1
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Al B, Suen TK, Placek K, Netea MG. Innate (learned) memory. J Allergy Clin Immunol 2023; 152:551-566. [PMID: 37385546 DOI: 10.1016/j.jaci.2023.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
With the growing body of evidence, it is now clear that not only adaptive immune cells but also innate immune cells can mount a more rapid and potent nonspecific immune response to subsequent exposures. This process is known as trained immunity or innate (learned) immune memory. This review discusses the different immune and nonimmune cell types of the central and peripheral immune systems that can develop trained immunity. This review highlights the intracellular signaling and metabolic and epigenetic mechanisms underlying the formation of innate immune memory. Finally, this review explores the health implications together with the potential therapeutic interventions harnessing trained immunity.
Collapse
Affiliation(s)
- Burcu Al
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.
| |
Collapse
|
3
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Arzola-Martínez L, Ptaschinski C, Lukacs NW. Trained innate immunity, epigenetics, and food allergy. FRONTIERS IN ALLERGY 2023; 4:1105588. [PMID: 37304168 PMCID: PMC10251748 DOI: 10.3389/falgy.2023.1105588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years the increased incidence of food allergy in Western culture has been associated with environmental factors and an inappropriate immune phenotype. While the adaptive immune changes in food allergy development and progression have been well-characterized, an increase in innate cell frequency and activation status has also recently received greater attention. Early in prenatal and neonatal development of human immunity there is a reliance on epigenetic and metabolic changes that stem from environmental factors, which are critical in training the immune outcomes. In the present review, we discuss how trained immunity is regulated by epigenetic, microbial and metabolic factors, and how these factors and their impact on innate immunity have been linked to the development of food allergy. We further summarize current efforts to use probiotics as a potential therapeutic approach to reverse the epigenetic and metabolic signatures and prevent the development of severe anaphylactic food allergy, as well as the potential use of trained immunity as a diagnostic and management strategy. Finally, trained immunity is presented as one of the mechanisms of action of allergen-specific immunotherapy to promote tolerogenic responses in allergic individuals.
Collapse
Affiliation(s)
- Llilian Arzola-Martínez
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W. Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Ham J, Lim M, Kim D, Kim HY. Memory-like innate lymphoid cells in the pathogenesis of asthma. Front Immunol 2022; 13:1005517. [PMID: 36466877 PMCID: PMC9712946 DOI: 10.3389/fimmu.2022.1005517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 09/13/2023] Open
Abstract
Innate lymphoid cells (ILCs) are recently discovered innate immune cells that reside and self-renew in mucosal tissues and serve as the first line of defense against various external insults. They include natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells. The development and functions of ILC1-3 reflect those of their adaptive immunity TH1, TH2, and TH17 T-cell counterparts. Asthma is a heterogeneous disease caused by repeated exposure to specific allergens or host/environmental factors (e.g., obesity) that stimulate pathogenic pulmonary immune cells, including ILCs. Memory used to be a hallmark of adaptive immune cells until recent studies of monocytes, macrophages, and NK cells showed that innate immune cells can also exhibit greater responses to re-stimulation and that these more responsive cells can be long-lived. Besides, a series of studies suggest that the tissue-resident innate lymphoid cells have memory-like phenotypes, such as increased cytokine productions or epigenetic modifications following repetitive exposure to allergens. Notably, both clinical and mouse studies of asthma show that various allergens can generate memory-like features in ILC2s. Here, we discuss the biology of ILCs, their roles in asthma pathogenesis, and the evidence supporting ILC memory. We also show evidence suggesting memory ILCs could help drive the phenotypic heterogeneity in asthma. Thus, further research on memory ILCs may be fruitful in terms of developing new therapies for asthma.
