1
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
2
|
Shah S, Nag A, Lucke-Wold B. Autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma patients: a systematic review of literature. Clin Transl Oncol 2024:10.1007/s12094-024-03830-9. [PMID: 39714754 DOI: 10.1007/s12094-024-03830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Glioblastoma (GBM) is one of the most common primary malignant brain tumors. Annually, there are about six instances recorded per 100,000 inhabitants. Treatment for GB has not advanced all that much. Novel medications have been investigated recently for the management of newly diagnosed and recurring instances of GBM. For GBM, surgery, radiation therapy, and alkylating chemotherapy are often used therapies. Immunotherapies, which use the patient's immune reaction against tumors, have long been seen as a potential cancer treatment. One such treatment is the dendritic cell (DC) vaccine. This cell-based vaccination works by stimulating the patient's own dendritic cells' antigenic repertoire, therefore inducing a polyclonal T-cell response. Systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used to search, and the articles published in peer-reviewed scientific journals were associated with brain GBM, cancer, and Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination. Selected 90 articles were used in this manuscript, of which 30 articles were clinical trials. Compared to shared tumor antigen peptide vaccines, autologous cancer DCs have a greater ability to stimulate the immune system, which is why dendritic cell fusion vaccines have shown early promise in several clinical studies. Survival rates for vaccinated patients were notably better compared to matched or historical controls. For newly diagnosed patients, the median overall survival (mOS) ranged from 15 to 41.4 months, while the progression-free survival (PFS) ranged from 6 to 25.3 months. We discovered through this analysis that autologous multiomics analysis of DC vaccines showed enhanced antitumor immunity with a focus on using activated, antigen-loaded donor DCs to trigger T-cell responses against cancer, particularly in glioblastoma. It also showed improved patient survival, especially when combined with standard chemoradiotherapy. DC vaccines show promise in treating GBM by enhancing survival and reducing tumor recurrence. However, challenges in vaccine production, antigen selection, and tumor heterogeneity highlight the need for continued research and optimization to improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Siddharth Shah
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA.
| | - Aiswarya Nag
- Sri Ramachandra University Medical College: Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA
| |
Collapse
|
3
|
Kelly AM, McCarthy KN, Claxton TJ, Carlile SR, O'Brien EC, Vozza EG, Mills KH, McLoughlin RM. IL-10 inhibition during immunization improves vaccine-induced protection against Staphylococcus aureus infection. JCI Insight 2024; 9:e178216. [PMID: 38973612 PMCID: PMC11383370 DOI: 10.1172/jci.insight.178216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Staphylococcus aureus is a major human pathogen. An effective anti-S. aureus vaccine remains elusive as the correlates of protection are ill-defined. Targeting specific T cell populations is an important strategy for improving anti-S. aureus vaccine efficacy. Potential bottlenecks that remain are S. aureus-induced immunosuppression and the impact this might have on vaccine-induced immunity. S. aureus induces IL-10, which impedes effector T cell responses, facilitating persistence during both colonization and infection. Thus, it was hypothesized that transient targeting of IL-10 might represent an innovative way to improve vaccine efficacy. In this study, IL-10 expression was elevated in the nares of persistent carriers of S. aureus, and this was associated with reduced systemic S. aureus-specific Th1 responses. This suggests that systemic responses are remodeled because of commensal exposure to S. aureus, which negatively implicates vaccine function. To provide proof of concept that targeting immunosuppressive responses during immunization may be a useful approach to improve vaccine efficacy, we immunized mice with T cell-activating vaccines in combination with IL-10-neutralizing antibodies. Blocking IL-10 during vaccination enhanced effector T cell responses and improved bacterial clearance during subsequent systemic and subcutaneous infection. Taken together, these results reveal a potentially novel strategy for improving anti-S. aureus vaccine efficacy.
