1
|
Mannan M, Nabeela S, Mishra R, Uppuluri P. Host immune response against fungal biofilms. Curr Opin Microbiol 2024; 81:102520. [PMID: 39126962 PMCID: PMC11391915 DOI: 10.1016/j.mib.2024.102520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Fungal biofilms are a multilayered community of cells attached to mucosal or abiotic surfaces enclosed in a coating of self-produced extracellular polymeric matrix. The sheer density of cells protected by a polymeric shield not only makes the biofilm impermeable to antimicrobials or immune cells but also hidden from host recognition. Biofilms also serve as a reservoir of drug-resistant persister cells and dispersal cells armored with virulence factors adept at evading the immune system. Here, we summarize the latest knowledge on the immunomodulatory properties of biofilms formed by Candida species and by other biofilm-forming fungal pathogens such as Aspergillus and Cryptococcus. Finally, we deliberate on promising strategies to help activate the immune system for combating fungal biofilms.
Collapse
Affiliation(s)
- Mohammad Mannan
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | - Sunna Nabeela
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA
| | | | - Priya Uppuluri
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation, Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Kumar D, Kumar A. Cellular Attributes of Candida albicans Biofilm-Associated in Resistance Against Multidrug and Host Immune System. Microb Drug Resist 2023; 29:423-437. [PMID: 37428599 DOI: 10.1089/mdr.2022.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
One of the ubiquitous hospital-acquired infections is associated with Candida albicans fungus. Usually, this commensal fungus causes no harm to its human host, as it lives mutually with mucosal/epithelial tissue surface cells. Nevertheless, due to the activity of various immune weakening factors, this commensal starts reinforcing its virulence attributes with filamentation/hyphal growth and building an absolute microcolony composed of yeast, hyphal, and pseudohyphal cells, which is suspended in an extracellular gel-like polymeric substance (EPS) called biofilms. This polymeric substance is the mixture of the secreted compounds from C. albicans as well as several host cell proteins. Indeed, the presence of these host factors makes their identification and differentiation process difficult by host immune components. The gel-like texture of the EPS makes it sticky, which adsorbs most of the extracolonial compounds traversing through it that aid in penetration hindrance. All these factors further contribute to the multidrug resistance phenotype of C. albicans biofilm that is spotlighted in this article. The mechanisms it employs to escape the host immune system are also addressed effectively. The article focuses on cellular and molecular determinants involved in the resistance of C. albicans biofilm against multidrug and the host immune system.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
3
|
Wurster S, Watowich SS, Kontoyiannis DP. Checkpoint inhibitors as immunotherapy for fungal infections: Promises, challenges, and unanswered questions. Front Immunol 2022; 13:1018202. [PMID: 36389687 PMCID: PMC9640966 DOI: 10.3389/fimmu.2022.1018202] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 09/22/2023] Open
Abstract
Opportunistic fungal infections have high mortality in patients with severe immune dysfunction. Growing evidence suggests that the immune environment of invasive fungal infections and cancers share common features of immune cell exhaustion through activation of immune checkpoint pathways. This observation gave rise to several preclinical studies and clinical case reports describing blockade of the Programmed Cell Death Protein 1 and Cytotoxic T-Lymphocyte Antigen 4 immune checkpoint pathways as an adjunct immune enhancement strategy to treat opportunistic fungal infections. The first part of this review summarizes the emerging evidence for contributions of checkpoint pathways to the immunopathology of fungal sepsis, opportunistic mold infections, and dimorphic fungal infections. We then review the potential merits of immune checkpoint inhibitors (ICIs) as an antifungal immunotherapy, including the incomplete knowledge of the mechanisms involved in both immuno-protective effects and toxicities. In the second part of this review, we discuss the limitations of the current evidence and the many unknowns about ICIs as an antifungal immune enhancement strategy. Based on these gaps of knowledge and lessons learned from cancer immunology studies, we outline a research agenda to determine a "sweet spot" for ICIs in medical mycology. We specifically discuss the importance of more nuanced animal models, the need to study ICI-based combination therapy, potential ICI resistance, the role of the immune microenvironment, and the impact of ICIs given as part of oncological therapies on the natural immunity to various pathogenic fungi.