1
|
Stocker BW, LaCroix IS, Erickson C, Gallagher LT, Ramser BJ, Thielen O, Hallas W, Mitra S, Moore EE, Hansen K, D'Alessandro A, Silliman CC, Cohen MJ. Trauma patients with type O blood exhibit unique multiomics signature with decreased lectin pathway of complement levels. J Trauma Acute Care Surg 2024; 97:753-763. [PMID: 38745347 PMCID: PMC11502284 DOI: 10.1097/ta.0000000000004367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND Patients with type O blood may have an increased risk of hemorrhagic complications because of lower baseline levels of von Willebrand factor and factor VIII, but the transition to a mortality difference in trauma is less clear. We hypothesized that type O trauma patients will have differential proteomic and metabolomic signatures in response to trauma beyond von Willebrand factor and factor VIII alone. METHODS Patients meeting the highest level of trauma activation criteria were prospectively enrolled. Blood samples were collected upon arrival to the emergency department. Proteomic and metabolomic (multiomics) analyses of these samples were performed using liquid chromatography-mass spectrometry. Demographic, clinical, and multiomics data were compared between patients with type O blood versus all other patients. RESULTS There were 288 patients with multiomics data; 146 (51%) had type O blood. Demographics, injury patterns, and initial vital signs and laboratory measurements were not different between groups. Type O patients had increased lengths of stay (7 vs. 6 days, p = 0.041) and a trend toward decreased mortality secondary to traumatic brain injury compared with other causes (traumatic brain injury, 44.4% vs. 87.5%; p = 0.055). Type O patients had decreased levels of mannose-binding lectin and mannose-binding lectin-associated serine proteases 1 and 2, which are required for the initiation of the lectin pathway of complement activation. Type O patients also had metabolite differences signifying energy metabolism and mitochondrial dysfunction. CONCLUSION Blood type O patients have a unique multiomics signature, including decreased levels of proteins required to activate the lectin complement pathway. This may lead to overall decreased levels of complement activation and decreased systemic inflammation in the acute phase, possibly leading to a survival advantage, especially in traumatic brain injury. However, this may later impair healing. Future work will need to confirm these associations, and animal studies are needed to test therapeutic targets. LEVEL OF EVIDENCE Prognostic and Epidemiological; Level IV.
Collapse
Affiliation(s)
- Benjamin W Stocker
- From the Department of Surgery (B.W.S., L.T.G., B.J.R., O.T., W.H., S.M., E.E.M., C.C.S., M.J.C.), and Department of Biochemistry and Molecular Genetics (I.S.L., C.E., K.H., A.D.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora; Department of Surgery (E.E.M.), Ernest E Moore Shock Trauma Center, Denver Health Medical Center; Vitalant Research Institute (C.C.S.), Denver; and Department of Pediatrics (C.C.S.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Tsakiris DA, Gavriilaki E, Chanou I, Meyer SC. Hemostasis and complement in allogeneic hematopoietic stem cell transplantation: clinical significance of two interactive systems. Bone Marrow Transplant 2024; 59:1349-1359. [PMID: 39004655 PMCID: PMC11452340 DOI: 10.1038/s41409-024-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT and how these changes may define clinical impact.
Collapse
Affiliation(s)
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chanou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Sara C Meyer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Tu H, Li YL. Inflammation balance in skeletal muscle damage and repair. Front Immunol 2023; 14:1133355. [PMID: 36776867 PMCID: PMC9909416 DOI: 10.3389/fimmu.2023.1133355] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Responding to tissue injury, skeletal muscles undergo the tissue destruction and reconstruction accompanied with inflammation. The immune system recognizes the molecules released from or exposed on the damaged tissue. In the local minor tissue damage, tissue-resident macrophages sequester pro-inflammatory debris to prevent initiation of inflammation. In most cases of the skeletal muscle injury, however, a cascade of inflammation will be initiated through activation of local macrophages and mast cells and recruitment of immune cells from blood circulation to the injured site by recongnization of damage-associated molecular patterns (DAMPs) and activated complement system. During the inflammation, macrophages and neutrophils scavenge the tissue debris to release inflammatory cytokines and the latter stimulates myoblast fusion and vascularization to promote injured muscle repair. On the other hand, an abundance of released inflammatory cytokines and chemokines causes the profound hyper-inflammation and mobilization of immune cells to trigger a vicious cycle and lead to the cytokine storm. The cytokine storm results in the elevation of cytolytic and cytotoxic molecules and reactive oxygen species (ROS) in the damaged muscle to aggravates the tissue injury, including the healthy bystander tissue. Severe inflammation in the skeletal muscle can lead to rhabdomyolysis and cause sepsis-like systemic inflammation response syndrome (SIRS) and remote organ damage. Therefore, understanding more details on the involvement of inflammatory factors and immune cells in the skeletal muscle damage and repair can provide the new precise therapeutic strategies, including attenuation of the muscle damage and promotion of the muscle repair.