Collapse
Affiliation(s)
| | - Karen N McCarthy
- Host-Pathogen Interactions Group and
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Kingston Hg Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
4
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
5
|
de Mey W, Locy H, De Ridder K, De Schrijver P, Autaers D, Lakdimi A, Esprit A, Franceschini L, Thielemans K, Verdonck M, Breckpot K. An mRNA mix redirects dendritic cells towards an antiviral program, inducing anticancer cytotoxic stem cell and central memory CD8 + T cells. Front Immunol 2023; 14:1111523. [PMID: 36860873 PMCID: PMC9969480 DOI: 10.3389/fimmu.2023.1111523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Dendritic cell (DC)-maturation stimuli determine the potency of these antigen-presenting cells and, therefore, the quality of the T-cell response. Here we describe that the maturation of DCs via TriMix mRNA, encoding CD40 ligand, a constitutively active variant of toll-like receptor 4 and the co-stimulatory molecule CD70, enables an antibacterial transcriptional program. Besides, we further show that the DCs are redirected into an antiviral transcriptional program when CD70 mRNA in TriMix is replaced with mRNA encoding interferon-gamma and a decoy interleukin-10 receptor alpha, forming a four-component mixture referred to as TetraMix mRNA. The resulting TetraMixDCs show a high potential to induce tumor antigen-specific T cells within bulk CD8+ T cells. Tumor-specific antigens (TSAs) are emerging and attractive targets for cancer immunotherapy. As T-cell receptors recognizing TSAs are predominantly present on naive CD8+ T cells (TN), we further addressed the activation of tumor antigen-specific T cells when CD8+ TN cells are stimulated by TriMixDCs or TetraMixDCs. In both conditions, the stimulation resulted in a shift from CD8+ TN cells into tumor antigen-specific stem cell-like memory, effector memory and central memory T cells with cytotoxic capacity. These findings suggest that TetraMix mRNA, and the antiviral maturation program it induces in DCs, triggers an antitumor immune reaction in cancer patients.
Collapse
|
6
|
Cyran L, Serfling J, Kirschner L, Raifer H, Lohoff M, Hermanns HM, Kerstan A, Bodem J, Lutz MB. Flt3L, LIF, and IL-10 combination promotes the selective in vitro development of ESAM low cDC2B from murine bone marrow. Eur J Immunol 2022; 52:1946-1960. [PMID: 35357005 DOI: 10.1002/eji.202149663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 01/05/2023]
Abstract
The development of two conventional dendritic cells (DC) subsets (cDC1 and cDC2) and the plasmacytoid DC (pDC) in vivo and in cultures of bone marrow (BM) cells is mediated by the growth factor Flt3L. However, little is known about the factors that direct the development of the individual DC subsets. Here, we describe the selective in vitro generation of murine ESAMlow CD103- XCR1- CD172a+ CD11b+ cDC2 from BM by treatment with a combination of Flt3L, LIF, and IL-10 (collectively named as FL10). FL10 promotes common dendritic cell progenitors (CDP) proliferation in the cultures, similar to Flt3L and CDP sorted and cultured in FL10 generate exclusively cDC2. These cDC2 express the transcription factors Irf4, Klf4, and Notch2, and their growth is reduced using BM from Irf4-/- mice, but the expression of Batf3 and Tcf4 is low. Functionally they respond to TLR3, TLR4, and TLR9 signals by upregulation of the surface maturation markers MHC II, CD80, CD86, and CD40, while they poorly secrete proinflammatory cytokines. Peptide presentation to TCR transgenic OT-II cells induced proliferation and IFN-γ production that was similar to GM-CSF-generated BM-DC and higher than Flt3L-generated DC. Together, our data support that FL10 culture of BM cells selectively promotes CDP-derived ESAMlow cDC2 (cDC2B) development and survival in vitro.
Collapse
Affiliation(s)
- Laura Cyran
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Julia Serfling
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Luisa Kirschner
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Hartmann Raifer
- Institute of Medical Microbiology and Hygiene, University of Marburg, Marburg, Germany
| | - Michael Lohoff
- Institute of Medical Microbiology and Hygiene, University of Marburg, Marburg, Germany
| | - Heike M Hermanns
- Department of Internal Medicine II, Hepatology Research Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Kerstan
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Vesicular IFN-γ as a cooperative attacker to enhance anti-cancer effect of 5-fluorouracil via thymidine phosphorylase upregulation and tumor microenvironment normalization. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102501. [PMID: 34843983 DOI: 10.1016/j.nano.2021.102501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022]
Abstract
On the basis of immuno-modulating effect and upregulating the activity of thymidine phosphorylase (TP), interferon-γ (IFN-γ) as a cooperative attacker was explored to enhance the anticancer activity of 5-fluorouracil (5-FU). We designed and prepared a self-assembled nano-vesicular system IFN-γ-EDP formulated by amphiphilic poly((polyethylene glycol)(dodecylphosphoethanolamine)phosphazene) (EDP) to entrap IFN-γ in the hydrophilic cavity. The IFN-γ-EDP vesicles allowed IFN-γ to accumulate at the tumor site and be taken up by tumor cells, resulting in significantly upregulated expression level of TP, distinct inhibition of cell growth, more cellular apoptosis and more serious cell cycle arrest when administrated combined with 5-FU. Moreover, IFN-γ-EDP could normalize the tumor microenvironment by enhancing the CD4+ and CD8+ T cell populations, promoting the IL-12 secretion and suppressing the IL-10 secretion in tumor. As a consequence, the combination therapy of IFN-γ-EDP with 5-FU achieved remarkably enhanced tumor inhibition rate of 56.9% against CT26 colorectal cancer.
