of CD4+/CD8+ effector and central memory T cells, alongside balanced Th17 and Treg cell amplification, and conferred augmented resistance to aerosol Mtb challenge in rBCG30 immunized BALB/c mice.
Collapse
Affiliation(s)
- Faraz Ahmad
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nazoora Khan
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Fauzia Jamal
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Pushpa Gupta
- Bio-Safety Level (BSL)-3 Animal Experimentation Facility, Indian Council of Medical Research (ICMR)-National Japanese Leprosy Mission for Asia (JALMA) Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Umesh Datta Gupta
- Bio-Safety Level (BSL)-3 Animal Experimentation Facility, Indian Council of Medical Research (ICMR)-National Japanese Leprosy Mission for Asia (JALMA) Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Mohammad Owais
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
13
|
Ex-vivo immunophenotyping and high dimensionality UMAP analysis of leucocyte subsets in tuberculous lymphadenitis. Tuberculosis (Edinb) 2021; 130:102117. [PMID: 34358992 DOI: 10.1016/j.tube.2021.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
Tuberculous lymphadenitis (TBL) is defined by reduced proinflammatory cytokines and elevated CD4+, CD8+ T cells and decreased CD8+ cytotoxic markers. However, ex-vivo phenotyping of diverse leucocytes in TBL has not been done. We show activated and atypical B cells, myeloid dendritic cells (mDCs), classical, non-classical and intermediate monocytes, T regulatory (T regs) cells, CD4+ T cell effector memory RA (TEMRA), CD4+ effector and CD8+ central memory phenotypes were significantly increased in TBL compared to LTB individuals. In contrast, classical memory and plasma B cells, plasmacytoid DCs (pDCs), CD8+ TEMRA, CD4+ naïve and central memory cells were significantly decreased in TBL compared to LTB individuals. Some of the leucocyte frequencies (atypical memory B cells, pDCs, myeloid-derived suppressor cells, CD4+ effector and CD8+ central memory was increased; activated memory and plasma B cell, mDCs, classical, non-classical, intermediate monocytes, T regs, CD4+ TEMRA, CD4+, CD8+ naïve and effector memory cells and CD8+ central memory cells were decreased) were significantly modulated after anti-TB treatment among TBL individuals. UMAP analysis show that leucocyte subsets or islands expressing specific markers were significantly different in TBL baseline and post-treatment individuals. Overall, we suggest altered frequencies of diverse leucocytes influences the disease pathology and protective immunity in TBL individuals.
Collapse
|
14
|
SAVALAS LRT, LESTARİ A, MUNİRAH M, FARİDA S, SUHENDRA D, ASNAWATİ D, 'ARDHUHA J, SARI NİNGSİH B, SYAHRİ J. cis-2 and trans-2-eicosenoic Fatty Acids Inhibit Mycobacterium tuberculosis Virulence Factor Protein Tyrosine Phosphatase B. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.896489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Looney M, Lorenc R, Halushka MK, Karakousis PC. Key Macrophage Responses to Infection With Mycobacterium tuberculosis Are Co-Regulated by microRNAs and DNA Methylation. Front Immunol 2021; 12:685237. [PMID: 34140955 PMCID: PMC8204050 DOI: 10.3389/fimmu.2021.685237] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/13/2021] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of death from infection with a single bacterial pathogen. Host macrophages are the primary cell type infected with Mycobacterium tuberculosis (Mtb), the organism that causes TB. Macrophage response pathways are regulated by various factors, including microRNAs (miRNAs) and epigenetic changes that can shape the outcome of infection. Although dysregulation of both miRNAs and DNA methylation have been studied in the context of Mtb infection, studies have not yet investigated how these two processes may jointly co-regulate critical anti-TB pathways in primary human macrophages. In the current study, we integrated genome-wide analyses of miRNA abundance and DNA methylation status with mRNA transcriptomics in Mtb-infected primary human macrophages to decipher which macrophage functions may be subject to control by these two types of regulation. Using in vitro macrophage infection models and next generation sequencing, we found that miRNAs and methylation changes co-regulate important macrophage response processes, including immune cell activation, macrophage metabolism, and AMPK pathway signaling.