Collapse
|
4
|
Suszynska M, Adamiak M, Thapa A, Cymer M, Ratajczak J, Kucia M, Ratajczak MZ. Purinergic Signaling and Its Role in Mobilization of Bone Marrow Stem Cells. Methods Mol Biol 2023; 2567:263-280. [PMID: 36255707 DOI: 10.1007/978-1-0716-2679-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mobilization or egress of stem cells from bone marrow (BM) into peripheral blood (PB) is an evolutionary preserved and important mechanism in an organism for self-defense and regeneration. BM-derived stem cells circulate always at steady-state conditions in PB, and their number increases during stress situations related to (a) infections, (b) tissue organ injury, (c) stress, and (d) strenuous exercise. Stem cells also show a circadian pattern of their PB circulating level with peak in early morning hours and nadir late at night. The number of circulating in PB stem cells could be pharmacologically increased after administration of some drugs such as cytokine granulocyte colony-stimulating factor (G-CSF) or small molecular antagonist of CXCR4 receptor AMD3100 (Plerixafor) that promote their egress from BM into PB and lymphatic vessels. Circulating can be isolated from PB for transplantation purposes by leukapheresis. This important homeostatic mechanism is governed by several intrinsic complementary pathways. In this chapter, we will discuss the role of purinergic signaling and extracellular nucleotides in regulating this process and review experimental strategies to study their involvement in mobilization of various types of stem cells that reside in murine BM.
Collapse
Affiliation(s)
- Malwina Suszynska
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Mateusz Adamiak
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - Arjun Thapa
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Monika Cymer
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magdalena Kucia
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
| | - Mariusz Z Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
5
|
Pan L, Peng C, Wang L, Li L, Huang S, Fei C, Wang N, Chu F, Peng D, Duan X. Network pharmacology and experimental validation-based approach to understand the effect and mechanism of Taohong Siwu Decoction against ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115339. [PMID: 35525530 DOI: 10.1016/j.jep.2022.115339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (THSWD) is a classic prescription of traditional Chinese medicine that is mainly used for promoting blood circulation and alleviating blood stasis. THSWD is composed of Prunus persica (L.) Batsch, Carthamus tinctorius L., Ligusticum chuanxiong hort, Angelica sinensis (Oliv.) Diels, Rehmannia glutinosa (Gaertn.) DC, and Paeoniae Radix Alba. This prescription eliminates blood stasis, supplements blood, and dredges the body as an auxiliary treatment. AIM OF THE STUDY To investigate the mechanistic effects of THSWD in the treatment of cerebral ischemia. MATERIALS AND METHODS we downloaded 39 blood components for THSWD from the PharmMapper database for target prediction studies and identified the targets of cerebral ischemia. We identified the intersection between the components and targets, constructed a protein-protein interaction (PPI) network, carried out GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. a rat model of cerebral ischemia was established in rats, and the results of network pharmacology were verified by in vivo experiments. RESULTS Established a component-target-pathway network, further transcriptomics analysis identified a total of 11 target genes (Plau, Fabp4, Mmp9, Mmp12, Cfd, Lcn2, Trem1, Lgals3, Hmox1, Selp and Slc6a4), a total of seven pathways (focal adhesion, complement and coagulation cascades, Staphylococcus aureus infection, malaria, transcriptional dysregulation in cancer, progesterone-mediated oocyte maturation, and the PI3K-Akt signaling pathway), because both targets genes and the complement and coagulation cascade signaling pathways mediate inflammatory responses, the signaling pathways associated with the complement and coagulation cascades were selected for experimental verification. We detected inflammatory factors and several key proteins in the complement and coagulation cascade signaling pathway (C1qb, C1qc, C3ar1, C5ar1, and Cfd). Analysis showed that THSWD can reduce the release of inflammatory factors and inhibit activation of the complement signaling pathways, thereby protecting against ischemic stroke disease. CONCLUSIONS Our findings provide preliminary clarification of the predominant mechanism of action of THSWD when used to treat ischemic stroke.