Collapse
|
8
|
Salkeni MA, Shin JY, Gulley JL. Resistance to Immunotherapy: Mechanisms and Means for Overcoming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:45-80. [PMID: 34972962 DOI: 10.1007/978-3-030-79308-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immune checkpoint blockade transformed cancer therapy during the last decade. However, durable responses remain uncommon, early and late relapses occur over the course of treatment, and many patients with PD-L1-expressing tumors do not respond to PD-(L)1 blockade. In addition, while some malignancies exhibit inherent resistance to treatment, others develop adaptations that allow them to evade antitumor immunity after a period of response. It is crucial to understand the pathophysiology of the tumor-immune system interplay and the mechanisms of immune escape in order to circumvent primary and acquired resistance. Here we provide an outline of the most well-defined mechanisms of resistance and shed light on ongoing efforts to reinvigorate immunoreactivity.
Collapse
Affiliation(s)
- Mohamad A Salkeni
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA.
| | - John Y Shin
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Tijtgat J, De Munck J, Dufait I, Schwarze JK, Van Riet I, Franceschini L, Breckpot K, Aerts JL, Neyns B, Tuyaerts S. Unraveling the Effects of a Talimogene Laherparepvec (T-VEC)-Induced Tumor Oncolysate on Myeloid Dendritic Cells. Front Immunol 2021; 12:733506. [PMID: 34777344 PMCID: PMC8581672 DOI: 10.3389/fimmu.2021.733506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/13/2021] [Indexed: 01/18/2023] Open
Abstract
T-VEC, a HSV-1 derived oncolytic virus, is approved for the treatment of advanced melanoma. The mechanisms that underly the systemic anti-tumor effect that is seen following intratumoral injection have not yet been studied but are likely to be mediated by myeloid dendritic cells (myDC) that initiate an adaptive immune response. In this study we could demonstrate that T-VEC is non-toxic for human myDC. T-VEC and a T-VEC oncolysate of melanoma cell lines were able to mature human myDC. myDC were able to take up lysed melanoma cells and cross-present melanoma-derived tumor antigens to antigen-specific T cells. Our results support the possible role of myDC as mediators of an adaptive anti-tumor effect and intratumoral co-administration of T-VEC plus autologous myDC could be a complementary treatment option. A clinical trial that investigates this hypothesis is currently ongoing.
Collapse
Affiliation(s)
- Jens Tijtgat
- Department of Medical Oncology/Laboratory of Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jolien De Munck
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy/Laboratory of Translational Radiation Oncology, Supportive Care and Physics (TROP), Universitair Ziekenhuis Brussel (UZ Brussel)/Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Julia Katharina Schwarze
- Department of Medical Oncology/Laboratory of Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ivan Van Riet
- Stem Cell Laboratory, Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joeri L Aerts
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology/Laboratory of Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology/Laboratory of Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
10
|
IL-10 Signaling Elicited by Nivolumab-Induced Activation of the MAP Kinase Pathway Does Not Fully Contribute to Nivolumab-Modulated Heterogeneous T Cell Responses. Int J Mol Sci 2021; 22:ijms222111848. [PMID: 34769278 PMCID: PMC8584131 DOI: 10.3390/ijms222111848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized anti-cancer treatment for many late-stage cancer patients. However, ICI therapy has thus far demonstrated limited efficacy for most patients, and it remains unclear why this is so. Interleukin 10 (IL-10) is a cytokine that has been recognized as a central player in cancer biology with its ability to inhibit anti-tumor T cell responses. Recent studies suggest that IL-10 might also exert some intrinsic anti-tumor T cell responses, and clinical studies using recombinant IL-10 alone or in combination with ICI are underway. This paradoxical effect of IL-10 and its underlying mechanisms impacting ICI-modulated T cell responses remain poorly understood. In this study, using an in vitro mixed lymphocyte reaction assay, we found that treatment with ICIs such as the anti-programmed cell death receptor-1 (PD-1) mAb nivolumab elicits a strong expression of IL-10. While neutralization of IL-10 signaling with an anti-IL-10 specific mAb significantly decreases the production of IFN-γ by T cells in a cohort of donor cells, the opposite effect was observed in other donor cells. Similarly, neutralization of IL-10 signaling significantly decreases the expression of T cell activation markers Ki67 and CD25, as well as the production of Granzyme B in a cohort of donor cells, whereas the opposite effect was observed in others. Furthermore, we found that nivolumab and IL-10 differentially modulate the signal transducer and activator of transcription 3 (STAT3) and AKT serine–threonine kinase pathways. Finally, we found that nivolumab activates the mitogen-activated protein kinase (MAPK) pathway, which in turn is responsible for the observed induction of IL-10 production by nivolumab. These findings provide new insights into the mechanisms underlying anti-PD-1-modulated T cell responses by IL-10, which could lead to the discovery of novel combination treatments that target IL-10 and immune checkpoint molecules.
