1
|
Liu ZJ, Wang MJ, Luo J, Tan YT, Hou M, Wang SC. A bibliometric analysis of hotpots and trends for the relationship between skin inflammation and regeneration. Front Surg 2023; 10:1180624. [PMID: 37151861 PMCID: PMC10160476 DOI: 10.3389/fsurg.2023.1180624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background Skin regeneration is a challenging issue worldwide. Increasing research has highlighted the role of immune cells in healing and the underlying regulatory mechanism. The purpose of this study was to identify the hotspots and trends in skin regeneration and inflammation research through bibliometrics and to provide insights into the future development of fundamental research and disease treatment. Methods Publications were collected from the Web of Science Core Collection on March 1, 2022. Articles and reviews published in English from January 1, 1999, to December 31, 2022, were selected, and statistical analyses of countries, institutions, authors, references, and keywords were performed using VOSviewer 1.6.18 and CiteSpace 5.8. Results A total of 3,894 articles and reviews were selected. The number of publications on skin inflammation and regeneration showed an increasing trend over time. Additionally, authors and institutions in the United States, United Kingdom, Canada, and China appeared to be at the forefront of research in the field of skin inflammation and regeneration. Werner Sabine published some of the most cited papers. Wound Repair and Regeneration was the most productive journal, while Journal of Investigative Dermatology was the most cited journal. Angiogenesis, diamonds, collagen, cytokine, and keratinocytes were the five most commonly used keywords. Conclusion The number of publications on skin inflammation and regeneration show an increasing trend. Moreover, a series of advanced technologies and treatments for skin regeneration, such as exosomes, hydrogels, and wound dressings, are emerging, which will provide precise information for the treatment of skin wounds. This study can enhance our understanding of current hotspots and future trends in skin inflammation and regeneration research, as well as provide guidelines for fundamental research and clinical treatment.
Collapse
Affiliation(s)
- Zhen-jiang Liu
- Department of Cardiology, Cardiac Catheterization Lab, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mei-juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, China
| | - Jia Luo
- Hunan key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Ya-ting Tan
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Min Hou
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China
- Party Committee Office, The Second Xiangya Hospital of Central South University, Changsha, China
- Correspondence: Min Hou Shu-chao Wang
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Correspondence: Min Hou Shu-chao Wang
| |
Collapse
|
2
|
Railean V, Buszewski B. Flow Cytometry - Sophisticated Tool for Basic Research or/and Routine Diagnosis; Impact of the Complementarity in Both Pre- as Well as Clinical Studies. Crit Rev Anal Chem 2022; 54:2087-2109. [PMID: 36576036 DOI: 10.1080/10408347.2022.2154596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Flow cytometry is a sophisticated technology used widely in both basic research and as a routine tool in clinical diagnosis. The technology has progressed from single parameter detection in the 1970s and 1980s to high end multicolor analysis, with currently 30 parameters detected simultaneously, allowing the identification and purification of rare subpopulations of cells of interest. Flow cytometry continues to evolve and expand to facilitate the investigation of new diagnostic and therapeutic avenues. The present review gives an overview of basic theory and instrumentation, presents and compares the advantages and disadvantages of conventional, spectral and imaging flow cytometry as well as mass cytometry. Current methodologies and applications in both research, pre- and clinical settings are discussed, as well as potential limitations and future evolution. This finding encourages the reader to promote such relationship between basic science, diagnosis and multidisciplinary approach since the standard methods have limitations (e.g., in differentiating the cells after staining). Moreover, such path inspires future cytometry specialists develop new/alternative frontiers between pre- and clinical diagnosis and be more flexible in designing the study for both human as well as veterinary medicine.
Collapse
Affiliation(s)
- Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
3
|
Pereira RVS, Ugarte-Berzal E, Vandooren J, Nylander K, Martens E, Van Mellaert L, Van Damme J, Vranckx JJ, Matthys P, Alamäe T, Phillipson M, Visnapuu T, Opdenakker G. Chlorite-Oxidized Oxyamylose (COAM) Has Antibacterial Activity and Positively Affects Skin Wound Healing. J Inflamm Res 2022; 15:4995-5008. [PMID: 36065319 PMCID: PMC9440681 DOI: 10.2147/jir.s375487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To verify the antibacterial and immunomodulatory effects of the amylose derivative – chlorite-oxidized oxyamylose (COAM) – in a skin wound setting. Methods In vitro antibacterial effects of COAM against opportunistic bacterial pathogens common to skin wounds, including Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), were determined by cultivation methods. The effects of COAM on myeloid cell infiltration into full thickness skin wounds were investigated in wild-type and in transgenic CX3CR1-GFP mice. Results On the basis of in vitro experiments, an antibacterial effect of COAM against Staphylococcus species including MRSA was confirmed. The minimum inhibitory concentration of COAM was determined as 2000 µg/mL against these bacterial strains. Control full thickness skin wounds yielded maximal neutrophil influxes and no additive effect on neutrophil influx was observed following topical COAM-treatment. However, COAM administration increased local CX3CR1 macrophage counts at days 3 and 4 and induced a trend towards better wound healing. Conclusion Aside from its known broad antiviral impact, COAM possesses in vitro antibacterial effects specifically against Gram-positive opportunistic pathogens of the skin and modulates in vivo macrophage contents in mouse skin wounds.
