1
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
2
|
Ng J, Guo F, Marneth AE, Ghanta S, Kwon MY, Keegan J, Liu X, Wright KT, Kamaz B, Cahill LA, Mullally A, Perrella MA, Lederer JA. Augmenting emergency granulopoiesis with CpG conditioned mesenchymal stromal cells in murine neutropenic sepsis. Blood Adv 2020; 4:4965-4979. [PMID: 33049055 PMCID: PMC7556132 DOI: 10.1182/bloodadvances.2020002556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Patients with immune deficiencies from cancers and associated treatments represent a growing population within the intensive care unit with increased risk of morbidity and mortality from sepsis. Mesenchymal stromal cells (MSCs) are an integral part of the hematopoietic niche and express toll-like receptors, making them candidate cells to sense and translate pathogenic signals into an innate immune response. In this study, we demonstrate that MSCs administered therapeutically in a murine model of radiation-associated neutropenia have dual actions to confer a survival benefit in Pseudomonas aeruginosa pneumo-sepsis that is not from improved bacterial clearance. First, MSCs augment the neutrophil response to infection, an effect that is enhanced when MSCs are preconditioned with CpG oligodeoxynucleotide, a toll-like receptor 9 agonist. Using cytometry by time of flight, we identified proliferating neutrophils (Ly6GlowKi-67+) as the main expanded cell population within the bone marrow. Further analysis revealed that CpG-MSCs expand a lineage restricted progenitor population (Lin-Sca1+C-kit+CD150-CD48+) in the bone marrow, which corresponded to a doubling in the myeloid proliferation and differentiation potential in response to infection compared with control. Despite increased neutrophils, no reduction in organ bacterial count was observed between experimental groups. However, the second effect exerted by CpG-MSCs is to attenuate organ damage, particularly in the lungs. Neutrophils obtained from irradiated mice and cocultured with CpG-MSCs had decreased neutrophil extracellular trap formation, which was associated with decreased citrullinated H3 staining in the lungs of mice given CpG-MSCs in vivo. Thus, this preclinical study provides evidence for the therapeutic potential of MSCs in neutropenic sepsis.
Collapse
Affiliation(s)
- Julie Ng
- Division of Pulmonary and Critical Care, Department of Medicine
| | | | | | | | - Min-Young Kwon
- Division of Pulmonary and Critical Care, Department of Medicine
| | | | - Xiaoli Liu
- Division of Pulmonary and Critical Care, Department of Medicine
- Department of Pediatric Newborn Medicine, and
| | - Kyle T Wright
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | | - Mark A Perrella
- Division of Pulmonary and Critical Care, Department of Medicine
- Department of Pediatric Newborn Medicine, and
| | | |
Collapse
|
3
|
Pai P, Sukumar S. HOX genes and the NF-κB pathway: A convergence of developmental biology, inflammation and cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1874:188450. [PMID: 33049277 DOI: 10.1016/j.bbcan.2020.188450] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The roles of HOX transcription factors as oncogenes and tumor suppressor genes, and the NF-KB pathway in chronic inflammation, both leading to cancer are well-established. HOX transcription factors are members of an evolutionarily conserved family of proteins required for anteroposterior body axis patterning during embryonic development, and are often dysregulated in cancer. The NF-KB pathway aids inflammation and immunity but it is also important during embryonic development. It is frequently activated in both solid and hematological malignancies. NF-KB and HOX proteins can influence each other through mutual transcriptional regulation, protein-protein interactions, and regulation of upstream and downstream interactors. These interactions have important implications both in homeostasis and in disease. In this review, we summarize the role of HOX proteins in regulating inflammation in homeostasis and disease- with a particular emphasis on cancer. We also describe the relationship between HOX genes and the NF-KB pathway, and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Priya Pai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
4
|
Mao F, Wong NK, Lin Y, Zhang X, Liu K, Huang M, Xu D, Xiang Z, Li J, Zhang Y, Yu Z. Transcriptomic Evidence Reveals the Molecular Basis for Functional Differentiation of Hemocytes in a Marine Invertebrate, Crassostrea gigas. Front Immunol 2020; 11:911. [PMID: 32536915 PMCID: PMC7269103 DOI: 10.3389/fimmu.2020.00911] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hemocytes play unequivocally central roles in host immune defense of bivalve mollusks, though the exact mechanisms underlying their functional differentiation are only partially understood. To this end, granulocytes and hyalinocytes were sorted via flow cytometry from hemocytes of the Pacific oyster Crassostrea gigas, and consequently quantitative transcriptomic analysis revealed a striking array of differentially expressed genes (DEGs), which were globally upregulated in granulocytes, dedicating to functional differentiation among oyster hemocytes. Our network of DEGs illustrated actively engaged signaling pathways, with Cdc42/Cdc42l being a core regulator of pathway network, which was validated by a dramatically reduced capacity for hemocyte phagocytosis in the presence of Cdc42 inhibitors. Additionally, a number of transcription factors were identified among DEGs, including ELK, HELT, and Fos, which were predominantly expressed in granulocytes. The AP-1 transcription factor Fos was confirmed to facilitate functional differentiation of hemocytes in an assay on binding to target genes by the AP-1 binding site, consistent with downstream phagocytosis and ROS production. Importantly, Cdc42/Cdc42l were also regulated by the expression of Fos, providing a possible regulatory mechanism-guided hemocyte functional differentiation. Findings in this study have bridged a knowledge gap on the mechanistic underpinnings of functional differentiation of hemocytes in a marine invertebrate C. gigas, which promise to facilitate research on the evolution of immune defense and functional differentiation of phagocyte in higher-order and more recent phyla.
Collapse
Affiliation(s)
- Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Nai-Kei Wong
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yue Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Xiangyu Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Minwei Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Duo Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|