Collapse
Affiliation(s)
- Lingyu Pan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lili Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shi Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Changyi Fei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ni Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Furui Chu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xianchun Duan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
6
|
Adamiak M, Ciechanowicz A, Chumak V, Bujko K, Ratajczak J, Brzezniakiewicz-Janus K, Kucia M, Ratajczak MZ. Novel Evidence That Alternative Pathway of Complement Cascade Activation is Required for Optimal Homing and Engraftment of Hematopoietic Stem/progenitor Cells. Stem Cell Rev Rep 2022; 18:1355-1365. [PMID: 35013937 PMCID: PMC9033710 DOI: 10.1007/s12015-021-10318-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 01/12/2023]
Abstract
We reported in the past that activation of the third (C3) and fifth element (C5) of complement cascade (ComC) is required for a proper homing and engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs). Since myeloablative conditioning for transplantation triggers in recipient bone marrow (BM) state of sterile inflammation, we have become interested in the role of complement in this process and the potential involvement of alternative pathway of ComC activation. We noticed that factor B deficient mice (FB-KO) that do not activate properly alternative pathway, engraft poorly with BM cells from normal wild type (WT) mice. We observed defects both in homing and engraftment of transplanted HSPCs. To shed more light on these phenomena, we found that myeloablative lethal irradiation conditioning for transplantation activates purinergic signaling, ComC, and Nlrp3 inflammasome in WT mice, which is significantly impaired in FB-KO animals. Our proteomics analysis revealed that conditioned for transplantation lethally irradiated FB-KO compared to normal control animals have lower expression of several proteins involved in positive regulation of cell migration, trans-endothelial migration, immune system, cellular signaling protein, and metabolic pathways. Overall, our recent study further supports the role of innate immunity in homing and engraftment of HSPCs.
Collapse
Affiliation(s)
- Mateusz Adamiak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Andrzej Ciechanowicz
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Vira Chumak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | | | - Magdalena Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Laboratory of Regenerative Medicine, Warsaw Medical University, ul. Banacha 1B, Warsaw, 02-097 Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Laboratory of Regenerative Medicine, Warsaw Medical University, ul. Banacha 1B, Warsaw, 02-097 Poland
- Department of Hematology, University of Zielona Gora, Hospital Gorzow Wlkp, Zielona Gora, Poland
| |
Collapse
|
7
|
Garg V, Chandanala S, David-Luther M, Govind M, Prasad RR, Kumar A, Prasanna SJ. The Yin and Yang of Immunity in Stem Cell Decision Guidance in Tissue Ecologies: An Infection Independent Perspective. Front Cell Dev Biol 2022; 10:793694. [PMID: 35198558 PMCID: PMC8858808 DOI: 10.3389/fcell.2022.793694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of immune system and inflammation on organ homeostasis and tissue stem cell niches in the absence of pathogen invasion has long remained a conundrum in the field of regenerative medicine. The paradoxical role of immune components in promoting tissue injury as well as resolving tissue damage has complicated therapeutic targeting of inflammation as a means to attain tissue homeostasis in degenerative disease contexts. This confound could be resolved by an integrated intricate assessment of cross-talk between inflammatory components and micro- and macro-environmental factors existing in tissues during health and disease. Prudent fate choice decisions of stem cells and their differentiated progeny are key to maintain tissue integrity and function. Stem cells have to exercise this fate choice in consultation with other tissue components. With this respect tissue immune components, danger/damage sensing molecules driving sterile inflammatory signaling cascades and barrier cells having immune-surveillance functions play pivotal roles in supervising stem cell decisions in their niches. Stem cells learn from their previous damage encounters, either endogenous or exogenous, or adapt to persistent micro-environmental changes to orchestrate their decisions. Thus understanding the communication networks between stem cells and immune system components is essential to comprehend stem cell decisions in endogenous tissue niches. Further the systemic interactions between tissue niches integrated through immune networks serve as patrolling systems to establish communication links and orchestrate micro-immune ecologies to better organismal response to injury and promote regeneration. Understanding these communication links is key to devise immune-centric regenerative therapies. Thus the present review is an integrated attempt to provide a unified purview of how inflammation and immune cells provide guidance to stem cells for tissue sculpting during development, organismal aging and tissue crisis based on the current knowledge in the field.