Collapse
Affiliation(s)
- Monika Looney
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel Lorenc
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Division of Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Looney MM, Lu Y, Karakousis PC, Halushka MK. Mycobacterium tuberculosis Infection Drives Mitochondria-Biased Dysregulation of Host Transfer RNA-Derived Fragments. J Infect Dis 2020; 223:1796-1805. [PMID: 32959876 DOI: 10.1093/infdis/jiaa596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis, causes 10 million infections and 1.5 million deaths per year worldwide. The success of Mtb as a human pathogen is directly related to its ability to suppress host responses, which are critical for clearing intracellular pathogens. Emerging evidence suggests that key response pathways may be regulated by a novel class of small noncoding RNA, called transfer RNA (tRNA)-derived fragments (tRFs). tRFs can complex with Argonaute proteins to target and degrade messenger RNA targets, similarly to micro RNAs, but have thus far been overlooked in the context of bacterial infections. METHODS We generated a novel miRge2.0-based tRF-analysis tool, tRFcluster, and used it to analyze independently generated and publicly available RNA-sequencing datasets to assess tRF dysregulation in host cells following infection with Mtb and other intracellular bacterial pathogens. RESULTS We found that Mtb and Listeria monocytogenes drive dramatic tRF dysregulation, whereas other bacterial pathogens do not. Interestingly, Mtb infection uniquely increased the expression of mitochondria-derived tRFs rather than genomic-derived tRFs, suggesting an association with mitochondrial damage in Mtb infection. CONCLUSIONS tRFs are dysregulated in some, but not all, bacterial infections. Biased dysregulation of mitochondria-derived tRFs in Mtb infection suggests a link between mitochondrial distress and tRF production.
Collapse
Affiliation(s)
- Monika M Looney
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yin Lu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Petros C Karakousis
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Negi S, Pahari S, Bashir H, Agrewala JN. Intestinal microbiota disruption limits the isoniazid mediated clearance of Mycobacterium tuberculosis in mice. Eur J Immunol 2020; 50:1976-1987. [PMID: 32673409 DOI: 10.1002/eji.202048556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) continues to remain a global threat due to the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) strains and toxicity associated with TB drugs. Intestinal microbiota has been reported to affect the host response to immunotherapy and drugs. However, how it affects the potency of first-line TB drug isoniazid (INH) is largely unknown. Here, we examined the impact of gut microbial dysbiosis on INH efficiency to kill Mtb. In this study, we employed in vivo mouse model, pretreated with broad-spectrum antibiotics (Abx) cocktail to disrupt their intestinal microbial population prior to Mtb infection and subsequent INH therapy. We demonstrated that microbiota disruption results in the impairment of INH-mediated Mtb clearance, and aggravated TB-associated tissue pathology. Further, it suppressed the innate immunity and reduced CD4 T-cell response against Mtb. Interestingly, a distinct shift of gut microbial profile was noted with abundance of Enterococcus and reduction of Lactobacillus and Bifidobacterium population. Our results show that the intestinal microbiota is crucial determinant in efficacy of INH to kill Mtb and impacts the host immune response against infection. This work provides an intriguing insight into the potential links between host gut microbiota and potency of INH.
Collapse
Affiliation(s)
- Shikha Negi
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India.,Present address: Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susanta Pahari
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India.,Immunology Division, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Hilal Bashir
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India.,Centre for Biomedical Engineering, Indian Institute of Technology-Ropar, Rupnagar, Punjab, India
| |
Collapse
|
18
|
Lavalett L, Ortega H, Barrera LF. Infection of Monocytes From Tuberculosis Patients With Two Virulent Clinical Isolates of Mycobacterium tuberculosis Induces Alterations in Myeloid Effector Functions. Front Cell Infect Microbiol 2020; 10:163. [PMID: 32391286 PMCID: PMC7190864 DOI: 10.3389/fcimb.2020.00163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Monocytes play a critical role during infection with Mycobacterium tuberculosis (Mtb). They are recruited to the lung, where they participate in the control of infection during active tuberculosis (TB). Alternatively, inflammatory monocytes may participate in inflammation or serve as niches for Mtb infection. Monocytes response to infection may vary depending on the particularities of the clinical isolate of Mtb from which they are infected. In this pilot study, we have examined the baseline mRNA profiles of circulating human monocytes from patients with active TB (MoTB) compared with monocytes from healthy individuals (MoCT). Circulating MoTB displayed a pro-inflammatory transcriptome characterized by increased gene expression of genes associated with cytokines, monocytopoiesis, and down-regulation of MHC class II gene expression. In response to in vitro infection with two clinical isolates of the LAM family of Mtb (UT127 and UT205), MoTB displayed an attenuated inflammatory mRNA profile associated with down-regulation the TREM1 signaling pathway. Furthermore, the gene expression signature induced by Mtb UT205 clinical strain was characterized by the enrichment of genes in pathways and biological processes mainly associated with a signature of IFN-inducible genes and the inhibition of cell death mechanisms compared to MoTB-127, which could favor the establishment and survival of Mtb within the monocytes. These results suggest that circulating MoTB have an altered transcriptome that upon infection with Mtb may help to maintain chronic inflammation and infection. Moreover, this functional abnormality of monocytes may also depend on potential differences in virulence of circulating clinical strains of Mtb.