Collapse
Affiliation(s)
- Jongho Ham
- Department of Biomedical Sciences, Laboratory of Mucosal Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - MinYeong Lim
- Department of Biomedical Sciences, Laboratory of Mucosal Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Dongmo Kim
- Department of Biomedical Sciences, Laboratory of Mucosal Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Laboratory of Mucosal Immunology, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
6
|
Trained immunity in type 2 immune responses. Mucosal Immunol 2022; 15:1158-1169. [PMID: 36065058 PMCID: PMC9705254 DOI: 10.1038/s41385-022-00557-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
Immunological memory of innate immune cells, also termed "trained immunity", allows for cross-protection against distinct pathogens, but may also drive chronic inflammation. Recent studies have shown that memory responses associated with type 2 immunity do not solely rely on adaptive immune cells, such as T- and B cells, but also involve the innate immune system and epithelial cells. Memory responses have been described for monocytes, macrophages and airway epithelial cells of asthmatic patients as well as for macrophages and group 2 innate lymphoid cells (ILC2) from allergen-sensitized or helminth-infected mice. The metabolic and epigenetic mechanisms that mediate allergen- or helminth-induced reprogramming of innate immune cells are only beginning to be uncovered. Trained immunity has been implicated in helminth-driven immune regulation and allergen-specific immunotherapy, suggesting its exploitation in future therapies. Here, we discuss recent advances and key remaining questions regarding the mechanisms and functions of trained type 2 immunity in infection and inflammation.
Collapse
|
7
|
Intestinal helminth infection transforms the CD4 + T cell composition of the skin. Mucosal Immunol 2022; 15:257-267. [PMID: 34931000 PMCID: PMC8866128 DOI: 10.1038/s41385-021-00473-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
Intestinal helminth parasites can alter immune responses to vaccines, other infections, allergens and autoantigens, implying effects on host immune responses in distal barrier tissues. We herein show that the skin of C57BL/6 mice infected with the strictly intestinal nematode Heligmosomoides polygyrus contain higher numbers of CD4+ T cells compared to the skin of uninfected controls. Accumulated CD4+ T cells were H. polygyrus-specific TH2 cells that skewed the skin CD4+ T cell composition towards a higher TH2/TH1 ratio which persisted after worm expulsion. Accumulation of TH2 cells in the skin was associated with increased expression of the skin-homing chemokine receptors CCR4 and CCR10 on CD4+ T cells in the blood and mesenteric lymph nodes draining the infected intestine and was abolished by FTY720 treatment during infection, indicating gut-to-skin trafficking of cells. Remarkably, skin TH2 accumulation was associated with impaired capacity to initiate IFN-γ recall responses and develop skin-resident memory cells to mycobacterial antigens, both during infection and months after deworming therapy. In conclusion, we show that infection by a strictly intestinal helminth has long-term effects on immune cell composition and local immune responses to unrelated antigens in the skin, revealing a novel process for T cell colonisation and worm-mediated immunosuppression in this organ.
Collapse
|
8
|
Kasal DN, Liang Z, Hollinger MK, O'Leary CY, Lisicka W, Sperling AI, Bendelac A. A Gata3 enhancer necessary for ILC2 development and function. Proc Natl Acad Sci U S A 2021; 118:e2106311118. [PMID: 34353913 PMCID: PMC8364216 DOI: 10.1073/pnas.2106311118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type 2 helper effector program is driven by the master transcription factor GATA3 and can be expressed by subsets of both innate lymphoid cells (ILCs) and adaptive CD4+ T helper (Th) cells. While ILC2s and Th2 cells acquire their type 2 differentiation program under very different contexts, the distinct regulatory mechanisms governing this common program are only partially understood. Here we show that the differentiation of ILC2s, and their concomitant high level of GATA3 expression, are controlled by a Gata3 enhancer, Gata3 +674/762, that plays only a minimal role in Th2 cell differentiation. Mice lacking this enhancer exhibited defects in several but not all type 2 inflammatory responses, depending on the respective degree of ILC2 and Th2 cell involvement. Our study provides molecular insights into the different gene regulatory pathways leading to the acquisition of the GATA3-driven type 2 helper effector program in innate and adaptive lymphocytes.