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, Bruno VM, Jabra-Rizk MA. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence 2021; 12:835-851. [PMID: 33682623 PMCID: PMC7946022 DOI: 10.1080/21505594.2021.1894834] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biofilm-associated polymicrobial infections tend to be challenging to treat. Candida albicans and Staphylococcus aureus are leading pathogens due to their ability to form biofilms on medical devices. However, the therapeutic implications of their interactions in a host is largely unexplored. In this study, we used a mouse subcutaneous catheter model for in vivo-grown polymicrobial biofilms to validate our in vitro findings on C. albicans-mediated enhanced S. aureus tolerance to vancomycin in vivo. Comparative assessment of S. aureus recovery from catheters with single- or mixed-species infection demonstrated failure of vancomycin against S. aureus in mice with co-infected catheters. To provide some mechanistic insights, RNA-seq analysis was performed on catheter biofilms to delineate transcriptional modulations during polymicrobial infections. C. albicans induced the activation of the S. aureus biofilm formation network via down-regulation of the lrg operon, repressor of autolysis, and up-regulation of the ica operon and production of polysaccharide intercellular adhesin (PIA), indicating an increase in eDNA production, and extracellular polysaccharide matrix, respectively. Interestingly, virulence factors important for disseminated infections, and superantigen-like proteins were down-regulated during mixed-species infection, whereas capsular polysaccharide genes were up-regulated, signifying a strategy favoring survival, persistence and host immune evasion. In vitro follow-up experiments using DNA enzymatic digestion, lrg operon mutant strains, and confocal scanning microscopy confirmed the role of C. albicans-mediated enhanced eDNA production in mixed-biofilms on S. aureus tolerance to vancomycin. Combined, these findings provide mechanistic insights into the therapeutic implications of interspecies interactions, underscoring the need for novel strategies to overcome limitations of current therapies.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Eric F Kong
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium.,VIB-KU Leuven Center for Microbiology, Flanders, Belgium
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Soliman AM, Abdel-Latif W, Shehata IH, Fouda A, Abdo AM, Ahmed YM. Green Approach to Overcome the Resistance Pattern of Candida spp. Using Biosynthesized Silver Nanoparticles Fabricated by Penicillium chrysogenum F9. Biol Trace Elem Res 2021; 199:800-811. [PMID: 32451695 DOI: 10.1007/s12011-020-02188-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Candida species are the most common causative agents responsible for the majority of morbidity as well as mortality rates due to invasive fungal infections worldwide. In this study, a green approach was developed to control the pathogenic Candida spp. isolated from clinical samples, and prior data collections, ethics approval was obtained. Sixty candida isolates were obtained from the different device-associated infections and identified as Candida albicans, Candida tropicalis, Candida krusei, Candida parapsilosis, and Candida glabrata with prevalence rates 41.6, 38.3, 8.3, 6.6, and 5%, respectively. On the other hand, silver nanoparticles (Ag-NPs) were extra-cellular synthesized by biomass filtrate of previously identified Penicillium chrysogenum strain F9. The physico-chemical characterizations of biosynthesized Ag-NPs were assessed by using UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) patterns, transmission electron microscope (TEM), dynamic light scattering (DIS), and zeta potential (ζ) analysis. Data revealed successful synthesis of crystallographic spherical Ag-NPs with average size 18 to 60 nm at maximum absorption peak 415 nm. FT-IR analysis confirmed the presence of functional groups related to reduction, capping, and stabilizing Ag-NPs. The DLS analysis showed that NPs were homogenous and stable with poly-dispersity index (PDI) and ζ value 0.008 and - 21 mV, respectively. Susceptibility pattern analysis revealed that sixty Candida isolates (100%) were susceptible to Ag-NPs as compared to 25 isolates (41.6%), and 30 isolates (50%) were susceptible to fluconazole and amphotericin B, respectively. Interestingly, 30 Candida isolates (50%) were resistant to amphotericin B, which are more than those recorded for fluconazole (17 isolates with percent 28.3%), while 18 candida isolates (30%) were susceptible dose-dependent to fluconazole. The recorded minimum inhibitory concentration 50/90 (MIC50/90) was 62.5/125, 16/64, and 1/4 for Ag-NPs, fluconazole, and amphotericin B, respectively. However, green synthesized Ag-NPs can be used to overcome the resistance pattern of Candida spp., and recommended as an anti-candida agent.
