1
|
Hauser KA, Garvey CN, Crow RS, Hossainey MRH, Howard DT, Ranganathan N, Gentry LK, Yaparla A, Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA, Muletz-Wolz CR, Grayfer L. Amphibian mast cells serve as barriers to chytrid fungus infections. eLife 2024; 12:RP92168. [PMID: 39082933 PMCID: PMC11290838 DOI: 10.7554/elife.92168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host-chytrid pathogen interactions.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Christina N Garvey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Ryley S Crow
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Muhammad RH Hossainey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Dustin T Howard
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Netra Ranganathan
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Lindsey K Gentry
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Amulya Yaparla
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Namarta Kalia
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Mira Zelle
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Elizabeth J Jones
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Anju N Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology, and of Pediatrics, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| |
Collapse
|
2
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
3
|
Li X, Jiang B, Zhang Z, Huang M, Feng J, Huang Y, Amoah K, Huang Y, Jian J. Interleukin-8 involved in Nile Tilapia (Oreochromis niloticus) against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109004. [PMID: 37598734 DOI: 10.1016/j.fsi.2023.109004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Interleukin 8 (IL8) is vital in promoting inflammation and is a crucial mediator in various physiopathological processes while influencing immunological function. The effect of IL8 on the immunological response to acute bacterial infections in Nile tilapia (Oreochromis niloticus) remains unknown. This work found an IL8 gene from Nile tilapia (On-IL8). It includes a 285 bp open reading frame and codes for 94 amino acids. The transcript levels of On-IL8 were highest in the head-kidney tissue and sharply induced by Streptococcus agalactiae and Aeromonas hydrophila. Besides, in vitro experiments revealed that On-IL8 regulated a variety of immunological processes and promoted inflammatory responses. Moreover, On-IL8 suppressed the NF-κB signaling pathway, consistent with in vitro results. These significant findings serve as the basis for further investigation into how IL8 confers protection to bony fish in opposition to bacterial infections.
Collapse
Affiliation(s)
- Xing Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Meiling Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Jiamin Feng
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Kwaku Amoah
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
4
|
Carotenuto R, Pallotta MM, Tussellino M, Fogliano C. Xenopus laevis (Daudin, 1802) as a Model Organism for Bioscience: A Historic Review and Perspective. BIOLOGY 2023; 12:890. [PMID: 37372174 DOI: 10.3390/biology12060890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
In vitro systems have been mainly promoted by authorities to sustain research by following the 3Rs principle, but continuously increasing amounts of evidence point out that in vivo experimentation is also of extreme relevance. Xenopus laevis, an anuran amphibian, is a significant model organism in the study of evolutionary developmental biology, toxicology, ethology, neurobiology, endocrinology, immunology and tumor biology; thanks to the recent development of genome editing, it has also acquired a relevant position in the field of genetics. For these reasons, X. laevis appears to be a powerful and alternative model to the zebrafish for environmental and biomedical studies. Its life cycle, as well as the possibility to obtain gametes from adults during the whole year and embryos by in vitro fertilization, allows experimental studies of several biological endpoints, such as gametogenesis, embryogenesis, larval growth, metamorphosis and, of course, the young and adult stages. Moreover, with respect to alternative invertebrate and even vertebrate animal models, the X. laevis genome displays a higher degree of similarity with that of mammals. Here, we have reviewed the main available literature on the use of X. laevis in the biosciences and, inspired by Feymann's revised view, "Plenty of room for biology at the bottom", suggest that X. laevis is a very useful model for all possible studies.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| |
Collapse
|
5
|
Li H, Li H, Liu Y, Zheng Y, Zhang M, Wang X, Cui H, Wang H, Zhao X, Chen X, Cheng H, Xu J, Ding Z. Molecular characterization and expression patterns of CXCL8 gene from blunt snout bream (Megalobrama amblycephala) and its chemotactic effects on macrophages and neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 142:104658. [PMID: 36758661 DOI: 10.1016/j.dci.2023.104658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