Collapse
|
11
|
Phung CD, Tran TH, Nguyen HT, Nguyen TT, Jeong JH, Ku SK, Yong CS, Choi HG, Kim JO. Nanovaccines silencing IL-10 production at priming phase for boosting immune responses to melanoma. J Control Release 2021; 338:211-223. [PMID: 34419495 DOI: 10.1016/j.jconrel.2021.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 01/15/2023]
Abstract
Despite the significant efforts in developing cancer vaccines, there are still numerous challenges that need to be addressed to ensure their clinical efficacy. Herein, a lymphatic dendritic cell (DC)-targeted artificial nanovaccine mimicking tumor cell membrane (ATM-NV) is developed to boost effector immune response and control immunosuppression simultaneously. The NVs are formulated with lipids, tumor cell membrane proteins, imiquimod (IMQ), and IL-10 siRNA. IL-10 siRNA is incorporated to inhibit the secretion of IL-10, an immunosuppressive cytokine, of maturated DCs upon IMQ. To enhance the DC targeting ability, the nanovaccine surface was non-covalently conjugated with the anti-CD205 antibody. The IMQ and IL-10 siRNA co-loaded, CD205 receptor-targeted artificial tumor membrane NVs (IMQ/siR@ATM-NVs) efficiently migrate to the tumor-draining lymph node and target DCs. Furthermore, immunization with IMQ/siR@ATM-NVs reduces the production of IL-10 and increases Th1-driven antitumor immunity resulted in a great tumor inhibition efficacy. Our results suggest a potential strategy to promote the vaccination's antitumor efficacy by blocking the intrinsic negative regulators in DCs.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tien Tiep Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
12
|
Association of Interleukin-10 Gene Polymorphisms with Ulcerative Colitis. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Samec M, Liskova A, Koklesova L, Samuel SM, Murin R, Zubor P, Bujnak J, Kwon TK, Büsselberg D, Prosecky R, Caprnda M, Rodrigo L, Ciccocioppo R, Kruzliak P, Kubatka P. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J Cancer Res Clin Oncol 2020; 146:3137-3154. [PMID: 33063131 DOI: 10.1007/s00432-020-03424-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The role of immune system in carcinogenesis represents fundamental events associated with cancer eradication; however, tumor evolution is connected with various mechanisms of tumor evasion and progression of cancer. Based on recent evidence, phytochemicals are directly associated with immunomodulation of the innate and adaptive immunity via different mechanisms of action including stimulation and amplification of immune cells, humoral compartments, and associated molecules. This comprehensive study focuses on immunomodulating potential of phytochemicals (mixture in plants or separately such as individual phytochemical) and their impact on regulation of immune response during cancer development, immune tolerance, and immune escape. Clinical application of phytochemicals as modulators of host immunity against cancer may represent perspective approach in anticancer therapy.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Radovan Murin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, Michalovce, Slovakia
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia.
| |
Collapse
|
14
|
Ni G, Zhang L, Yang X, Li H, Ma B, Walton S, Wu X, Yuan J, Wang T, Liu X. Targeting interleukin-10 signalling for cancer immunotherapy, a promising and complicated task. Hum Vaccin Immunother 2020; 16:2328-2332. [PMID: 32159421 DOI: 10.1080/21645515.2020.1717185] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interleukin 10 (IL-10) belongs to IL-10 family cytokines that are critical for maintaining the integrity of epithelial tissues, protecting pathogenic infection, and preventing excessive immune responses to damage self. Temporal IL-10 signaling blockade enhances vaccine-induced tumor regression by CD8 + T cells. IL-10, especially pegylated IL-10, mediates tumor regression by expanding tumor-infiltrating CD8 + T cells. Moreover, targeting IL-10 enhances immune checkpoint inhibitor mediated tumor regression. In the current paper, we will review recent advances in this area and discuss the complexity of IL-10 manipulation for cancer therapy.
