1
|
Tao Q, Yang D, Qin K, Liu L, Jin M, Zhang F, Zhu J, Wang J, Luo Q, Du J, Yu L, Shen J, Chu D. Studies on the mechanism of Toxoplasma gondii Chinese 1 genotype Wh6 strain causing mice abnormal cognitive behavior. Parasit Vectors 2023; 16:30. [PMID: 36698166 PMCID: PMC9875435 DOI: 10.1186/s13071-022-05618-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Alzheimer's disease presents an abnormal cognitive behavior. TgCtwh6 is one of the predominant T. gondii strains prevalent in China. Although T. gondii type II strain infection can cause host cognitive behavioral abnormalities, we do not know whether TgCtwh6 could also cause host cognitive behavioral changes. So, in this study, we will focus on the effect of TgCtwh6 on mouse cognitive behavior and try in vivo and in vitro to explore the underlying mechanism by which TgCtwh6 give rise to mice cognitive behavior changes at the cellular and molecular level. METHODS C57BL/6 mice were infected orally with TgCtwh6 cysts. From day 90 post-infection on, all mice were conducted through the open field test and then Morris water maze test to evaluate cognitive behavior. The morphology and number of cells in hippocampus were examined with hematoxylin-eosin (H&E) and Nissl staining; moreover, Aβ protein in hippocampus was determined with immunohistochemistry and thioflavin S plaque staining. Synaptotagmin 1, apoptosis-related proteins, BACE1 and APP proteins and genes from hippocampus were assessed by western blotting or qRT-PCR. Hippocampal neuronal cell line or mouse microglial cell line was challenged with TgCtwh6 tachyzoites and then separately cultured in a well or co-cultured in a transwell device. The target proteins and genes were analyzed by immunofluorescence staining, western blotting and qRT-PCR. In addition, mouse microglial cell line polarization state and hippocampal neuronal cell line apoptosis were estimated using flow cytometry assay. RESULTS The OFT and MWMT indicated that infected mice had cognitive behavioral impairments. The hippocampal tissue assay showed abnormal neuron morphology and a decreased number in infected mice. Moreover, pro-apoptotic proteins, as well as BACE1, APP and Aβ proteins, increased in the infected mouse hippocampus. The experiments in vitro showed that pro-apoptotic proteins and p-NF-κBp65, NF-κBp65, BACE1, APP and Aβ proteins or genes were significantly increased in the infected HT22. In addition, CD80, pro-inflammatory factors, notch, hes1 proteins and genes were enhanced in the infected BV2. Interestingly, not only the APP and pro-apoptotic proteins in HT22, but also the apoptosis rate of HT22 increased after the infected BV2 were co-cultured with the HT22 in a transwell device. CONCLUSIONS Neuron apoptosis, Aβ deposition and neuroinflammatory response involved with microglia polarization are the molecular and cellular mechanisms by which TgCtwh6 causes mouse cognitive behavioral abnormalities.
Collapse
Affiliation(s)
- Qing Tao
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Di Yang
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Kunpeng Qin
- grid.412679.f0000 0004 1771 3402Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Lei Liu
- grid.59053.3a0000000121679639Department of Blood Transfusion, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Mengmeng Jin
- grid.186775.a0000 0000 9490 772XMaternity and Child Health Hospital of Anhui Province, The Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Famin Zhang
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinjin Zhu
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jie Wang
- grid.186775.a0000 0000 9490 772XDepartment of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingli Luo
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jian Du
- grid.186775.a0000 0000 9490 772XDepartment of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Li Yu
- grid.186775.a0000 0000 9490 772XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jilong Shen
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Deyong Chu
- grid.186775.a0000 0000 9490 772XDepartment of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Shao J, Ge T, Tang C, Wang G, Pang L, Chen Z. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis. Inflamm Res 2022; 71:1389-1401. [DOI: 10.1007/s00011-022-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
|
3
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 227] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Cheng D, Chai J, Wang H, Fu L, Peng S, Ni X. Hepatic macrophages: Key players in the development and progression of liver fibrosis. Liver Int 2021; 41:2279-2294. [PMID: 33966318 DOI: 10.1111/liv.14940] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis is a common pathological process involving persistent liver injury with various etiologies and subsequent inflammatory responses that occur in chronic liver diseases. If left untreated, liver fibrosis can progress to liver cirrhosis, hepatocellular carcinoma and eventually, liver failure. Unfortunately, to date, there is no effective treatment for liver fibrosis, with the exception of liver transplantation. Although the pathophysiology of liver fibrosis is multifactorial and includes the activation of hepatic stellate cells, which are known to drive liver fibrogenesis, hepatic macrophages have emerged as central players in the development of liver fibrosis and regression. Hepatic macrophages, which consist of resident macrophages (Kupffer cells) and monocyte-derived macrophages, have been shown to play an intricate role in the initiation of inflammatory responses to liver injury, progression of fibrosis, and promotion of fibrosis resolution. These features have made hepatic macrophages uniquely attractive therapeutic targets in the fight against hepatic fibrosis. In this review, we synthesised the literature to highlight the functions and regulation of heterogeneity in hepatic macrophages. Furthermore, using the existing findings, we attempt to offer insights into the molecular mechanisms underlying the phenotypic switch from fibrogenic macrophages to restorative macrophages, the regulation of heterogeneity, and modes of action for hepatic macrophages. A better understanding of these mechanisms may guide the development of novel anti-fibrotic therapies (eg macrophage subset-targeted treatments) to combat liver fibrosis in the future.