Collapse
Affiliation(s)
- Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Zhitao Liang
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Maile K Hollinger
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | | | - Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637
| | - Anne I Sperling
- Committee on Immunology, University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, IL 60637
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637;
- Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
9
|
Koida A, Yasuda K, Adachi T, Matsushita K, Yasuda M, Hirano S, Kuroda E. Thymic stromal lymphopoietin contributes to protection of mice from Strongyloides venezuelensis infection by CD4 + T cell-dependent and -independent pathways. Biochem Biophys Res Commun 2021; 555:168-174. [PMID: 33819747 DOI: 10.1016/j.bbrc.2021.03.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
When animals are infected with helminthic parasites, resistant hosts mount type II helper T (Th2) immune responses to expel worms. Recent studies have clearly shown that epithelial cell-derived cytokines contribute to the induction of Th2 immune responses. Here we demonstrate the role of endogenous thymic stromal lymphopoietin (TSLP) for protection against Strongyloides venezuelensis (S. venezuelensis) infection, utilizing TSLP receptor-deficient Crlf2-/- mice. The number of eggs per gram of feces (EPG) and worm burden were significantly higher in Crlf2-/- mice than in wild type (WT) mice. S. venezuelensis infection induced Tslp mRNA expression in the skin, lung, and intestine and also facilitated the accumulation of mast cells in the intestine in a TSLP-dependent manner. Furthermore, CD4+ T cells from S. venezuelensis-infected Crlf2-/- mice showed diminished capacity to produce Th2 cytokines in the early stage of infection. Finally, CD4+ cell-depleted Crlf2-/- mice still showed higher EPG counts and worm burden than CD4+ cell-depleted WT mice, indicating that TSLP contributes to protecting mice against S. venezuelensis infection in both CD4+ T cell-dependent and -independent manners.
Collapse
Affiliation(s)
- Atsuhide Koida
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan; Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Takumi Adachi
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kazufumi Matsushita
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|
10
|
Mathä L, Martinez-Gonzalez I, Steer CA, Takei F. The Fate of Activated Group 2 Innate Lymphoid Cells. Front Immunol 2021; 12:671966. [PMID: 33968080 PMCID: PMC8100346 DOI: 10.3389/fimmu.2021.671966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) reside in both mucosal and non-mucosal tissues and play critical roles in the first line of defense against parasites and irritants such as allergens. Upon activation by cytokines released from epithelial and stromal cells during tissue damage or stimulation, ILC2s produce copious amounts of IL-5 and IL-13, leading to type 2 inflammation. Over the past 10 years, ILC2 involvement in a variety of human diseases has been unveiled. However, questions remain as to the fate of ILC2s after activation and how that might impact their role in chronic inflammatory diseases such as asthma and fibrosis. Here, we review studies that have revealed novel properties of post-activation ILC2s including the generation of immunological memory, exhausted-like phenotype, transdifferentiation and activation-induced migration.
Collapse
Affiliation(s)
- Laura Mathä
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | | | - Catherine A Steer
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada
| | - Fumio Takei
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Ciarlo E, Heinonen T, Théroude C, Asgari F, Le Roy D, Netea MG, Roger T. Trained Immunity Confers Broad-Spectrum Protection Against Bacterial Infections. J Infect Dis 2021; 222:1869-1881. [PMID: 31889191 PMCID: PMC7653089 DOI: 10.1093/infdis/jiz692] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background The innate immune system recalls a challenge to adapt to a secondary challenge, a phenomenon called trained immunity. Training involves cellular metabolic, epigenetic and functional reprogramming, but how broadly trained immunity protects from infections is unknown. For the first time, we addressed whether trained immunity provides protection in a large panel of preclinical models of infections. Methods Mice were trained and subjected to systemic infections, peritonitis, enteritis, and pneumonia induced by Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Citrobacter rodentium, and Pseudomonas aeruginosa. Bacteria, cytokines, leukocytes, and hematopoietic precursors were quantified in blood, bone marrow, and organs. The role of monocytes/macrophages, granulocytes, and interleukin 1 signaling was investigated using depletion or blocking approaches. Results Induction of trained immunity protected mice in all preclinical models, including when training and infection were initiated in distant organs. Trained immunity increased bone marrow hematopoietic progenitors, blood Ly6Chigh inflammatory monocytes and granulocytes, and sustained blood antimicrobial responses. Monocytes/macrophages and interleukin 1 signaling were required to protect trained mice from listeriosis. Trained mice were efficiently protected from peritonitis and listeriosis for up to 5 weeks. Conclusions Trained immunity confers broad-spectrum protection against lethal bacterial infections. These observations support the development of trained immunity-based strategies to improve host defenses.