Collapse
|
8
|
Janczi T, Meier F, Fehrl Y, Kinne RW, Böhm B, Burkhardt H. A Novel Pro-Inflammatory Mechanosensing Pathway Orchestrated by the Disintegrin Metalloproteinase ADAM15 in Synovial Fibroblasts. Cells 2021; 10:cells10102705. [PMID: 34685689 PMCID: PMC8534551 DOI: 10.3390/cells10102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction is elicited in cells upon the perception of physical forces transmitted via the extracellular matrix in their surroundings and results in signaling events that impact cellular functions. This physiological process is a prerequisite for maintaining the integrity of diarthrodial joints, while excessive loading is a factor promoting the inflammatory mechanisms of joint destruction. Here, we describe a mechanotransduction pathway in synovial fibroblasts (SF) derived from the synovial membrane of inflamed joints. The functionality of this pathway is completely lost in the absence of the disintegrin metalloproteinase ADAM15 strongly upregulated in SF. The mechanosignaling events involve the Ca2+-dependent activation of c-Jun-N-terminal kinases, the subsequent downregulation of long noncoding RNA HOTAIR, and upregulation of the metabolic energy sensor sirtuin-1. This afferent loop of the pathway is facilitated by ADAM15 via promoting the cell membrane density of the constitutively cycling mechanosensitive transient receptor potential vanilloid 4 calcium channels. In addition, ADAM15 reinforces the Src-mediated activation of pannexin-1 channels required for the enhanced release of ATP, a mediator of purinergic inflammation, which is increasingly produced upon sirtuin-1 induction.
Collapse
Affiliation(s)
- Tomasz Janczi
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
| | - Yuliya Fehrl
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Beate Böhm
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Correspondence: (B.B.); (H.B.)
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60590 Frankfurt am Main, Germany
- Correspondence: (B.B.); (H.B.)
| |
Collapse
|
9
|
Mahony C, O’Ryan C. Convergent Canonical Pathways in Autism Spectrum Disorder from Proteomic, Transcriptomic and DNA Methylation Data. Int J Mol Sci 2021; 22:ijms221910757. [PMID: 34639097 PMCID: PMC8509728 DOI: 10.3390/ijms221910757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with extensive genetic and aetiological heterogeneity. While the underlying molecular mechanisms involved remain unclear, significant progress has been facilitated by recent advances in high-throughput transcriptomic, epigenomic and proteomic technologies. Here, we review recently published ASD proteomic data and compare proteomic functional enrichment signatures with those of transcriptomic and epigenomic data. We identify canonical pathways that are consistently implicated in ASD molecular data and find an enrichment of pathways involved in mitochondrial metabolism and neurogenesis. We identify a subset of differentially expressed proteins that are supported by ASD transcriptomic and DNA methylation data. Furthermore, these differentially expressed proteins are enriched for disease phenotype pathways associated with ASD aetiology. These proteins converge on protein–protein interaction networks that regulate cell proliferation and differentiation, metabolism, and inflammation, which demonstrates a link between canonical pathways, biological processes and the ASD phenotype. This review highlights how proteomics can uncover potential molecular mechanisms to explain a link between mitochondrial dysfunction and neurodevelopmental pathology.
Collapse
|
10
|
Alves FS, Xabregas LA, Kerr MWA, Souza GL, Pereira DS, Magalhães-Gama F, Santiago MRR, Garcia NP, Tarragô AM, Ogusku MM, Sadahiro A, Malheiro A, Costa AG. Genetic polymorphisms of inflammasome genes associated with pediatric acute lymphoblastic leukemia and clinical prognosis in the Brazilian Amazon. Sci Rep 2021; 11:9869. [PMID: 33972620 PMCID: PMC8110953 DOI: 10.1038/s41598-021-89310-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
The immune system plays an important role in the control of cancer development. To investigate the possible association of inflammasome genes to childhood leukemia we performed a case-control study with 158 patients with acute lymphoblastic leukemia and 192 healthy individuals. The IL1B and IL18 genetic polymorphisms were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and NLRP1, NLRP3 and P2RX7 were genotyped using Real Time quantitative PCR (qPCR). The IL1B C/T rs19644 genotype was associated with the risk of developing ALL (C/C vs. C/T + T/T OR: 2.48 [95% CI: 1.26-4.88, p = 0.006]; C/C vs C/T OR: 2.74 [95% CI: 1.37-5.51, p = 0.003]) and the NLRP1 A/T rs12150220 (OR: 0.37 [95% CI: 0.16-0.87, p = 0.023]) was associated with protection against infectious comorbidities. It was not found association between NLRP3 and P2RX7 polymorphisms and acute lymphoblastic leukemia in our study. Our results suggest that the inflammasome single-variant polymorphisms (SNVs) may play a role in the development and prognostic of childhood leukemia. However, this finds requires further study within a larger population in order to prove it.
Collapse
Affiliation(s)
- Fabíola Silva Alves
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Lilyane Amorim Xabregas
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Marlon Wendell Athaydes Kerr
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Gláucia Lima Souza
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Daniele Sá Pereira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Fábio Magalhães-Gama
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Mirian Rodrigues Ribeiro Santiago
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Nadja Pinto Garcia
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
| | - Maurício Morishi Ogusku
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
- Laboratório de Micobacteriologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil.