Collapse
Affiliation(s)
- Da Cheng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jin Chai
- Cholestatic Liver Diseases Center, Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China.,International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
5
|
Prior Toxoplasma Gondii Infection Ameliorates Liver Fibrosis Induced by Schistosoma Japonicum through Inhibiting Th2 Response and Improving Balance of Intestinal Flora in Mice. Int J Mol Sci 2020; 21:ijms21082711. [PMID: 32295161 PMCID: PMC7216211 DOI: 10.3390/ijms21082711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is an immunopathogenic disease in which a T helper (Th) cell type 2-like response plays vital roles. Hepatic fibrosis is its main pathologic manifestations, which is the leading cause of hepatic cirrhosis. Co-infections of Schistosoma japonicum (Sj) with other pathogens are frequently encountered but are easily ignored in clinical studies, and effective therapeutic interventions are lacking. In this study, we explored the effect of Toxoplasma gondii (Tg) prior infection on Th1/Th2 response, community shifts in gut microbiome (GM), and the pathogenesis of schistosomiasis in murine hosts. Mice were prior infected with Tg before Sj infection. The effects of co-infection on Th1/Th2 response and hepatic fibrosis were analyzed. Furthermore, we investigated this issue by sequencing 16S rRNA from fecal specimens to define the GM profiles during co-infection. Tg prior infection markedly reduced the granuloma size and collagen deposit in livers against Sj infection. Prior infection promoted a shift toward Th1 immune response instead of Th2. Furthermore, Tg infection promoted the expansion of preponderant flora and Clostridiaceae was identified as a feature marker in the GM of the co-infection group. Redundancy analysis (RDA)/canonical correspondence analysis (CCA) results showed that liver fibrosis, Th1/Th2 cytokines were significantly correlated (P < 0.05) with the GM compositions. Tg infection inhibits hepatic fibrosis by downregulating Th2 immune response against Sj infection, and further promotes the GM shifts through "gut-liver axis" in the murine hosts. Our study may provide insights into potential anti-fibrosis strategies in co-infection individuals.