Collapse
Affiliation(s)
- Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Fatemeh Asgari
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mihai G Netea
- Radboud Center for Infectious Diseases, and Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
12
|
IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- and IL-9-driven mast cell activation. PLoS Pathog 2020; 16:e1009121. [PMID: 33351862 PMCID: PMC7787685 DOI: 10.1371/journal.ppat.1009121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/06/2021] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.
Collapse
|
13
|
Maggi L, Rocha IC, Camelo GMA, Fernandes VR, Negrão-Corrêa D. The IL-33/ST2 pathway is not essential to Th2 stimulation but is key for modulation and survival during chronic infection with Schistosoma mansoni in mice. Cytokine 2020; 138:155390. [PMID: 33341001 DOI: 10.1016/j.cyto.2020.155390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Morbidity during chronic schistosomiasis has been associated with the induction and modulation of type-2 granulomatous inflammatory response induced by antigens secreted by the eggs, which become trapped in capillary venules of the host tissues, especially in the liver and intestines. IL-33, an alarmin released after cell damage, binds to its ST2 (suppressor of tumorigenicity 2) receptor, expressed in an variety of immune cells, including ILC2 and macrophages, and stimulates the early production of IL-5 and IL-13, which leads to eosinophil infiltration and activation of a Th2 response. However, the role of IL-33/ST2 activation on Schistosoma-induced granuloma formation and modulation is mostly unknown. In the current work, we comparatively evaluated the immune response and granuloma formation in wild-type BALB/c (WT) and BALB/c mice genetically deficient in the IL-33 receptor (ST2-/-) experimentally infected with Schistosoma mansoni. Mice were infected with 25 or 50 S. mansoni cercariae and followed for up to 14 weeks to assess mortality. Mice from each experimental group were comparatively evaluated for parasite burden, liver immune response, and granuloma appearance during acute and chronic schistosomiasis. Our data showed that the number of circulating worms and eggs retained in the liver and eliminated in the feces was similar in WT and ST2-/- infected mice, but infected ST2-/- mice presented an enhanced rate of mortality. Interestingly, the production of type-2 cytokines by soluble egg antigens (SEA)-stimulated spleen cells, the serum concentrations of IL-5 and Immunoglobulin (Ig)-E, and the level of parasite-reactive IgG1 were similar in infected mice of both experimental groups. The concentrations of IL-4, IL-5, IL-13, and IFN-γ in liver homogenate of infected mice also did not differ between the strains at acute schistosomiasis, but there was a significant increase in IL-17 levels in ST2-/- infected mice at this phase. On the other hand, IL-4, IL-13, IL-10, IL-17, and IFN-γ concentrations were reduced and the ratios of IL-4/IFN-γ and IL-17/IFN-γ were higher in liver homogenate of chronically infected ST2-/- mice, suggesting unbalanced Th2 and Th17 responses. Moreover, liver granulomas of ST2-/- mice were larger and disorganized, showing an intense cellular infiltrate, rich in eosinophils and neutrophils. Our results suggest that the absence of the IL-33/ST2 pathway is not essential for the Schistosoma-induced Th2 response, but is necessary to prevent host mortality by modulating granuloma-mediated pathology.
Collapse
Affiliation(s)
- Laura Maggi
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabella Chrystina Rocha
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Curso de Enfermagem, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Mato Grosso, Barra do Garça, Brazil
| | - Genil Mororó Araújo Camelo
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Rodrigues Fernandes
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Negrão-Corrêa
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
14
|
Obata-Ninomiya K, Domeier PP, Ziegler SF. Basophils and Eosinophils in Nematode Infections. Front Immunol 2020; 11:583824. [PMID: 33335529 PMCID: PMC7737499 DOI: 10.3389/fimmu.2020.583824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths remain one of the most prolific pathogens in the world. Following infection helminths interact with various epithelial cell surfaces, including skin, lung, and gut. Recent works have shown that epithelial cells produce a series of cytokines such as TSLP, IL-33, and IL-25 that lead to the induction of innate and acquired type 2 immune responses, which we named Type 2 epithelial cytokines. Although basophils and eosinophils are relatively rare granulocytes under normal conditions (0.5% and 5% in peripheral blood, respectively), both are found with increased frequency in type 2 immunity, including allergy and helminth infections. Recent reports showed that basophils and eosinophils not only express effector functions in type 2 immune reactions, but also manipulate the response toward helminths. Furthermore, basophils and eosinophils play non-redundant roles in distinct responses against various nematodes, providing the potential to intervene at different stages of nematode infection. These findings would be helpful to establish vaccination or therapeutic drugs against nematode infections.