Collapse
Affiliation(s)
- Rafaela Vaz Sousa Pereira
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Karin Nylander
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Erik Martens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lieve Van Mellaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development & Regeneration & Department of Plastic & Reconstructive Surgery, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mia Phillipson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ghislain Opdenakker
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Correspondence: Ghislain Opdenakker, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1044, Leuven, 3000, Belgium, Tel +32 16 37 9020, Fax +32 16 33 3026, Email
| |
Collapse
|
4
|
Murphy PR, Narayanan D, Kumari S. Methods to Identify Immune Cells in Tissues With a Focus on Skin as a Model. Curr Protoc 2022; 2:e485. [PMID: 35822855 DOI: 10.1002/cpz1.485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The skin protects our body from external challenges, insults, and pathogens and consists of two layers, epidermis and dermis. The immune cells of the skin are an integral part of protecting the body and essential for mediating skin immune homeostasis. They are distributed in the epidermal and dermal layers of the skin. Under homeostatic conditions, the mouse and human skin epidermis harbors immune cells such as Langerhans cells and CD8+ T cells, whereas the dermis contains dendritic cells (DCs), mast cells, macrophages, T cells, and neutrophils. Skin immune homeostasis is maintained through communication between epidermal and dermal cells and soluble factors. This communication is important for proper recruitment of immune cells in the skin to mount immune responses during infection/injury or in response to external/internal insults that alter the local cellular milieu. Imbalance in this crosstalk that occurs in association with inflammatory skin disorders such as psoriasis and atopic dermatitis can lead to alterations in the number and type of immune cells contributing to pathological manifestation in these disorders. Profiling changes in the immune cell type, localization, and number can provide important information about disease mechanisms and help design interventional therapeutic strategies. Toward this end, skin cells can be detected and characterized using basic techniques like immunofluorescence, immunohistochemistry, and flow cytometry, and recently developed methods of multiplexing. This article provides an overview on the basic techniques that are widely accessible to researchers to characterize immune cells of the skin. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Peter R Murphy
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, Brisbane, Queensland, Australia
| | - Divyaa Narayanan
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, Brisbane, Queensland, Australia
| | - Snehlata Kumari
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Mitchell RA, Altszuler R, Gonzalez S, Johnson R, Frevert U, Nardin E. Innate Immune Responses and P. falciparum CS Repeat-Specific Neutralizing Antibodies Following Vaccination by Skin Scarification. Front Immunol 2022; 13:801111. [PMID: 35734173 PMCID: PMC9207416 DOI: 10.3389/fimmu.2022.801111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The skin is the site of host invasion by the mosquito-borne Plasmodium parasite, which caused an estimated 229 million infections and 409,000 deaths in 2019 according to WHO World Malaria report 2020. In our previous studies, we have shown that skin scarification (SS) with a P. falciparum circumsporozoite (CS) peptide in the oil-in-water adjuvant AddaVax containing a combination of TLR 7/8 and TLR 9 agonists can elicit sporozoite neutralizing antibodies. SS with AddaVax + TLR agonists, but not AddaVax alone, elicited CD4+ Th1 cells and IgG2a/c anti-repeat antibody. To explore the innate immune responses that may contribute to development of adaptive immunity following SS, we examined the skin at 4h and 24h post priming with CS peptide in AddaVax with or without TLR agonists. H&E stained and IHC-labeled dorsal skin sections obtained 24h post SS demonstrated a marked difference in the pattern of infiltration with F4/80+, CD11b+ and Ly6G+ cells at the immunization site, with the lowest intensity noted following SS with AddaVax + TLR agonists. Serum collected at 4h post SS, had reproducible increases in IL-6, MIP-3α, IL-22 and IP-10 (CXCL10) following SS with AddaVax + TLR agonists, but not with AddaVax alone. To begin to decipher the complex roles of these pro-inflammatory cytokines/chemokines, we utilized IP-10 deficient (IP-10 -/-) mice to examine the role of this chemokine in the development of anti-repeat antibody response following SS. In the absence of IP-10, the levels of Th1-type IgG2a/c antibody and kinetics of the primary anti-repeat antibody response were reduced following prime and boost. The IP-10 chemokine, present as early as 4h post prime, may provide an early serological marker for rapid screening of adjuvant formulations and delivery platforms to optimize SS-induced humoral immunity to CS repeats as well as other pathogens.
Collapse
|
6
|
Li Z, Lamb R, Coles MC, Bennett CL, Ambler CA. Inducible ablation of CD11c + cells to determine their role in skin wound repair. Immunology 2021; 163:105-111. [PMID: 33502012 PMCID: PMC8044329 DOI: 10.1111/imm.13312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Whether resident and recruited myeloid cells may impair or aid healing of acute skin wounds remains a debated question. To begin to address this, we examined the importance of CD11c+ myeloid cells in the early activation of skin wound repair. We find that an absence of CD11c+ cells delays wound closure and epidermal proliferation, likely due to defects in the activation of the IL-23-IL-22 axis that is required for wound healing.