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
| |
Collapse
|
11
|
Ratajczak MZ, Kucia M. Extracellular Adenosine Triphosphate (eATP) and Its Metabolite, Extracellular Adenosine (eAdo), as Opposing "Yin-Yang" Regulators of Nlrp3 Inflammasome in the Trafficking of Hematopoietic Stem/Progenitor Cells. Front Immunol 2021; 11:603942. [PMID: 33584673 PMCID: PMC7878390 DOI: 10.3389/fimmu.2020.603942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Nlrp3 inflammasome plays a pleiotropic role in hematopoietic cells. On the one hand, physiological activation of this intracellular protein complex is crucial to maintaining normal hematopoiesis and the trafficking of hematopoietic stem progenitor cells (HSPCs). On the other hand, its hyperactivation may lead to cell death by pyroptosis, and prolonged activity is associated with sterile inflammation of the BM and, as a consequence, with the HSPCs aging and origination of myelodysplasia and leukemia. Thus, we need to understand better this protein complex’s actions to define the boundaries of its safety window and study the transition from being beneficial to being detrimental. As demonstrated, the Nlrp3 inflammasome is expressed and active both in HSPCs and in the non-hematopoietic cells that are constituents of the bone marrow (BM) microenvironment. Importantly, the Nlrp3 inflammasome responds to mediators of purinergic signaling, and while extracellular adenosine triphosphate (eATP) activates this protein complex, its metabolite extracellular adenosine (eAdo) has the opposite effect. In this review, we will discuss and focus on the physiological consequences of the balance between eATP and eAdo in regulating the trafficking of HSPCs in an Nlrp3 inflammasome-dependent manner, as seen during pharmacological mobilization from BM into peripheral blood (PB) and in the reverse mechanism of homing from PB to BM and engraftment. We propose that both mediators of purinergic signaling and the Nlrp3 inflammasome itself may become important therapeutic targets in optimizing the trafficking of HSPCs in clinical settings.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States.,Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at Division of Hematology, Department of Medicine and James Graham Brown Cancer Center, University of Louisville, KY, United States.,Center for Preclinical Studies and Technology, Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Li L, Cong B, Yu X, Deng S, Liu M, Wang Y, Wang W, Gao M, Xu Y. The expression of membrane-bound complement regulatory proteins CD46, CD55 and CD59 in oral lichen planus. Arch Oral Biol 2021; 124:105064. [PMID: 33529836 DOI: 10.1016/j.archoralbio.2021.105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 11/21/2020] [Accepted: 01/17/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the expression levels of membrane-anchored complement regulatory proteins (mCRPs), CD46, CD55 and CD59 in oral lichen planus (OLP), and evaluate the activation status of complement. DESIGN Thirty-seven cases of OLP patients (20 non-erosive OLP and 17 erosive OLP) and twenty healthy controls were recruited in this study. The proteins and mRNA expression levels of CD46, CD55 and CD59 in OLP tissues were detected by western blotting and RT-qPCR respectively, and the expression levels of complement C3 and sC5b-9 in OLP patients' saliva were detected by ELISA to evaluate the activation status of complement. In addition, mucosa tissues of another 3 non-erosive OLP patients and another 3 healthy controls were collected, and the epithelial layer of two groups were separated to culture primary keratinocytes in vitro. Immunofluorescence was used to further detect the expression of mCRPs at the cellular level. RESULTS The levels of CD46, CD55 and CD59 in OLP tissues and cells were significantly decreased compared with those of the healthy control group, and the level of complement C3 in the patients' saliva was significantly decreased, while the level of sC5b-9 was increased. CONCLUSIONS These results suggest that the reduced expression of mCRPs keeps the complement system in a continuously active state, which may be the reason of the persistent local immune inflammatory state in OLP. This study aimed to provide new insights for the etiology and therapy of OLP.
Collapse
Affiliation(s)
- Lulu Li
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China; Departments of Stomatology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China
| | - Xixi Yu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China
| | - Songsong Deng
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China; Departments of Stomatology, Qingdao Women and Children's Hospital, Qingdao, 266001, Shandong, China
| | - Mengjia Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China
| | - Yiheng Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China
| | - Wanchun Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China.
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China.