Collapse
Affiliation(s)
| | - Phillip P Domeier
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
15
|
Chetty A, Omondi MA, Butters C, Smith KA, Katawa G, Ritter M, Layland L, Horsnell W. Impact of Helminth Infections on Female Reproductive Health and Associated Diseases. Front Immunol 2020; 11:577516. [PMID: 33329545 PMCID: PMC7719634 DOI: 10.3389/fimmu.2020.577516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
A growing body of knowledge exists on the influence of helminth infections on allergies and unrelated infections in the lung and gastrointestinal (GI) mucosa. However, the bystander effects of helminth infections on the female genital mucosa and reproductive health is understudied but important considering the high prevalence of helminth exposure and sexually transmitted infections in low- and middle-income countries (LMICs). In this review, we explore current knowledge about the direct and systemic effects of helminth infections on unrelated diseases. We summarize host disease-controlling immunity of important sexually transmitted infections and introduce the limited knowledge of how helminths infections directly cause pathology to female reproductive tract (FRT), alter susceptibility to sexually transmitted infections and reproduction. We also review work by others on type 2 immunity in the FRT and hypothesize how these insights may guide future work to help understand how helminths alter FRT health.
Collapse
Affiliation(s)
- Alisha Chetty
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Katherine Ann Smith
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gnatoulma Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - William Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Akama Y, Satoh-Takayama N, Kawamoto E, Ito A, Gaowa A, Park EJ, Imai H, Shimaoka M. The Role of Innate Lymphoid Cells in the Regulation of Immune Homeostasis in Sepsis-Mediated Lung Inflammation. Diagnostics (Basel) 2020; 10:diagnostics10100808. [PMID: 33053762 PMCID: PMC7600279 DOI: 10.3390/diagnostics10100808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Septic shock/severe sepsis is a deregulated host immune system response to infection that leads to life-threatening organ dysfunction. Lung inflammation as a form of acute lung injury (ALI) is often induced in septic shock. Whereas macrophages and neutrophils have been implicated as the principal immune cells regulating lung inflammation, group two innate lymphoid cells (ILC2s) have recently been identified as a new player regulating immune homeostasis. ILC2 is one of the three major ILC subsets (ILC1s, ILC2s, and ILC3s) comprised of newly identified innate immune cells. These cells are characterized by their ability to rapidly produce type 2 cytokines. ILC2s are predominant resident ILCs and, thereby, have the ability to respond to signals from damaged tissues. ILC2s regulate the immune response, and ILC2-derived type 2 cytokines may exert protective roles against sepsis-induced lung injury. This focused review not only provides readers with new insights into the signaling mechanisms by which ILC2s modulate sepsis-induced lung inflammation, but also proposes ILC2 as a novel therapeutic target for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yuichi Akama
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
- Department of Emergency and Disaster Medicine, Faculty, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan;
- Correspondence: (Y.A.); (M.S.)
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan;
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
- Department of Emergency and Disaster Medicine, Faculty, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan;
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
- Department of Thoracic and Cardiovascular Surgery, Faculty, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
| | - Hiroshi Imai
- Department of Emergency and Disaster Medicine, Faculty, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan;
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
- Correspondence: (Y.A.); (M.S.)
| |
Collapse
|
17
|
Seo GY, Giles DA, Kronenberg M. The role of innate lymphoid cells in response to microbes at mucosal surfaces. Mucosal Immunol 2020; 13:399-412. [PMID: 32047273 PMCID: PMC7186215 DOI: 10.1038/s41385-020-0265-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells (ILCs) are a lymphocyte population that is mostly resident at mucosal surfaces. They help to induce an appropriate immune response to the microbiome at homeostasis. In healthy people, the mucosal immune system works symbiotically with organisms that make up the microbiota. ILCs play a critical role in orchestrating this balance, as they can both influence and in turn be influenced by the microbiome. ILCs also are important regulators of the early response to infections by diverse types of pathogenic microbes at mucosal barriers. Their rapid responses initiate inflammatory programs, production of antimicrobial products and repair processes. This review will focus on the role of ILCs in response to the microbiota and to microbial infections of the lung and intestine.