Collapse
Affiliation(s)
- Zhi Li
- Department of BiosciencesBiophysical Sciences InstituteDurham UniversityDurhamUK
- Department of BiologyCentre for Immunology and InfectionHull York Medical SchoolYorkUK
| | - Rebecca Lamb
- Department of BiosciencesBiophysical Sciences InstituteDurham UniversityDurhamUK
| | - Mark C. Coles
- Department of BiologyCentre for Immunology and InfectionHull York Medical SchoolYorkUK
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Clare L. Bennett
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Division of Cancer StudiesUniversity College LondonLondonUK
| | - Carrie A. Ambler
- Department of BiosciencesBiophysical Sciences InstituteDurham UniversityDurhamUK
| |
Collapse
|
7
|
Rajesh A, Stuart G, Real N, Tschirley A, Ahn J, Wise L, Hibma M. Skin antigen-presenting cells and wound healing: New knowledge gained and challenges encountered using mouse depletion models. Immunology 2021; 163:98-104. [PMID: 33496963 DOI: 10.1111/imm.13311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
The role of antigen-presenting cells in the skin immune system, in particular Langerhans cells and dendritic cells, has not been well defined. We recently published a study in 'Immunology' where we reported that the loss of langerin-positive cells in the skin accelerated wound repair in the Lang-DTR mouse. The study published here by Li, et al. reports delayed wound closure following depletion of CD11c-positive cells in the CD11c-DTR mouse. In this commentary, we attribute the differences between these results to several factors that differ between the studies including the depletion of different cell populations; differences in the age and the sex of mice; differences in antibiotic use between the studies; and differences in the location of the biopsies that were taken. Here, we describe the impact of these differences on wound healing and conclude that further standardization of the wound model, and further characterization of the specific cells that are depleted in these mice, is necessary to better understand how antigen-presenting cells contribute to wound healing.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Gabriella Stuart
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Nicola Real
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Allison Tschirley
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Jenny Ahn
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Benhammadi M, Mathé J, Dumont-Lagacé M, Kobayashi KS, Gaboury L, Brochu S, Perreault C. IFN-λ Enhances Constitutive Expression of MHC Class I Molecules on Thymic Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:1268-1280. [PMID: 32690660 DOI: 10.4049/jimmunol.2000225] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Regulation of MHC class I (MHC I) expression has been studied almost exclusively in hematolymphoid cells. We report that thymic epithelial cells (TECs), particularly the medullary TECs, constitutively express up to 100-fold more cell surface MHC I proteins than epithelial cells (ECs) from the skin, colon, and lung. Differential abundance of cell surface MHC I in primary ECs is regulated via transcription of MHC I and of genes implicated in the generation of MHC I-binding peptides. Superior MHC I expression in TECs is unaffected by deletion of Ifnar1 or Ifngr1, but is lessened by deletion of Aire, Ifnlr1, Stat1, or Nlrc5, and is driven mainly by type III IFN produced by medullary TECs. Ifnlr1 -/- mice show impaired negative selection of CD8 thymocytes and, at 9 mo of age, present autoimmune manifestations. Our study shows unanticipated variation in MHC I expression by ECs from various sites and provides compelling evidence that superior expression of MHC I in TECs is crucial for proper thymocyte education.
Collapse
Affiliation(s)
- Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Justine Mathé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843.,Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan; and
| | - Louis Gaboury
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
9
|
Chandran S, Schilke RM, Blackburn CMR, Yurochko A, Mirza R, Scott RS, Finck BN, Woolard MD. Lipin-1 Contributes to IL-4 Mediated Macrophage Polarization. Front Immunol 2020; 11:787. [PMID: 32431707 PMCID: PMC7214697 DOI: 10.3389/fimmu.2020.00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophage responses contribute to a diverse array of pathologies ranging from infectious disease to sterile inflammation. Polarization of macrophages determines their cellular function within biological processes. Lipin-1 is a phosphatidic acid phosphatase in which its enzymatic activity contributes to macrophage pro-inflammatory responses. Lipin-1 also possesses transcriptional co-regulator activity and whether this activity is required for macrophage polarization is unknown. Using mice that lack only lipin-1 enzymatic activity or both enzymatic and transcriptional coregulator activities from myeloid cells, we investigated the contribution of lipin-1 transcriptional co-regulator function toward macrophage wound healing polarization. Macrophages lacking both lipin-1 activities did not elicit IL-4 mediated gene expression to levels seen in either wild-type or lipin-1 enzymatically deficient macrophages. Furthermore, mice lacking myeloid-associated lipin-1 have impaired full thickness excisional wound healing compared to wild-type mice or mice only lacking lipin-1 enzymatic activity from myeloid cell. Our study provides evidence that lipin-1 transcriptional co-regulatory activity contributes to macrophage polarization and influences wound healing in vivo.
Collapse
Affiliation(s)
- Sunitha Chandran
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M. Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Cassidy M. R. Blackburn
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Aila Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Rusella Mirza
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Brian N. Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, United States
| | - Matthew D. Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|