Collapse
Affiliation(s)
- Amal M Soliman
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Walaa Abdel-Latif
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Iman H Shehata
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.
| | - Abdullah M Abdo
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Yasmin M Ahmed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
7
|
Alvendal C, Mohanty S, Bohm-Starke N, Brauner A. Anti-biofilm activity of chlorhexidine digluconate against Candida albicans vaginal isolates. PLoS One 2020; 15:e0238428. [PMID: 32941438 PMCID: PMC7498037 DOI: 10.1371/journal.pone.0238428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Recurrent vulvovaginal candidiasis (RVVC) causes significant morbidity. Candida albicans is the main pathogen associated with both sporadic and recurrent candidiasis. Due to unsatisfactory treatment effect, the impact of chlorhexidine digluconate and fluconazole alone or in combination on C. albicans and biofilm was investigated. METHODS Vaginal C. albicans isolates from 18 patients with recurrent candidiasis and commensals from 19 asymptomatic women were isolated by culture. Crystal violet, XTT and colony forming unit assay were used to analyze the effect of chlorhexidine digluconate and fluconazole on growth of C. albicans, formation of new and already established, mature, biofilm. RESULTS Fluconazole reduced the growth of planktonic C. albicans. However, in established biofilm, fluconazole had no effect on the candida cells and was not able to disperse and reduce the biofilm. By contrast, chlorhexidine digluconate had a direct killing effect on C. albicans grown both planktonically and in biofilm. Chlorhexidine digluconate also dispersed mature biofilm and inhibited formation of new biofilm. No major differences were observed between commensal isolates and candida causing recurrent vulvovaginitis with respect to biofilm or growth after chlorhexidine digluconate treatment. CONCLUSION Biofilm is a problem in patients with recurrent vulvovaginal candidiasis reducing the effect of antifungal treatment. Development of new treatment strategies are urgently needed to decrease the recurrences. In already established biofilm, chlorhexidine digluconate dispersed the biofilm and was more effective in eradicating candida compared to fluconazole. Future treatment strategy may thus be a combination of chlorhexidine digluconate and fluconazole and prophylactic use of chlorhexidine digluconate to prevent biofilm formation and restrict infections.
Collapse
Affiliation(s)
- Cathrin Alvendal
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
- * E-mail:
| | - Soumitra Mohanty
- Division of Clinical Microbiology, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nina Bohm-Starke
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Division of Clinical Microbiology, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Ciurea CN, Kosovski IB, Mare AD, Toma F, Pintea-Simon IA, Man A. Candida and Candidiasis-Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms 2020; 8:microorganisms8060857. [PMID: 32517179 PMCID: PMC7355540 DOI: 10.3390/microorganisms8060857] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
One of the most important questions in microbiology nowadays, is how apparently harmless, commensal yeasts like Candida spp. can cause a rising number of infections. The occurrence of the disease requires firstly the attachment to the host cells, followed by the invasion of the tissue. The adaptability translates into a rapid ability to respond to stress factors, to take up nutrients or to multiply under different conditions. By forming complex intracellular networks such as biofilms, Candida spp. become not only more refractive to antifungal therapies but also more prone to cause disease. The inter-microbial interactions can enhance the virulence of a strain. In vivo, the fungal cells face a multitude of challenges and, as a result, they develop complex strategies serving one ultimate goal: survival. This review presents the virulence factors of the most important Candida spp., contributing to a better understanding of the onset of candidiasis and raising awareness of the highly complex interspecies interactions that can change the outcome of the disease.
Collapse
Affiliation(s)
- Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Correspondence:
| | - Irina-Bianca Kosovski
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Department of Physiopathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| | - Felicia Toma
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| | - Ionela Anca Pintea-Simon
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.); (I.A.P.-S.); (A.M.)
| |
Collapse
|
9
|
UV light-induced photocatalytic, antimicrobial, and antibiofilm performance of anodic TiO2 nanotube layers prepared on titanium mesh and Ti sputtered on silicon. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0667-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|