Collapse
Affiliation(s)
- Lelia Lavalett
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Hector Ortega
- Clínica Cardiovascular Santa María, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
19
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Negi S, Das DK, Pahari S, Nadeem S, Agrewala JN. Potential Role of Gut Microbiota in Induction and Regulation of Innate Immune Memory. Front Immunol 2019; 10:2441. [PMID: 31749793 PMCID: PMC6842962 DOI: 10.3389/fimmu.2019.02441] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota significantly regulates the development and function of the innate and adaptive immune system. The attribute of immunological memory has long been linked only with adaptive immunity. Recent evidence indicates that memory is also present in the innate immune cells such as monocytes/macrophages and natural killer cells. These cells exhibit pattern recognition receptors (PRRs) that recognize microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs) expressed by the microbes. Interaction between PRRs and MAMPs is quite crucial since it triggers the sequence of signaling events and epigenetic rewiring that not only play a cardinal role in modulating the activation and function of the innate cells but also impart a sense of memory response. We discuss here how gut microbiota can influence the generation of innate memory and functional reprogramming of bone marrow progenitors that helps in protection against infections. This article will broaden our current perspective of association between the gut microbiome and innate memory. In the future, this knowledge may pave avenues for development and designing of novel immunotherapies and vaccination strategies.
Collapse
Affiliation(s)
- Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Gastroenterology Division, Washington University in St. Louis, St. Louis, MO, United States
| | - Deepjyoti Kumar Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Immunology Division, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Sajid Nadeem
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Microbiology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,Center for Biomedical Engineering, Indian Institute of Technology-Ropar, Rupnagar, India
| |
Collapse
|
21
|
Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy 2019; 16:1021-1043. [PMID: 31462144 DOI: 10.1080/15548627.2019.1658436] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Host-directed therapies are gaining considerable impetus because of the emergence of drug-resistant strains of pathogens due to antibiotic therapy. Therefore, there is an urgent need to exploit alternative and novel strategies directed at host molecules to successfully restrict infections. The C-type lectin receptor CLEC4E and Toll-like receptor TLR4 expressed by host cells are among the first line of defense in encountering pathogens. Therefore, we exploited signaling of macrophages through CLEC4E in association with TLR4 agonists (C4.T4) to control the growth of Mycobacterium tuberculosis (Mtb). We observed significant improvement in host immunity and reduced bacterial load in the lungs of Mtb-infected mice and guinea pigs treated with C4.T4 agonists. Further, intracellular killing of Mtb was achieved with a 10-fold lower dose of isoniazid or rifampicin in conjunction with C4.T4 than the drugs alone. C4.T4 activated MYD88, PtdIns3K, STAT1 and RELA/NFKB, increased lysosome biogenesis, decreased Il10 and Il4 gene expression and enhanced macroautophagy/autophagy. Macrophages from autophagy-deficient (atg5 knockout or Becn1 knockdown) mice showed elevated survival of Mtb. The present findings also unveiled the novel role of CLEC4E in inducing autophagy through MYD88, which is required for control of Mtb growth. This study suggests a unique immunotherapeutic approach involving CLEC4E in conjunction with TLR4 to restrict the survival of Mtb through autophagy. ABBREVIATIONS 3MA: 3 methyladenine; AO: acridine orange; Atg5: autophagy related 5; AVOs: acidic vesicular organelles; BECN1: beclin 1, autophagy related; BMDMs: bone marrow derived macrophages; bw: body weight; C4.T4: agonists of CLEC4E (C4/TDB) and TLR4 (T4/ultra-pure-LPS); CFU: colony forming unit; CLEC4E/Mincle: C-type lectin domain family 4, member e; CLR: c-type lectin receptor; INH: isoniazid; LAMP1: lysosomal-associated membrane protein 1; MφC4.T4: Mtb-infected C4.T4 stimulated macrophages; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MDC: monodansylcadaverine; MTOR: mechanistic target of rapamycin kinase; MYD88: myeloid differentiation primary response 88; NFKB: nuclear factor of kappa light polypeptide gene enhance in B cells; NLR: NOD (nucleotide-binding oligomerization domain)-like receptors; PFA: paraformaldehyde; PPD: purified protein derivative; PtdIns3K: class III phosphatidylinositol 3-kinase; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RIF: rifampicin; RLR: retinoic acid-inducible gene-I-like receptors; TDB: trehalose-6,6´-dibehenate; TLR4: toll-like receptor 4; Ultra-pure-LPS: ultra-pure lipopolysaccharide-EK; V-ATPase: vacuolar-type H+ ATPase.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh, India.,Host-Pathogen Interactions Program, Texas Biomedical Research Institute , San Antonio, TX, USA