Collapse
Affiliation(s)
- Guoying Ni
- Department of Nuclear Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China.,Genecology Research Centre, University of the Sunshine Coast , Maroochydore, Australia.,School of Medical Science, Griffith Health Institute, Griffith University , Gold Coast, Australia
| | - Lu Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China
| | - Xiaodan Yang
- Department of Nuclear Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China
| | - Hejie Li
- Genecology Research Centre, University of the Sunshine Coast , Maroochydore, Australia.,Institute of Industrial Science, Department of Mechanical and Bio-functional System, The University of Tokyo , Tokyo, Japan
| | - Bowei Ma
- Department of Nuclear Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China
| | - Shelley Walton
- Genecology Research Centre, University of the Sunshine Coast , Maroochydore, Australia
| | - Xiaolian Wu
- Cancer Research Institute, First People's Hospital of Foshan , Foshan, Guangdong, China
| | - Jianwei Yuan
- Department of Nuclear Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast , Maroochydore, Australia
| | - Xiaosong Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University , Guangzhou, China.,Genecology Research Centre, University of the Sunshine Coast , Maroochydore, Australia.,Cancer Research Institute, First People's Hospital of Foshan , Foshan, Guangdong, China.,School of Health and Sport Sciences, University of the Sunshine Coast , Maroochydore, Australia
| |
Collapse
|
15
|
Abstract
Interferon gamma has long been studied as a critical mediator of tumor immunity. In recent years, the complexity of cellular interactions that take place in the tumor microenvironment has become better appreciated in the context of immunotherapy. While checkpoint inhibitors have dramatically improved remission rates in cancer treatment, IFN-γ and related effectors continue to be identified as strong predictors of treatment success. In this review, we provide an overview of the multiple immunosuppressive barriers that IFN-γ has to overcome to eliminate tumors, and potential avenues for modulating the immune response in favor of tumor rejection.
Collapse
Affiliation(s)
- J Daniel Burke
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Howard A Young
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
16
|
Rossowska J, Anger N, Wegierek K, Szczygieł A, Mierzejewska J, Milczarek M, Szermer-Olearnik B, Pajtasz-Piasecka E. Antitumor Potential of Extracellular Vesicles Released by Genetically Modified Murine Colon Carcinoma Cells With Overexpression of Interleukin-12 and shRNA for TGF-β1. Front Immunol 2019; 10:211. [PMID: 30814999 PMCID: PMC6381037 DOI: 10.3389/fimmu.2019.00211] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
Recent developments demonstrate that tumor-derived extracellular vesicles (EVs) could become a highly effective tool for delivery of antitumor factors. The main objective of the study was to determine whether EVs secreted by MC38 colon carcinoma cells genetically engineered for overproduction of interleukin (IL-)12 and/or shRNA targeting TGF-β1 are effectively loaded with these molecules and whether the obtained EVs could be an efficient tool for antitumor therapy. Fractions of EVs released by genetically modified MC38 cells [both modified tumor-derived exosomes (mTEx) and modified microvesicles (mTMv)] and those released by unmodified, wild-type MC38 cells were characterized in terms of loading efficacy, using real-time PCR and ELISA, as well as their antitumor potential. In order to examine the therapeutic potential of mTEx, they were applied in the form of sole treatment as well as in combination with dendritic cell (DC)-based vaccines stimulated with mTMv in the therapy of mice with subcutaneously growing MC38 tumors. The results demonstrated that genetic modification of wild-type MC38 tumor cells is an effective method of loading the molecules of interest into extracellular vesicles secreted by the cells (both TEx and TMv). The results also showed that mTEx secreted by cells engineered for overproduction of IL-12 and/or shRNA for TGF-β1 are able to induce tumor growth inhibition as opposed to TEx from unmodified MC38 cells. Additionally, antitumor therapy composed of mTEx (especially those deprived of TGF-β1) and DC-based vaccines allowed for regeneration of antitumor immunity and induction of the systemic Th1 response responsible for the sustained effect of the therapy. In conclusion, tumor-derived exosomes loaded with IL-12 and/or deprived of TGF-β1 could become an efficient adjuvant supporting induction of a specific antitumor response in both immuno- and chemotherapeutic schemes of treatment.
Collapse
Affiliation(s)
- Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Natalia Anger
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Wegierek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Szczygieł
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jagoda Mierzejewska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Milczarek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Bożena Szermer-Olearnik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Elżbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|