CXCL8 is a typical CXC-type chemokine, which mediates the migration of immune cells from blood vessels to the site of inflammation or injury to clear pathogenic microorganisms and repair damaged tissues. In this study, Megalobrama amblycephala CXCL8 (MaCXCL8) gene was identified and characterized. Sequence analysis showed that the deduced MaCXCL8 protein possessed the typical structure of CXCL8 from other species, with the characteristic CXC cysteine residues in the N-terminal and accompanied by a DLR motif (Asp-Leu-Arg motif). Phylogenetic analysis revealed that MaCXCL8 was homologous to that of Ctenopharyngodon idella and other cyprinid fishes. MaCXCL8 gene was expressed in all detected healthy tissues, with the highest expression levels in the spleen, and its expression was significantly up-regulated upon the challenge of Aeromonas hydrophila and Lipopolysaccharide (LPS) both in juvenile M. amblycephala tissues and primary macrophages. The immunohistochemical assay showed that MaCXCL8 was mainly distributed in the nucleus and cytoplasm, and its expression levels increased observably with the prolongation of bacterial infection. In addition, recombinant MaCXCL8 protein exhibited significant chemotactic effects on neutrophils and macrophages. In conclusion, MaCXCL8 is involved in the immune response of M. amblycephala, and these findings will be helpful to understand the biological roles of MaCXCL8 and provide a theoretical basis for the prevention and control of fish bacterial diseases.
Collapse
Affiliation(s)
- Hongping Li
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Hong Li
- Hunan Fisheries Science Institute, Hunan, 410153, China
| | - Yunlong Liu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Yancui Zheng
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Minying Zhang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Xu Wang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Hujun Cui
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Haotong Wang
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Xiaoheng Zhao
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Xiangning Chen
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Hanliang Cheng
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Jianhe Xu
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China
| | - Zhujin Ding
- College of Marine Life and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Resources Development Institute, Lianyungang, 222005, China.
| |
Collapse
|
6
|
Benzarti E, Murray KO, Ronca SE. Interleukins, Chemokines, and Tumor Necrosis Factor Superfamily Ligands in the Pathogenesis of West Nile Virus Infection. Viruses 2023; 15:v15030806. [PMID: 36992514 PMCID: PMC10053297 DOI: 10.3390/v15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can lead to encephalitis and death in susceptible hosts. Cytokines play a critical role in inflammation and immunity in response to WNV infection. Murine models provide evidence that some cytokines offer protection against acute WNV infection and assist with viral clearance, while others play a multifaceted role WNV neuropathogenesis and immune-mediated tissue damage. This article aims to provide an up-to-date review of cytokine expression patterns in human and experimental animal models of WNV infections. Here, we outline the interleukins, chemokines, and tumor necrosis factor superfamily ligands associated with WNV infection and pathogenesis and describe the complex roles they play in mediating both protection and pathology of the central nervous system during or after virus clearance. By understanding of the role of these cytokines during WNV neuroinvasive infection, we can develop treatment options aimed at modulating these immune molecules in order to reduce neuroinflammation and improve patient outcomes.
Collapse
Affiliation(s)
- Emna Benzarti
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Kristy O Murray
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shannon E Ronca
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Immunology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Hauser KA, Garvey CN, Popovic M, Grayfer L. Biology of amphibian granulocytes - From evolutionary pressures to functional consequences. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104623. [PMID: 36563918 DOI: 10.1016/j.dci.2022.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Granulocyte-lineage cells are important innate immune effectors across all vertebrates. Named for conspicuous secretory granules, granulocytes have historically been studied for their antimicrobial roles. Although versions of these cells are found in all vertebrate species examined to date, disparate environmental and physiological pressures acting on distinct vertebrate classes have shaped many of the facets dictating granulocyte biology. Immune pressures further determine granulopoietic constraints, ultimately governing granulocyte functions. For amphibians that inhabit pathogen-rich aquatic environments for some or all their lives, their unique granulocyte biologies satisfy many of their antimicrobial needs. Amphibians also occupy an intermediate position in the evolution of vertebrate immune systems, using combinations of primitive (e.g., subcapsular liver) and more recently evolved (e.g., bone marrow) tissue sites for hematopoiesis and specifically, granulopoiesis. The last decade of research has revealed vertebrate granulocytes in general, and amphibian granulocytes in particular, are more complex than originally assumed. With dynamic leukocyte phenotypes, granulocyte-lineage cells are being acknowledged for their multifaceted roles beyond immunity in other physiological processes. Here we provide an overview of granulopoiesis in amphibians, highlight key differences in these processes compared to higher vertebrates, and identify open questions.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Christina N Garvey
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Milan Popovic
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, 20052, United States.