| | - Shikha Negi
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh, India
| | - Mohammad Aqdas
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh, India
| | - Eusondia Arnett
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute , San Antonio, TX, USA
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute , San Antonio, TX, USA
| | - Javed N Agrewala
- Immunology Division, CSIR-Institute of Microbial Technology , Chandigarh, India.,Biomedical Engineering Department, Indian Institute of Technology Ropar , Rupnagar, India
| |
Collapse
|
22
|
Negi S, Pahari S, Bashir H, Agrewala JN. Gut Microbiota Regulates Mincle Mediated Activation of Lung Dendritic Cells to Protect Against Mycobacterium tuberculosis. Front Immunol 2019; 10:1142. [PMID: 31231363 PMCID: PMC6558411 DOI: 10.3389/fimmu.2019.01142] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbial components serve as ligand for various pattern recognition receptors (PRRs) present on immune cells and thereby regulates host immunity. Dendritic cells (DCs) are highly specialized innate cells involved in immune response to Mycobacterium tuberculosis (Mtb) infection. The gut-lung axis is a potential therapeutic target in tuberculosis; however, understanding of the innate immune mechanism underlying the interaction of gut microbiota and lung still remains obscure. We investigated if antibiotics (Abx) induced gut dysbiosis is able to affect the activation of innate receptor, macrophage inducible C-type lectin (mincle) in lungs during Mtb infection. We found that dysbiosis reduced the lung mincle expression with a concomitant increase in Mtb survival. Further, Abx diminished the effector and memory T cell population, while elevating frequency of regulatory T cells (Tregs) in the lungs. Here, we show that dysbiotic mice exhibited low mincle expression on lung DCs. These DCs with impaired phenotype and functions had reduced ability to activate naïve CD4 T cells, and thus unable to restrict Mtb survival. In vivo administration of trehalose-6,6-dibehenate (TDB: mincle ligand) efficiently rescued this immune defect by enhancing lung DCs function and subsequent T cell response. Further, gut microbial profiling revealed augmentation of Lactobacillus upon mincle stimulation in microbiota depleted animals. Accordingly, supplementation with Lactobacillus restored mincle expression on lung DCs along with anti-Mtb response. Our data demonstrate that gut microbiota is crucial to maintain DC-dependent lung immune response against Mtb, mediated by mincle. Abx interrupt this process to induce impaired T cell-response and increased susceptibility to Mtb.
Collapse
Affiliation(s)
- Shikha Negi
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Susanta Pahari
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India.,Immunology Division, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Hilal Bashir
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh, India.,Center for Biomedical Engineering, Indian Institute of Technology, Rupnagar, India
| |
Collapse
|
23
|
Negi S, Pahari S, Das DK, Khan N, Agrewala JN. Curdlan Limits Mycobacterium tuberculosis Survival Through STAT-1 Regulated Nitric Oxide Production. Front Microbiol 2019; 10:1173. [PMID: 31191491 PMCID: PMC6547911 DOI: 10.3389/fmicb.2019.01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
Host-directed therapies have emerged as an innovative and promising approach in tuberculosis (TB) treatment due to the observed limitations of current TB regimen such as lengthy duration and emergence of drug resistance. Thus, we explored the role of curdlan (beta glucan polysaccharide) as a novel strategy to activate macrophages against Mycobacterium tuberculosis (Mtb). The aim of the study was to investigate the role of curdlan in restricting the Mtb growth both in vitro and in vivo. Further, the immunomodulatory potential of curdlan against Mtb and the underlying mechanism is largely unknown. We found that curdlan treatment enhanced the antigen presentation, pro-inflammatory cytokines, Mtb uptake and killing activity of macrophages. In vivo studies showed that curdlan therapy significantly reduced the Mtb burden in lung and spleen of mice. Administration of curdlan triggered the protective Th1 and Th17 immunity while boosting the central and effector memory response in Mtb infected mice. Curdlan mediated anti-Mtb activity is through signal transducer and activator of transcription-1 (STAT-1), which regulates nitric oxide (NO) production through inducible NO synthase (iNOS) induction; along with this activation of nuclear factor kappa B (NF-κB) was also evident in Mtb infected macrophages. Thus, we demonstrate that curdlan exerts effective anti-tuberculous activity anti-tuberculous activity. It can be used as a potential host-directed therapy against Mtb.