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, Shandong, China.
| |
Collapse
|
13
|
Yang L, Hu M, Lu Y, Han S, Wang J. Inflammasomes and the Maintenance of Hematopoietic Homeostasis: New Perspectives and Opportunities. Molecules 2021; 26:molecules26020309. [PMID: 33435298 PMCID: PMC7827629 DOI: 10.3390/molecules26020309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) regularly produce various blood cells throughout life via their self-renewal, proliferation, and differentiation abilities. Most HSCs remain quiescent in the bone marrow (BM) and respond in a timely manner to either physiological or pathological cues, but the underlying mechanisms remain to be further elucidated. In the past few years, accumulating evidence has highlighted an intermediate role of inflammasome activation in hematopoietic maintenance, post-hematopoietic transplantation complications, and senescence. As a cytosolic protein complex, the inflammasome participates in immune responses by generating a caspase cascade and inducing cytokine secretion. This process is generally triggered by signals from purinergic receptors that integrate extracellular stimuli such as the metabolic factor ATP via P2 receptors. Furthermore, targeted modulation/inhibition of specific inflammasomes may help to maintain/restore adequate hematopoietic homeostasis. In this review, we will first summarize the possible relationships between inflammasome activation and homeostasis based on certain interesting phenomena. The cellular and molecular mechanism by which purinergic receptors integrate extracellular cues to activate inflammasomes inside HSCs will then be described. We will also discuss the therapeutic potential of targeting inflammasomes and their components in some diseases through pharmacological or genetic strategies.
Collapse
|
14
|
Enciso J, Mendoza L, Álvarez-Buylla ER, Pelayo R. Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies. PeerJ 2020; 8:e9902. [PMID: 33062419 PMCID: PMC7531334 DOI: 10.7717/peerj.9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background The blockage at the early B lymphoid cell development pathway within the bone marrow is tightly associated with hematopoietic and immune diseases, where the disruption of basal regulatory networks prevents the continuous replenishment of functional B cells. Dynamic computational models may be instrumental for the comprehensive understanding of mechanisms underlying complex differentiation processes and provide novel prediction/intervention platforms to reinvigorate the system. Methods By reconstructing a three-module regulatory network including genetic transcription, intracellular transduction, and microenvironment communication, we have investigated the early B lineage cell fate decisions in normal and pathological settings. The early B cell differentiation network was simulated as a Boolean model and then transformed, using fuzzy logic, to a continuous model. We tested null and overexpression mutants to analyze the emergent behavior of the network. Due to its importance in inflammation, we investigated the effect of NFkB induction at different early B cell differentiation stages. Results While the exhaustive synchronous and asynchronous simulation of the early B cell regulatory network (eBCRN) reproduced the configurations of the hematopoietic progenitors and early B lymphoid precursors of the pathway, its simulation as a continuous model with fuzzy logics suggested a transient IL-7R+ ProB-to-Pre-B subset expressing pre-BCR and a series of dominant B-cell transcriptional factors. This conspicuous differentiating cell population up-regulated CXCR7 and reduced CXCR4 and FoxO1 expression levels. Strikingly, constant but intermediate NFkB signaling at specific B cell differentiation stages allowed stabilization of an aberrant CXCR7+ pre-B like phenotype with apparent affinity to proliferative signals, while under constitutive overactivation of NFkB, such cell phenotype was aberrantly exacerbated from the earliest stage of common lymphoid progenitors. Our mutant models revealed an abnormal delay in the BCR assembly upon NFkB activation, concomitant to sustained Flt3 signaling, down-regulation of Ebf1, Irf4 and Pax5 genes transcription, and reduced Ig recombination, pointing to a potential lineage commitment blockage. Discussion For the first time, an inducible CXCR7hi B cell precursor endowed with the potential capability of shifting central lymphoid niches, is inferred by computational modeling. Its phenotype is compatible with that of leukemia-initiating cells and might be the foundation that bridges inflammation with blockage-related malignancies and a wide range of immunological diseases. Besides the predicted differentiation impairment, inflammation-inducible phenotypes open the possibility of newly formed niches colonized by the reported precursor. Thus, emergent bone marrow ecosystems are predicted following a pro-inflammatory induction, that may lead to hematopoietic instability associated to blockage pathologies.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| |
Collapse
|
15
|
ATP-Nlrp3 Inflammasome-Complement Cascade Axis in Sterile Brain Inflammation in Psychiatric Patients and its Impact on Stem Cell Trafficking. Stem Cell Rev Rep 2020; 15:497-505. [PMID: 31020518 PMCID: PMC6647482 DOI: 10.1007/s12015-019-09888-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates that the occurrence of psychiatric disorders in patients is linked to a local “sterile” inflammation of brain or due to a systemic inflammation process that affects the central nervous system. This is supported by the observation that in peripheral blood of psychotic patients are detectable several mediators and markers of inflammation as well as clinical data on correlations between systemic chronic inflammatory processes and psychiatric disorders. This may explain why some reported anti-inflammatory treatment strategies have beneficial effects on ameliorating psychotic events. In this review we will present a concept that aberrant purinergic signaling and increases in extracellular level of adenosine triphosphate (ATP) in the brain parenchyma may lead to activation of Nlrp3 inflammasome in microglia cells and as a consequence microglia released danger associated molecular pattern (DAMP) proteins activate complement cascade (ComC) in mannan binding lectin (MBL) – dependent manner. Activation of ATP-Nlrp3 inflammasome-ComC axis may also orchestrate trafficking of stem cells released from bone marrow into peripheral blood observed in psychotic patients. Based on this, the ATP-Nlrp3 inflammasome-ComC axis may become a target for new therapeutic approaches, which justifies the development and clinical application of efficient anti-inflammatory treatment strategies targeting this axis in psychiatry.