| |
Collapse
|
8
|
Humphries JE, Lanctôt CM, Robert J, McCallum HI, Newell DA, Grogan LF. Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104510. [PMID: 35985564 DOI: 10.1016/j.dci.2022.104510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Amphibians are among the vertebrate groups suffering great losses of biodiversity due to a variety of causes including diseases, such as chytridiomycosis (caused by the fungal pathogens Batrachochytrium dendrobatidis and B. salamandrivorans). The amphibian metamorphic period has been identified as being particularly vulnerable to chytridiomycosis, with dramatic physiological and immunological reorganisation likely contributing to this vulnerability. Here, we overview the processes behind these changes at metamorphosis and then perform a systematic literature review to capture the breadth of empirical research performed over the last two decades on the metamorphic immune response. We found that few studies focused specifically on the immune response during the peri-metamorphic stages of amphibian development and fewer still on the implications of their findings with respect to chytridiomycosis. We recommend future studies consider components of the immune system that are currently under-represented in the literature on amphibian metamorphosis, particularly pathogen recognition pathways. Although logistically challenging, we suggest varying the timing of exposure to Bd across metamorphosis to examine the relative importance of pathogen evasion, suppression or dysregulation of the immune system. We also suggest elucidating the underlying mechanisms of the increased susceptibility to chytridiomycosis at metamorphosis and the associated implications for population persistence. For species that overlap a distribution where Bd/Bsal are now endemic, we recommend a greater focus on management strategies that consider the important peri-metamorphic period.
Collapse
Affiliation(s)
- Josephine E Humphries
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia; Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia.
| | - Chantal M Lanctôt
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Australian Rivers Institute, Griffith University, Southport, Queensland, 4222, Australia
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, 14642, Rochester, NY, United States
| | - Hamish I McCallum
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Laura F Grogan
- School of Environment and Science, Griffith University, Southport, Queensland, 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
9
|
Zheng F, Zhang W, Yang B, Chen M. Multi-omics profiling identifies C1QA/B + macrophages with multiple immune checkpoints associated with esophageal squamous cell carcinoma (ESCC) liver metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1249. [PMID: 36544679 PMCID: PMC9761157 DOI: 10.21037/atm-22-5351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a highly lethal malignant tumor lacking effective treatments; 20% of ESCC patients develop liver metastasis with an extremely short survival time of ≈5 months. The tumor microenvironment (TME) plays a crucial role in tumor homeostasis, but the relationship between the ESCC TME and liver metastasis is still unknown. Methods To identify potential cell populations contributing to ESCC liver metastasis, single-cell RNA (scRNA) sequencing data were analyzed to identify the major cell populations within the TME. Each of the major cell populations was re-clustered to define detailed cell subsets. Thereafter, the gene set variation analysis (GSVA) score was calculated for the bulk RNA-seq data based on the gene signatures of each cell subset. The relationship between the GSVA score of each cellular subset and clinical outcome was further analyzed to identify the cellular subset associated with ESCC liver metastasis, which was validated by multiplex immunohistochemistry. Results C1QA/B+ tumor-associated macrophages (TAMs) acted as the central regulator of the ESCC TME, closely associated with several key cell subsets. Several immune checkpoints, including CD40, CD47 and LGALS9, were all positively expressed in C1QA/B+ macrophages, which may exert central regulatory control of immune evasion by ESCC via these immune checkpoints expressions. Conclusions Our results comprehensively revealed the landscape of tumor-infiltrating immune cells associated with ESCC prognosis and metastasis, and suggest a novel strategy for developing immunotherapies for ESCC liver metastasis by targeting C1QA/B+ TAMs.