Collapse
Affiliation(s)
- Shikha Negi
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Susanta Pahari
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India.,Immunology Division, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Deepjyoti Kumar Das
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Nargis Khan
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Javed N Agrewala
- Immunology Division, CSIR - Institute of Microbial Technology, Chandigarh, India.,Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| |
Collapse
|
24
|
Yang Y, Tu ZK, Liu XK, Zhang P. Mononuclear phagocyte system in hepatitis C virus infection. World J Gastroenterol 2018; 24:4962-4973. [PMID: 30510371 PMCID: PMC6262249 DOI: 10.3748/wjg.v24.i44.4962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
The mononuclear phagocyte system (MPS), which consists of monocytes, dendritic cells (DCs), and macrophages, plays a vital role in the innate immune defense against pathogens. Hepatitis C virus (HCV) is efficient in evading the host immunity, thereby facilitating its development into chronic infection. Chronic HCV infection is the leading cause of end-stage liver diseases, liver cirrhosis, and hepatocellular carcinoma. Acquired immune response was regarded as the key factor to eradicate HCV. However, innate immunity can regulate the acquired immune response. Innate immunity-derived cytokines shape the adaptive immunity by regulating T-cell differentiation, which determines the outcome of acute HCV infection. Inhibition of HCV-specific T-cell responses is one of the most important strategies for immune system evasion. It is meaningful to illustrate the role of innate immune response in HCV infection. With the MPS being the important factor in innate immunity, therefore, understanding the role of the MPS in HCV infection will shed light on the pathophysiology of chronic HCV infection. In this review, we outline the impact of HCV infection on the MPS and cytokine production. We discuss how HCV is detected by the MPS and describe the function and impairment of MPS components in HCV infection.
Collapse
Affiliation(s)
- Yu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng-Kun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
25
|
Mubin N, Pahari S, Owais M, Zubair S. Mycobacterium tuberculosis host cell interaction: Role of latency associated protein Acr-1 in differential modulation of macrophages. PLoS One 2018; 13:e0206459. [PMID: 30395609 PMCID: PMC6218195 DOI: 10.1371/journal.pone.0206459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/13/2018] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) contrives intracellular abode as a strategy to combat antibody onslaught. Additionally, to thrive against hostile ambiance inside host macrophages, the pathogen inhibits phago-lysosomal fusion. Finally, to further defy host cell offensives, M.tb opts for dormant phase, where it turns off or slows down most of its metabolic process as an added stratagem. While M.tb restrains most of its metabolic activities during dormancy, surprisingly latency-associated alpha-crystallin protein (Acr-1) is expressed most prominently during this phase. Interestingly, several previous studies described the potential of Acr-1 to induce the robust immuno-prophylactic response in the immunized host. It is intriguing to comprehend the apparent discrepancy that the microbe M.tb overexpresses a protein that has the potential to prime host immune system against the pathogen itself. Keeping this apparent ambiguity into consideration, it is imperative to unravel intricacies involved in the exploitation of Acr-1 by M.tb during its interaction with host immune cells. The present study suggests that Acr-1 exhibits diverse role in the maturation of macrophages (MΦs) and related immunological responses. The early encounter of bone marrow derived immune cells (pre-exposure during differentiation to MΦs) with Acr-1 (AcrMΦpre), results in hampering of their function. The pre-exposure of naïve MΦs with Acr-1 induces the expression of TIM-3 and IL-10. In contrast, exposure of fully differentiated MΦs to Acr-1 results in their down-modulation and induces the phosphorylation of STAT-1 and STAT-4 in host MΦs. Furthermore, Acr-1 mediated activation of MΦs results in the induction of Th1 and Th17 phenotype by activated T lymphocyte.
Collapse
Affiliation(s)
- Nida Mubin
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (MO)
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (MO)
| |
Collapse
|