Collapse
Affiliation(s)
- Goo-Young Seo
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA
| | - Daniel A Giles
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, 9420 Athena Circle La Jolla, CA, 92037, USA,Division of Biology, University of California San Diego, La Jolla, CA 92037, USA,Correspondence:
| |
Collapse
|
18
|
Ryan N, Anderson K, Volpedo G, Varikuti S, Satoskar M, Satoskar S, Oghumu S. The IL-33/ST2 Axis in Immune Responses Against Parasitic Disease: Potential Therapeutic Applications. Front Cell Infect Microbiol 2020; 10:153. [PMID: 32363166 PMCID: PMC7180392 DOI: 10.3389/fcimb.2020.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections pose a wide and varying threat globally, impacting over 25% of the global population with many more at risk of infection. These infections are comprised of, but not limited to, toxoplasmosis, malaria, leishmaniasis and any one of a wide variety of helminthic infections. While a great deal is understood about the adaptive immune response to each of these parasites, there remains a need to further elucidate the early innate immune response. Interleukin-33 is being revealed as one of the earliest players in the cytokine milieu responding to parasitic invasion, and as such has been given the name "alarmin." A nuclear cytokine, interleukin-33 is housed primarily within epithelial and fibroblastic tissues and is released upon cellular damage or death. Evidence has shown that interleukin-33 seems to play a crucial role in priming the immune system toward a strong T helper type 2 immune response, necessary in the clearance of some parasites, while disease exacerbating in the context of others. With the possibility of being a double-edged sword, a great deal remains to be seen in how interleukin-33 and its receptor ST2 are involved in the immune response different parasites elicit, and how those parasites may manipulate or evade this host mechanism. In this review article we compile the current cutting-edge research into the interleukin-33 response to toxoplasmosis, malaria, leishmania, and helminthic infection. Furthermore, we provide insight into directions interleukin-33 research may take in the future, potential immunotherapeutic applications of interleukin-33 modulation and how a better clarity of early innate immune system responses involving interleukin-33/ST2 signaling may be applied in development of much needed treatment options against parasitic invaders.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Anatomy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kelvin Anderson
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Monika Satoskar
- Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sanika Satoskar
- Northeast Ohio Medical University, Rootstown, OH, United States
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
19
|
Yasuda K, Kuroda E. Role of eosinophils in protective immunity against secondary nematode infections. Immunol Med 2019; 42:148-155. [DOI: 10.1080/25785826.2019.1697135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
20
|
Löser S, Smith KA, Maizels RM. Innate Lymphoid Cells in Helminth Infections-Obligatory or Accessory? Front Immunol 2019; 10:620. [PMID: 31024526 PMCID: PMC6467944 DOI: 10.3389/fimmu.2019.00620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/08/2019] [Indexed: 01/14/2023] Open
Abstract
ILCs burst onto the immunological scene with their involvement in bacterial and helminth infections. As their influence has emerged, it has become clear that they play a fundamental role in regulating barrier tissue homeostasis and the immune response during inflammation. A subset of ILCs, ILC2s, has become the focus of attention for many helminth biologists-stepping into the limelight as both the elusive initiator and amplifier of the type-2 response. In many of the early reports, conclusions as to their function were based on experiments using unadapted parasites or immune-compromised hosts. In this review we re-examine the generation and function of type-2 ILCs in helminth infection and the extent to which their roles may be essential or redundant, in both primary and challenge infections. ILC2s will be discussed in terms of a broader innate network, which when in dialogue with adaptive immunity, allows the generation of the anti-parasite response. Finally, we will review how helminths manipulate ILC2 populations to benefit their survival, as well as dampen systemic inflammation in the host, and how this understanding may be used to improve strategies to control disease.
Collapse
Affiliation(s)
- Stephan Löser
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Katherine A Smith
- Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
21
|
Interleukin-18 in Health and Disease. Int J Mol Sci 2019; 20:ijms20030649. [PMID: 30717382 PMCID: PMC6387150 DOI: 10.3390/ijms20030649] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells. In this review article, we will focus on the unique features of IL-18 in health and disease in experimental animals and humans.
Collapse
|