Collapse
|
16
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
17
|
Sirikharin R, Söderhäll K, Söderhäll I. The N-terminal peptide generated after activation of prophenoloxidase affects crayfish hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103687. [PMID: 32220618 DOI: 10.1016/j.dci.2020.103687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The circulating hemocytes of invertebrates are important mediators of immunity, and hemocyte homeostasis is of high importance for survival and health of crustaceans. The prophenoloxidase (proPO)-activating system is one of the most essential immune reactions, which can be activated by pattern recognition proteins from microorganisms. Activation of proPO by the proPO activating enzyme generates an N-terminal peptide, with cleavage site after Arg176, as well as the active enzyme phenoloxidase, which is the key enzyme for melanization. In the present study we demonstrate a role for the N-terminal proPO-peptide in hematopoiesis. Injection of this proPO-peptide increased the number of circulating hemocytes and especially granular hemocytes. We also show that the reactive oxygen species (ROS) production in the anterior proliferative center was enhanced after proPO peptide injection, which is a prerequisite for rapid hemocyte release from the hematopoietic tissue. Moreover, this peptide had an effect on ROS production in in vitro cultured hematopoietic cells and induced spreading of these cells within 72 h. Taken together, our findings show a role of the N-terminal proPO peptide in stimulation of hematopoiesis in crayfish, Pacifastacus leniusculus.
Collapse
Affiliation(s)
- Ratchanok Sirikharin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18 A, SE752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- Science for Life Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
18
|
Brzeźniakiewicz-Janus K, Rupa-Matysek J, Gil L. Acquired Aplastic Anemia as a Clonal Disorder of Hematopoietic Stem Cells. Stem Cell Rev Rep 2020; 16:472-481. [PMID: 32270433 PMCID: PMC7253510 DOI: 10.1007/s12015-020-09971-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aplastic anemia is rare disorder presenting with bone marrow failure syndrome due to autoimmune destruction of early hematopoietic stem cells (HSCs) and stem cell progenitors. Recent advances in newer genomic sequencing and other molecular techniques have contributed to a better understanding of the pathogenesis of aplastic anemia with respect to the inflammaging, somatic mutations, cytogenetic abnormalities and defective telomerase functions of HSCs. These have been summarized in this review and may be helpful in differentiating aplastic anemia from hypocellular myelodysplastic syndrome. Furthermore, responses to immunosuppressive therapy and outcomes may be determined by molecular pathogenesis of HSCs autoimmune destruction, as well as treatment personalization in the future.
Collapse
Affiliation(s)
- Katarzyna Brzeźniakiewicz-Janus
- Department of Hematology, Multi-Specialist Hospital Gorzów Wielkopolski, Faculty of Medicine and Health Science, University of Zielona Góra, Gorzów Wielkopolski, Poland.
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
19
|
The Nlrp3 inflammasome as a "rising star" in studies of normal and malignant hematopoiesis. Leukemia 2020; 34:1512-1523. [PMID: 32313108 PMCID: PMC7266743 DOI: 10.1038/s41375-020-0827-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023]
Abstract
Recent investigations indicate that hematopoiesis is coregulated by innate immunity signals and by pathways characteristic of the activation of innate immunity cells that also operate in normal hematopoietic stem progenitor cells (HSPCs). This should not be surprising because of the common developmental origin of these cells from a hemato/lymphopoietic stem cell. An important integrating factor is the Nlrp3 inflammasome, which has emerged as a major sensor of changes in body microenvironments, cell activation, and cell metabolic activity. It is currently the best-studied member of the inflammasome family expressed in hematopoietic and lymphopoietic cells, including also HSPCs. It is proposed as playing a role in (i) the development and expansion of HSPCs, (ii) their release from bone marrow (BM) into peripheral blood (PB) in stress situations and during pharmacological mobilization, (iii) their homing to BM after transplantation, and (iv) their aging and the regulation of hematopoietic cell metabolism. The Nlrp3 inflammasome is also involved in certain hematological pathologies, including (i) myelodysplastic syndrome, (ii) myeloproliferative neoplasms, (iii) leukemia, and (iv) graft-versus-host disease (GvHD) after transplantation. The aim of this review is to shed more light on this intriguing intracellular protein complex that has become a “rising star” in studies focused on both normal steady-state and pathological hematopoiesis.