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wei Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Baihua Yang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Mingqiu Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
10
|
Fukui A, Matsunami M. Gene Structure Analysis of Chemokines and Their Receptors in Allotetraploid Frog, Xenopus laevis. Front Genet 2022; 12:787979. [PMID: 35126458 PMCID: PMC8811506 DOI: 10.3389/fgene.2021.787979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Chemokines, relatively small secreted proteins, are involved in cell migration and function in various biological events, including immunity, morphogenesis, and disease. Due to their nature, chemokines tend to be a target of hijacking of immunity by virus and therefore show an exceptionally high mutation rate. Xenopus laevis is considered an excellent model to investigate the effect of whole-genome duplication for gene family evolution. Because its allotetraploidization occurred around 17–18 million years ago, ancestral subgenomes L and S were well conserved. Based on the gene model of human and diploid frog Xenopus tropicalis, we identified 52 chemokine genes and 26 chemokine receptors in X. laevis. The retention rate of the gene in the X. laevis L and S subgenomes was 96% (45/47) and 68% (32/47), respectively. We conducted molecular phylogenetic analysis and found clear orthologies in all receptor genes but not in the ligand genes, suggesting rapid divergences of the ligand. dN/dS calculation demonstrated that dN/dS ratio greater than one was observed in the four ligand genes, cxcl8b.1.S, cxcl18.S, ccl21.S, and xcl1.L, but nothing in receptor genes. These results revealed that the whole-genome duplication promotes diversification of chemokine ligands in X. laevis while conserving the genes necessary for homeostasis, suggesting that selective pressure also supports a rapid divergence of the chemokines in amphibians.
Collapse
Affiliation(s)
- Akimasa Fukui
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
- *Correspondence: Akimasa Fukui,
| | | |
Collapse
|
11
|
Hossainey MRH, Yaparla A, Hauser KA, Moore TE, Grayfer L. The Roles of Amphibian ( Xenopus laevis) Macrophages during Chronic Frog Virus 3 Infections. Viruses 2021; 13:v13112299. [PMID: 34835105 PMCID: PMC8621048 DOI: 10.3390/v13112299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Infections by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to global amphibian decline. The Xenopus laevis frog is an ideal research platform upon which to study the roles of distinct frog leukocyte populations during FV3 infections. Frog macrophages (MΦs) are integrally involved during FV3 infection, as they facilitate viral dissemination and persistence but also participate in immune defense against this pathogen. In turn, MΦ differentiation and functionality depend on the colony-stimulating factor-1 receptor (CSF-1R), which is ligated by CSF-1 and iterleukin-34 (IL-34) cytokines. Our past work indicated that X. laevis CSF-1 and IL-34 give rise to morphologically and functionally distinct frog MΦ subsets, and that these CSF-1- and IL-34-MΦs respectively confer susceptibility and antiviral resistance to FV3. Because FV3 targets the frog kidneys and establishes chronic infections therein, presently we examined the roles of the frog CSF-1- and IL-34-MΦs in seeding and maintaining these chronic kidney infections. Our findings indicate that the frog CSF-1-MΦs result in more prominent kidney FV3 infections, which develop into greater reservoirs of lingering FV3 marked by infiltrating leukocytes, fibrosis, and overall immunosuppressive states. Moreover, the antiviral effects of IL-34-MΦs are short-lived and are lost as FV3 infections progress.