Collapse
|
6
|
The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis. Parasit Vectors 2019; 12:611. [PMID: 31888743 PMCID: PMC6937654 DOI: 10.1186/s13071-019-3866-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a prevalent parasitic disease worldwide. The main pathological changes of hepatosplenic schistosomiasis are hepatic granuloma and fibrosis due to worm eggs. Portal hypertension and ascites induced by hepatic fibrosis are usually the main causes of death in patients with chronic hepatosplenic schistosomiasis. Currently, no effective vaccine exists for preventing schistosome infections. For quite a long time, praziquantel (PZQ) was widely used for the treatment of schistosomiasis and has shown benefit in treating liver fibrosis. However, drug resistance and chemical toxicity from PZQ are being increasingly reported in recent years; therefore, new and effective strategies for treating schistosomiasis-induced hepatic fibrosis are urgently needed. MicroRNA (miRNA), a non-coding RNA, has been proved to be associated with the development of many human diseases, including schistosomiasis. In this review, we present a balanced and comprehensive view of the role of miRNAs in the pathogenesis, grading, and treatment of schistosomiasis-associated hepatic fibrosis. The multiple regulatory roles of miRNAs, such as promoting or inhibiting the development of liver pathology in murine schistosomiasis are also discussed in depth. Additionally, miRNAs may serve as candidate biomarkers for diagnosing liver pathology of schistosomiasis and as novel therapeutic targets for treating schistosomiasis-associated hepatic fibrosis.![]()
Collapse
|
7
|
Shan L, Liu Z, Ci L, Shuai C, Lv X, Li J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int Immunopharmacol 2019; 75:105765. [PMID: 31336335 DOI: 10.1016/j.intimp.2019.105765] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis is the most common pathological feature of most chronic liver diseases, and its continuous deterioration gradually develops into liver cirrhosis and eventually leads to liver cancer. At present, there are many kinds of drugs used to treat liver fibrosis. However, Western drugs tend to only target single genes/proteins and induce many adverse reactions. Most of the mechanisms and active ingredients of traditional Chinese medicine (TCM) are not clear, and there is a lack of unified diagnosis and treatment standards. Natural products, which are characterized by structural diversity, low toxicity, and origination from a wide range of sources, have unique advantages and great potential in anti-liver fibrosis. This article summarizes the work done over the previous decade, on the active ingredients in natural products that are reported to have anti-hepatic fibrosis effects. The effective anti-hepatic fibrosis ingredients identified can be generally divided into flavonoids, saponins, polysaccharides and alkaloids. Mechanisms of anti-liver fibrosis include inhibition of liver inflammation, anti-lipid peroxidation injury, inhibition of the activation and proliferation of hepatic stellate cells (HSCs), modulation of the synthesis and secretion of pro-fibrosis factors, and regulation of the synthesis and degradation of the extracellular matrix (ECM). This review provides suggestions for the development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Liang Shan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhenni Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Leilei Ci
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen Shuai
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Alajmi RA, Al-Megrin WA, Metwally D, Al-Subaie H, Altamrah N, Barakat AM, Abdel Moneim AE, Al-Otaibi TT, El-Khadragy M. Anti- Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spina-christi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice. Biosci Rep 2019; 39:BSR20190379. [PMID: 30992387 PMCID: PMC6522717 DOI: 10.1042/bsr20190379] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Toxoplasmosis constitutes a global infection caused by oblige intracellular apicomplexan protozoan parasite Toxoplasma gondii Although often asymptomatic, infection can result in more severe, potentially life threatening symptoms particularly in immunocompromised individuals. The present study evaluated the anti-Toxoplasma effects in experimental animals of silver nanoparticles synthesized in combination with extracts of natural plants (Phoenix dactylifera and Ziziphus spina-christi) as an alternative method to standard sulfadiazine drug therapy. Liver functions estimated by and AST and ALT were significantly increased in T. gondii-infected mice compared with the control group as well as hepatic nitric oxide (NO), lipid peroxidation (LPO) levels and caused significant decrease in superoxide dismutase (SOD), catalase (CAT) and glutathione activities in the liver homogenates. Nanoparticles pretreatment prevented liver damage as determined by enzyme activity inhibition, in addition to significant inhibition of hepatic NO levels and significant elevation in liver SOD and CAT activities. Moreover, nanoparticle treatment significantly decreased hepatic LPO and NO concentrations and proinflammatory cytokines but significantly boosted the antioxidant enzyme activity of liver homogenate. In addition, histological examinations showed distinct alterations in the infected compared with untreated control groups. Conversely, nanoparticles pretreatment showed improvement in the histological features indicated by slight infiltration and fibrosis, minimal pleomorphism and less hepatocyte and degeneration. Furthermore, nanoparticles treatment induced a reduction in immunoreactivity to TGF-β and NF-κB in hepatic tissues. Therefore, the present study provides new insights into various natural plants that are used traditionally for the treatment of toxoplasmosis and other parasitic infections, which may be useful as alternative treatment option for T. gondii infections.
Collapse
Affiliation(s)
- Reem A Alajmi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wafa A Al-Megrin
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Dina Metwally
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hind Al-Subaie
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nourah Altamrah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf M Barakat
- Department of Zoonotic Diseases, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Tahani T Al-Otaibi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal El-Khadragy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|