Collapse
|
20
|
Lenkiewicz A, Bujko K, Brzezniakiewicz-Janus K, Xu B, Ratajczak MZ. The Complement Cascade as a Mediator of Human Malignant Hematopoietic Cell Trafficking. Front Immunol 2019; 10:1292. [PMID: 31231394 PMCID: PMC6567995 DOI: 10.3389/fimmu.2019.01292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complement cascade (ComC) cleavage fragments C3a and C5a regulate the trafficking of normal, differentiated hematopoietic cells, although they do not chemoattract more primitive hematopoietic stem/progenitor cells (HSPCs). By contrast, human myeloid and lymphoid leukemia cell lines and clonogenic blasts from chronic myelogenous leukemia (CML) and acute myelogenous leukemia (AML) patients respond to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. Consistent with this finding, C3a and C5a receptors are expressed by leukemic cells at the mRNA (RT-PCR) and protein (FACS) levels, and these cells respond to C3a and C5a stimulation by phosphorylation of p44/42 MAPK and AKT. However, neither of these ComC cleavage fragments have an effect on cell proliferation or survival. In parallel, we found that inducible heme oxygenase 1 (HO-1)-an anti-inflammatory enzyme, is a negative regulator of ComC-mediated trafficking of malignant cells and that stimulation of these cells by C3 or C5 cleavage fragments downregulates HO-1 expression in a p38 MAPK-dependent manner, rendering cells exposed to C3a or C5a more mobile. We propose that, while the ComC is not directly involved in the proliferation of malignant hematopoietic cells, its activation in leukemia/lymphoma patients (e.g., as a result of accompanying infections or sterile inflammation after radio-chemotherapy) enhances the motility of malignant cells and contributes to their dissemination in a p38 MAPK-HO-1 axis-dependent manner. Based on this idea, we propose that inhibition of p38 MAPK or upregulation of HO-1 by available small-molecule modulators would have a beneficial effect on ameliorating expansion and dissemination of leukemia/lymphoma cells in clinical situations in which the ComC becomes activated. Finally, since we detected expression of C3 and C5 mRNA in human leukemic cell lines, further study of the potential role of the complosome in regulating the behavior of these cells is needed.
Collapse
Affiliation(s)
- Anna Lenkiewicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | | | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology of Xiamen University, Xiamen, China
| | - Mariusz Z Ratajczak
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.,Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
21
|
Karpova D, Rettig MP, Ritchey J, Cancilla D, Christ S, Gehrs L, Chendamarai E, Evbuomwan MO, Holt M, Zhang J, Abou-Ezzi G, Celik H, Wiercinska E, Yang W, Gao F, Eissenberg LG, Heier RF, Arnett SD, Meyers MJ, Prinsen MJ, Griggs DW, Trumpp A, Ruminski PG, Morrow DM, Bonig HB, Link DC, DiPersio JF. Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. J Clin Invest 2019; 129:2745-2759. [PMID: 31085833 DOI: 10.1172/jci124738] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Cancilla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie Christ
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Leah Gehrs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ezhilarasi Chendamarai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moses O Evbuomwan
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Matthew Holt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingzhu Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grazia Abou-Ezzi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eliza Wiercinska
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany
| | - Wei Yang
- Genome Technology Access Center, Washington University, St. Louis, Missouri, USA
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda G Eissenberg
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Stacy D Arnett
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Michael J Prinsen
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - David W Griggs
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Peter G Ruminski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Halvard B Bonig
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany.,University of Washington, Department of Medicine/Hematology, Seattle, Washington, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Adamiak M, Abdel-Latif A, Ratajczak MZ. Purinergic signaling regulates mobilization of hematopoietic stem cells. Oncotarget 2018; 9:36052-36054. [PMID: 30546825 PMCID: PMC6281409 DOI: 10.18632/oncotarget.26290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mateusz Adamiak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| | - Ahmed Abdel-Latif
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland
| |
Collapse
|