Collapse
|
12
|
Hauser KA, Singer JC, Hossainey MRH, Moore TE, Wendel ES, Yaparla A, Kalia N, Grayfer L. Amphibian ( Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Antiviral Responses to Intestinal Frog Virus 3 Infections. Front Immunol 2021; 12:737403. [PMID: 34489981 PMCID: PMC8418544 DOI: 10.3389/fimmu.2021.737403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
The global amphibian declines are compounded by ranavirus infections such as Frog Virus 3 (FV3), and amphibian tadpoles more frequently succumb to these pathogens than adult animals. Amphibian gastrointestinal tracts represent a major route of ranavirus entry, and viral pathogenesis often leads to hemorrhaging and necrosis within this tissue. Alas, the differences between tadpole and adult amphibian immune responses to intestinal ranavirus infections remain poorly defined. As interferon (IFN) cytokine responses represent a cornerstone of vertebrate antiviral immunity, it is pertinent that the tadpoles and adults of the anuran Xenopus laevis frog mount disparate IFN responses to FV3 infections. Presently, we compared the tadpole and adult X. laevis responses to intestinal FV3 infections. Our results indicate that FV3-challenged tadpoles mount more robust intestinal type I and III IFN responses than adult frogs. These tadpole antiviral responses appear to be mediated by myeloid cells, which are recruited into tadpole intestines in response to FV3 infections. Conversely, myeloid cells bearing similar cytology already reside within the intestines of healthy (uninfected) adult frogs, possibly accounting for some of the anti-FV3 resistance of these animals. Further insight into the differences between tadpole and adult frog responses to ranaviral infections is critical to understanding the facets of susceptibility and resistance to these pathogens.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Julia C Singer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Tyler E Moore
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Namarta Kalia
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
13
|
Vo NTK. Environmental radiobiology of amphibians - knowledge gaps to be filled using cell lines. Int J Radiat Biol 2021; 98:1034-1046. [PMID: 33428858 DOI: 10.1080/09553002.2021.1872815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Amphibians are facing an unprecedented level of population declines worldwide. The causes run the gamut from habitat loss and succumbing to opportunistic pathogen infections to vulnerability to toxic pollutants and ultraviolet (UV)-B radiation exposure. Anthropogenic activities including Chernobyl and Fukushima nuclear disasters and radioactive waste leakage into the environment raise the background radiation levels. Their immediate and chronic effects on amphibian populations are still being studied. However, the literature on environmental radiation effects on amphibian health still requires a lot more work. Laboratory and field works need to be conducted hand in hand in order to make informative and conclusive analyses to distinguish bad from good and harm from risk or to argue for or against the linear no-threshold model in radioprotection programs. Amphibian cell lines can help seek answers to important questions pertaining environmental radiobiology and amphibian health wherever they can suitably and effectively. The purpose of this work is to show that amphibian cell lines can 'rescue' important knowledge gaps in the literature, especially in the low-dose radiation mechanisms. Presently, there are 142 amphibian cell lines developed from six urodelans and 17 anurans. Amphibian cell lines can help expand and enrich the limited literature on environmental radiation effects on amphibians. They can be used to study mechanisms of radiation actions and discover reliable biomarkers for low-dose exposure. They can be used in environmental radiation monitoring and radioprotection programs. They can be used to determine the effects of co-exposure of IR and other stressors in the environment on amphibian health. They represent an ethical choice for amphibian conservation efforts in the current global amphibian declines. Lessons learned from cellular data can be useful guides to gain a better picture of effects occurring at the amphibian population and ecosystem levels.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Canada.,School of Interdisciplinary Science, McMaster University, Hamilton, Canada
| |
Collapse
|
14
|
Gangele K, Gulati K, Joshi N, Kumar D, Poluri KM. Molecular insights into the differential structure-dynamics-stability features of interleukin-8 orthologs: Implications to functional specificity. Int J Biol Macromol 2020; 164:3221-3234. [PMID: 32853623 DOI: 10.1016/j.ijbiomac.2020.08.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Chemokines are a sub-group of chemotactic cytokines that regulate the leukocyte migration by binding to G-protein coupled receptors (GPCRs) and cell surface glycosaminoglycans (GAGs). Interleukin-8 (CXCL8/IL8) is one of the most essential CXC chemokine that has been reported to be involved in various pathophysiological conditions. Structure-function relationships of human IL8 have been studied extensively. However, no such detailed information is available on IL8 orthologs, although they exhibit significant functional divergence. In order to unravel the differential structure-dynamics-stability-function relationship of IL8 orthologs, comparative molecular analysis was performed on canine (laurasians) and human (primates) IL8 proteins using in-silico molecular evolutionary analysis and solution NMR spectroscopy methods. The residue level NMR studies suggested that, although the overall structural architecture of canine IL8 is similar to that of human IL8, systematic differences were observed in their backbone dynamics and low-energy excited states due to amino acid substitutions. Further, these substitutions also resulted in attenuation of stability and heparin binding affinity in the canine IL8 as compared to its human counterpart. Indeed, structural and sequence analysis evidenced for specificity of molecular interactions with cognate receptor (CXCR1) and glycosaminoglycan (heparin), thus providing evidence for a noticeable functional specificity and divergence between the two IL8 orthologs.
Collapse
Affiliation(s)
- Krishnakant Gangele
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Nidhi Joshi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
15
|
Bui-Marinos MP, Varga JFA, Vo NTK, Bols NC, Katzenback BA. Xela DS2 and Xela VS2: Two novel skin epithelial-like cell lines from adult African clawed frog (Xenopus laevis) and their response to an extracellular viral dsRNA analogue. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 112:103759. [PMID: 32526291 DOI: 10.1016/j.dci.2020.103759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The skin epithelial layer acts as an important immunological barrier against pathogens and is capable of recognizing and responding to pathogen-associated molecular patterns (PAMPs) in human and mouse models. Although presumed, it is unknown whether amphibian skin epithelial cells exhibit the ability to respond to PAMPs such as viral double-stranded RNA (dsRNA). To address this, two cell lines from the dorsal skin (Xela DS2) and ventral skin (Xela VS2) of the African clawed frog (Xenopus laevis) were established. Xela DS2 and Xela VS2 cells have an epithelial-like morphology, express genes associated with epithelial cells, and lack senescence-associated beta-galactosidase activity. Cells grow optimally in 70% Leibovitz's L-15 medium supplemented with 15% fetal bovine serum at 26 °C. Upon treatment with poly(I:C), a synthetic analogue of viral dsRNA and known type I interferon inducer, Xela DS2 and Xela VS2 exhibit marked upregulation of key antiviral and pro-inflammatory transcripts suggesting frog epithelial cells participate in the recognition of extracellular viral dsRNA and production of local inflammatory signals; similar to human and mouse models. Currently, these are the only known Xenopus laevis skin epithelial-like cell lines and will be important for future research in amphibian epithelial cell biology, initial host-pathogen interactions, and rapid screening of the effects of environmental stressors, including contaminants, on frog skin epithelial cells.
Collapse
Affiliation(s)
| | - Joseph F A Varga
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
16
|
Liu ZP, Gu WB, Wang SY, Wang LZ, Zhou YL, Dong WR, Shu MA. Functional differences of three CXCL10 homologues in the giant spiny frog Quasipaa spinosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103719. [PMID: 32344047 DOI: 10.1016/j.dci.2020.103719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Chemokines are a superfamily of structurally related chemotactic cytokines exerting significant roles in acting as a bridge between the innate and adaptive immune responses. In this study, we identified three CXC motif chemokine 10 (CXCL10) homologues (QsCXCL10-1, QsCXCL10-2 and QsCXCL10-3) from giant spiny frog Quasipaa spinosa. All three deduced QsCXCL10 proteins contained four conserved cysteine residues as found in other known CXC chemokines. Phylogenetic analysis showed that QsCXCL10-1, 2, 3 and other CXCL10s in amphibian were grouped together to form a separate clade. These three QsCXCL10s were highly expressed in spleen and blood. Upon infection with Staphylococcus aureus or Aeromonas hydrophila, the expressions of QsCXCL10s were markedly increased in spleen and blood during biotic stresses. Meanwhile, the QsCXCL10s transcription in liver could also be up-regulated under abiotic stresses such as cold and heat stresses. The recombinant proteins of frog CXCL10 homologues were produced and purified in E. coli and possessed similar but differential bioactivities. Both rCXCL10-1 and rCXCL10-2 had strong effects on the up-regulation of pro-inflammatory cytokines (TNF-α, IL-1β and IL-8) in vivo, whereas rCXCL10-3 induced a weak expression of these cytokines. Moreover, the rCXCL10-1 and rCXCL10-2 could strongly promote splenocyte proliferation and induce lymphocytes migration, while rCXCL10-3 had limited effects on these biological processes. All three frog chemokines triggered their functional activities by engaging CXC motif chemokine receptor 3 (CXCR3). Taken together, these results revealed that the three QsCXCL10s had similar but differential functional activities in mediating immune responses and host defenses, which might contribute to a better understanding of the functional evolution of CXCL10 in vertebrates.
Collapse
Affiliation(s)
- Ze-Peng Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Gu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shao-Yu Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lan-Zhi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Lian Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Rollins-Smith LA. Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Louise A. Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
18
|
Pijanowski L, Kemenade BMLVV, Chadzinska M. Chemokine CXCb1 stimulates formation of NETs in trunk kidney neutrophils of common carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103521. [PMID: 31628956 DOI: 10.1016/j.dci.2019.103521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 05/22/2023]
Abstract
Both in mammals and in fish, CXC chemokines activate leukocytes and regulate their migration both under normal physiological and inflammatory conditions. Moreover, in mammalian neutrophils CXC chemokines also stimulate the formation of neutrophil extracellular traps (NETs). Here, we investigated the effects of recombinant carp CXCL8s and CXCb1 on NET formation in neutrophils from the head (HK) and trunk (TK) kidney of carp. We found that neither recombinant CXCL8s nor CXCb1 stimulated DNA release in HK-derived neutrophils, while in TK-derived cells rcCXCb1 stimulated the release of NETs, composed of extracellular DNA co-localized with citrulline H3 histone and neutrophil elastase. Furthermore, CXCb1-induced NET release required NADPH oxidase activity, while it did not change upon treatment with CXCR inhibitors. In conclusion, we demonstrated, for the first time in fish, that CXCb1 chemokine induces formation of NETs in TK-derived neutrophils and this process is ROS-dependent. The difference between HK and TK-derived neutrophils is probably related to differences in the maturation state of these cells.
Collapse
Affiliation(s)
- Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|
19
|
Hauser K, Popovic M, Yaparla A, Koubourli DV, Reeves P, Batheja A, Webb R, Forzán MJ, Grayfer L. Discovery of granulocyte-lineage cells in the skin of the amphibianXenopus laevis. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ranavirus Frog Virus 3 (FV3) and the chytrid fungus Batrachochytrium dendrobatidis ( Bd) are significant contributors to the global amphibian declines and both pathogens target the amphibian skin. We previously showed that tadpoles and adults of the anuran amphibian Xenopus laevis express notable levels of granulocyte chemokine genes ( cxcl8a and cxcl8b) within their skin and likely possess skin-resident granulocytes. Presently, we show that tadpole and adult X. laevis indeed possess granulocyte-lineage cells within their epidermises that are distinct from their skin mast cells, which are found predominantly in lower dermal layers. These esterase-positive cells responded to (r)CXCL8a and rCXCL8b in a concentration- and CXCR1/CXCR2-dependent manner, possessed polymorphonuclear granulocyte morphology, granulocyte marker surface staining, and exhibited distinct immune gene expression from conventional granulocytes. Our past work indicates that CXCL8b recruits immunosuppressive granulocytes, and here we demonstrated that enriching esterase-positive skin granulocytes with rCXCL8b (but not rCXCL8a) may increase tadpole susceptibility to FV3 and adult frog susceptibility to Bd. Furthermore, pharmacological depletion of skin-resident granulocytes increased tadpole susceptibility to FV3. This manuscript provides new insights into the composition and roles of immune cells within the amphibian skin, which is a critical barrier against pathogenic contributors to the amphibian declines.
Collapse
Affiliation(s)
- Kelsey Hauser
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Milan Popovic
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Daphne V. Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | | | | | - Rose Webb
- Pathology Core Laboratory, George Washington University, Washington, DC 20037, USA
| | - María J. Forzán
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
20
|
Gangele K, Jamsandekar M, Mishra A, Poluri KM. Unraveling the evolutionary origin of ELR motif using fish CXC chemokine CXCL8. FISH & SHELLFISH IMMUNOLOGY 2019; 93:17-27. [PMID: 31310848 DOI: 10.1016/j.fsi.2019.07.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 05/19/2023]
Abstract
Chemokines are chemotactic proteins involved in host defense through the migration of immune-regulatory cells to the site of infection. Interleukin-8 (CXCL8/IL8) is the most studied "ELR-CXC chemokine/neutrophil activating chemokine (NAC) that regulate neutrophil trafficking during infections and inflammation by binding to its cognate G-protein coupled receptors CXCR1/CXCR2. The "ELR" motif of NAC chemokines is essential for the CXCR1/CXCR2 receptor activation. In order to understand the evolutionary origin of "ELR" motif in the CXC chemokines, a thorough evolutionary study of CXCL8 gene from various fishes and primates was performed. Phylogenetic analysis revealed that the CXCL8 gene can be classified into four distinct lineages (CXCL8-L1a, CXCL8-L1b, CXCL8-L2, and CXCL8-L3), where CXCL8-L1a is the fastest evolving lineage and CXCL8-L3 is the slowest. Selection analysis suggested that The "ELR/DLR" motif containing branches (gadoid and coelacanth) are positively selected. The probable evolutionary trend of "ELR" motif suggested that this motif in ancestor CXCL8 is evolved from the GGR of Lamprey (Agnatha), followed by duplication giving rise to two main motifs in CXCL8 "NXH" in L3 lineage and "ELR/DLR" in L1a/L1b lineages. Although, structural analysis suggested that the overall topology of the CXCL8 proteins is similar, differences do exist at the individual structural elements among the members of different lineages. Functional distance analysis suggested that the CXCL8-L3 lineage is more distant compared to the CXCL8-L1a and L1b lineages from the inferred ancestor. Functional divergence analysis between different lineages suggested that most of the selected residues are important for receptor or glycosaminoglycan binding. Such a functional diversification can be attributed to the novel set of functions adopted by CXCL8 in various species.
Collapse
Affiliation(s)
- Krishnakant Gangele
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Minal Jamsandekar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
21
|
Popovic M, Yaparla A, Paquin‐Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L. Colony‐stimulating factor‐1‐ and interleukin‐34‐derived macrophages differ in their susceptibility to
Mycobacterium marinum. J Leukoc Biol 2019; 106:1257-1269. [DOI: 10.1002/jlb.1a0919-147r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Milan Popovic
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Amulya Yaparla
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Dominic Paquin‐Proulx
- Department of Microbiology Immunology and Tropical Medicine George Washington University Washington DC 20037 USA
| | - Daphne V. Koubourli
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| | - Rose Webb
- Pathology Core Laboratory George Washington University Washington DC 20037 USA
| | - Marcia Firmani
- Department of Biomedical Laboratory Sciences George Washington University Washington DC 20037 USA
| | - Leon Grayfer
- Department of Biological Sciences George Washington University Washington DC 20052 USA
| |
Collapse
|